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Abstract

Background: Salmonella Typhi is a human-restricted pathogen, which causes typhoid fever and remains a global health
problem in the developing countries. Although previously reported host expression datasets had identified putative
biomarkers and therapeutic targets of typhoid fever, the underlying molecular mechanism of pathogenesis remains
incompletely understood.

Methods: We used five gene expression datasets of human peripheral blood from patients suffering from S. Typhi or other
bacteremic infections or non-infectious disease like leukemia. The expression datasets were merged into human protein
interaction network (PIN) and the expression correlation between the hubs and their interacting proteins was measured by
calculating Pearson Correlation Coefficient (PCC) values. The differences in the average PCC for each hub between the
disease states and their respective controls were calculated for studied datasets. The individual hubs and their interactors
with expression, PCC and average PCC values were treated as dynamic subnetworks. The hubs that showed unique trends
of alterations specific to S. Typhi infection were identified.

Results: We identified S. Typhi infection-specific dynamic subnetworks of the host, which involve 81 hubs and 1343
interactions. The major enriched GO biological process terms in the identified subnetworks were regulation of apoptosis
and biological adhesions, while the enriched pathways include cytokine signalling in the immune system and downstream
TCR signalling. The dynamic nature of the hubs CCR1, IRS2 and PRKCA with their interactors was studied in detail. The
difference in the dynamics of the subnetworks specific to S. Typhi infection suggests a potential molecular model of typhoid
fever.

Conclusions: Hubs and their interactors of the S. Typhi infection-specific dynamic subnetworks carrying distinct PCC values
compared with the non-typhoid and other disease conditions reveal new insight into the pathogenesis of S. Typhi.

Citation: Dhal PK, Barman RK, Saha S, Das S (2014) Dynamic Modularity of Host Protein Interaction Networks in Salmonella Typhi Infection. PLoS ONE 9(8):
e104911. doi:10.1371/journal.pone.0104911

Editor: Mauricio Martins Rodrigues, Federal University of São Paulo, Brazil

Received May 2, 2014; Accepted July 17, 2014; Published August 21, 2014

Copyright: � 2014 Dhal et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its
Supporting Information files.

Funding: This work was supported by Indian Council of Medical Research [extramural project (IRIS ID: 2013-1551G)]. SS thanks the Department of Biotechnology
for Ramalingaswami fellowship (BT/RLF/Re-entry/11/2011). The funder had no role in study design, data collection and analysis, decision to publish, or preparation
of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: ssaha4@jcbose.ac.in (SS); dasss@icmr.org.in (SD)

Introduction

The World Health Organization (WHO) recognizes infection

by Gram-negative bacterium Salmonella enterica serovar Typhi as

a global health problem. The bacterium generally causes an acute

febrile illness known as enteric fever, while in some individuals, a

chronic carrier state is established that may contribute to the

development of adenocarcinoma of the gallbladder [1]. Globally,

22 million typhoid fever cases occur annually, accounting for

approximately 6, 00,000 deaths with the highest concentration in

Asia, especially in the Indian subcontinent [2]. Mechanism behind

the pathogenesis of Salmonella Typhi is poorly understood and

clinical diagnosis is often unreliable due to overlapping symptoms

and signs with other febrile illnesses [3]. Incorrect diagnosis and

subsequent use of broad spectrum antibiotics may lead to the rise

of multi-drug resistant strains [4]. So long as the understanding of

the pathogenesis of typhoid fever remains incomplete, improve-

ment of diagnosis, treatment and vaccine strategies will be delayed.

A host of distinct gene expression profiles are available in the

public domain for Salmonella Typhi as well as the host during

infection [5,6,7,8,9,10,11,12]. All these data may help to identify

enriched gene clusters, which will represent novel pathways that

may be targeted to improve diagnostic, prognostic, therapeutic

and next-generation vaccine strategies for typhoid fever. A major

problem with the expression-based classification is the cellular

differences within tissues and genetic variations among the patients

suffering from different diseases including typhoid fever, which

may weaken the discriminative power of the individual genes [15].

Therefore, unbiased utilization of the data is crucial for the

identification of disease mechanisms.
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Protein-protein interaction (PPI) network reveals many impor-

tant aspects of cellular organization and functions. Thus, protein-

protein interaction network (PIN) provides a global picture of

cellular mechanisms [13]. To better evaluate the roles they play in

complex diseases, genes need to be investigated in the PIN where

they are involved [14,15]. Few studies have so far been conducted

where integration of gene expression profiles has revealed the

dynamics of protein interaction networks and resulted in the

identification of condition- or location-specific features of the

interactome [16,17]. Examples of such studies include dynamic

modular structure of the human protein interaction network with

aging [17] and context-specific or constitutive human protein

interaction network in cancer [18]. Studies have also been done

with human dilated cardiomyopathy (DCM) to efficiently identify

the potential novel DCM signature genes and drug targets [19,20].

However, cellular mechanisms behind the pathogenesis of

infectious diseases, typhoid fever in particular, need to be further

explored using similar methods.

Here, a systematic approach was made to develop a network-

based analysis by integrating human peripheral blood gene

expression profiles during infections with Salmonella Typhi, other

non-typhoidal Salmonella, E.coli, Streptococcus pneumoniae and

acute myeloid leukemia (AML) to human PIN network to discover

Salmonella Typhi infection-specific subnetworks. Efforts were

made to understand the processes of rewiring of the protein-

protein interaction network in terms of the co-expression level of

the proteins during Salmonella Typhi infection. We found changes

in the dynamic modularity associated with Salmonella Typhi

infection that may provide the prognostic markers of typhoid

fever. Finally, enriched GO biological processes and biological

pathways represented by the subnetworks were also identified. To

the best of our knowledge, this is the first report where the

pathogenesis of typhoid fever was investigated by the integration of

host expression datasets in human PIN and S. Typhi infection

specific subnetworks were identified followed by characterization

of their dynamic nature.

Materials and Methods

2.1 Protein-protein interaction network and gene
expression data analysis

The binary protein-protein interaction dataset was downloaded

from Human Protein Reference Database (HPRD) [21] (Release

9). This dataset contains the largest connected components

currently available and comprises of 9,617 proteins and 39,240

interactions. A parental network named HPRD protein-protein

interaction network (PIN) was constructed with these proteins and

visualized using Cytoscape 3.0.1 [22].

All the gene expression datasets were downloaded from the

Gene Expression Omnibus (GEO) database [23] with the

accession number GSE28658 [3], GSE43838 [24], GSE40586

(unpublished) and GDS3057 [25]. All those microarray datasets

were already normalized and submitted to the databases by the

respective authors. Details of the datasets were described in

Table 1. For each dataset, gene expression profiles were processed

as previously described [28].

2.2 Data integration to determine the Pearson
Correlation Coefficient (PCC) of co-expression in the
interaction networks

The downloaded expression data were formatted uniformly and

multiple gene expression spots for a particular gene were averaged

for integrating into the static protein-protein interaction network

(PIN). Nodes with a degree (k) cut-off greater than or equal to 5

were used for further consideration and named as hubs, which

represent the highest 15% of the degree distribution. Correlation

of gene expression profiles between the hubs and their interacting

proteins (nodes) in the PIN were measured by calculating the PCC

between each pair of interacting proteins i.e. between the hub and

each of its interacting partners (nodes). PCC of paired genes (X

and Y), which encode interacting proteins in the PIN, is defined as:

rI ,H~

Pn
i~1

(XIj
{ �XX )(YHj

{ �YY )

(n{1)SISH

where SI~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i~1

(XIj
{ �XX )

(n{1)

vuuut
and SH~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i~1

(XHj
{ �XX )

(n{1)

vuuut
where,

r = Pearson Correlation Coefficient; XIj
= expression data for

interactor I of hub H of individual dataset j = 1, 2, 3…n;

YHj
= expression data for hub H of individual dataset j = 1, 2,

3…n; n = total number of values. I is an interactor of hub H, j

denotes the expression data for the hub or interactor in each of the

n samples and the summation is over all datasets (j = 1, 2, 3…n).

SISH is the product of the standard deviations of the expression

data for the hub and the interactors. The average PCC of co-

expression for each interactor and the hub was assessed using a

previously-described algorithm [16,18,26]. The average Pearson

Correlation Coefficient (Avg. PCC) for all the interactors of hub H

Table 1. GEO series (GSE) datasets used in this study.

GEO accession no No of Sample Description Abbreviation References

GSE28658 362 Peripheral blood sample of Salmonella Typhi-infected host in acute and
convalescent phase.

STA Vs STC [3]

GSE28658 362 Peripheral blood sample of bacteremic (infection Acinetobacter, Klebsiella,
and non-typhoidal Salmonella) infected host in acute and convalescent phase

BMA Vs BMC [3]

GSE43838 6 Blood sample of patients after and before 24 h Escherichia coli
83972 incubation.

ECI Vs ECC [24]

GSE40586 16 Peripheral blood sample of the patients infected and uninfected
with Streptococcus pneumoniae.

SPI Vs SPC Unpublished

GDS3057 12 Leukemic blasts from acute myeloid leukemia (AML) patients with
normal hematopoietic cells

MLDVsNHC [25]

doi:10.1371/journal.pone.0104911.t001
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was defined as: Avg. PCC~

PnH

i~1

rI ,H

n{1
, where n is the number of

interaction of a particular hub. The ‘‘Hmisc’’ package of R

(V.3.0.1) was used to estimate PCC and Avg. PCC values [45].

2.3 Identification of Salmonella Typhi infection-specific
subnetwork

The common hubs that represented all the disease conditions in

our study were identified and enlisted (Table S1). Avg. PCC of the

common hubs was measured for each of the five diseases and

compared with the respective controls. Subsequently, differences

between the perturbances and their controls were calculated. The

hubs that showed Salmonella Typhi infection-specific unique

trends of alteration in Avg. PCC were identified and termed as

Salmonella Typhi infection-specific hubs. All the interactions

involving each of these hubs and their PCC values were also

documented (Table S2). Larger absolute values of PCC indicate

higher correlation between the evaluated gene pairs. A network

was constructed using Salmonella Typhi infection-specific hubs

and their interactors and named as Salmonella Typhi infection-

specific subnetwork.

2.4 Functional group annotation
Biological process GO terms that correspond to the identified

subnetworks and enrichment of biological processes in the

individual hubs with their interactors were separately analysed

using functional annotation clustering (GOTERM_BP_ALL) with

medium classification stringency (default settings) of The Database

for Annotation, Visualization and Integrated Discovery (DAVID)

v6.7 [27], [28] and ClueGO plugin [29], [30] of Cytoscape. To

determine the statistical significance of enrichment of the identified

subnetworks, two-sided (Enrichment/Depletion) test based on the

hypergeometric distribution was used.

2.5 Topological network analysis
Characteristic path length (CPL) of the co-expressed networks

was calculated as described below. In order to examine whether

factors, such as interaction degrees (or ‘betweenness’) have any

impact on the network topology of Salmonella Typhi infection-

specific co-expressed subnetworks, we ordered all the genes in one

list according to increasing interaction degrees. Genes were

removed starting with the first gene having the lowest degree

until the last gene on the list and CPL was calculated as described

previously [17,31,32].

Result

3.1 Identification of the S. Typhi infection-specific
dynamic subnetworks

Condition-specific subnetwork model allows us to discover the

dynamic nature of the network with respect to different infections

[33]. The human protein-protein interaction network (PIN) from

HPRD consists of 39,240 interactions, in which 9,617 proteins are

connected into circuits of protein-protein interactions. The hub

proteins with many ($5) interacting partners in the human PIN

were identified, which included 4072 hubs leading to 28811

interactions as shown in Table 2. Next, peripheral blood gene

expression data of the five previously-mentioned patients with

their respective controls were integrated with the human PIN and

the extent of co-expression of a particular hub and its interacting

partners was quantified. This identified 3025 common hubs

having 17261 interactions present in all the expression datasets

(Table 2 and Table S1). Average PCC was computed for all the

interactions in which a particular hub participates to calculate the

average co-expression score (Table S1). Next, we looked for

significant differences in the Avg. PCC of all the common hub

proteins between the patients and their respective controls. For

example, Avg. PCC of the hub FOS is lower during acute phase of

Salmonella Typhi infection (0.204) compared to the convalescent

phase (0.618). But, this trend of change i.e. decreased Avg. PCC

during infection was not found in other conditions studied here,

such as other bacterial infections or AML. For example, in case of

bacteremic infections, Avg. PCC of FOS showed higher values

during the acute phase (0.393) compared to the convalescent phase

of infection (20.298). This analysis helped us to identify the 81

hubs that showed unique trends of changes in S. Typhi-infected

patients (Table 2). These unique 81 hubs with 1343 interactions

were used to construct a network named as S. Typhi infection-

specific subnetwork (Figure 1). In this study, we did not try to

identify hubs, which showed significantly up- or down-regulated

expression; instead efforts were made to detect hubs showing

unique trends of Avg. PCC alteration or having uniquely-altered

PCC with respect to S. Typhi infection. High co-expression level

(as measured by Avg. PCC) indicates more stable binding between

the hub and its interactors, whereas relatively lower co-expression

level indicates more dynamic binding [16,34]. The above 81

unique hubs are preferentially associated with dynamic binding

with a bias for decreasing Avg. PCC (Figure 1) with respect to the

control. Our data indicated that out of 81 hubs, six (,7%) showed

higher Avg. PCC in the acute phase of S. Typhi infection and

reaming 75 (,93%) hubs showed increasing Avg. PCC during the

convalescent phase of S. Typhi infection.

Table 2. Characteristics of protein-protein interaction network used in this study.

Characteristics No. of hubs Interactions Clustering Coefficient Network Density

Nodes Edges

Protein-protein interaction network from HPRD 9617 39240 0.102 0.001

Protein-protein interaction network from HPRD with
degree K$5

4071 8850 28811 0.136 0.003

Common hubs having expression profile across five GEO
studies

3025 8120 17261 0.133 0.004

Specific hubs for Salmonella Typhi infection 81 1091 1343 0.034 0.002

doi:10.1371/journal.pone.0104911.t002
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3.2 Functional annotation of the S. Typhi infection-
specific dynamic subnetworks

The Salmonella Typhi infection-specific subnetworks were

functionally annotated and subjected to in-depth analysis. The

hubs and their interacting partners in the Salmonella Typhi-

specific subnetworks were individually tested (each hubs and their

interacting partners were considered independently) to find out

whether they represent any enriched GO biological processes and

are part of functionally important KEGG/or REACTOME

pathways. The GO BP terms that represent the highest number

of genes with FDR (False Discovery Rate) #0.05 were enlisted

(Table S3) and used for further analysis. Among the major

enriched GO BP, regulation of apoptosis (GO id: 0042981),

biological adhesion (GO id: 0022610), cell surface receptor-linked

signal transduction (GO id: 0007166) and actin cytoskeleton

organization (GO id: 0030036) were observed (Table 3 and Table

S3). Significantly enriched pathway terms (Pval#0.05) from both

KEGG and REACTOME databases were further analysed. The

enriched pathways include cytokine signalling in the immune

system, downstream TCR signalling, hemostasis, cross-presenta-

tion of particulate exogenous antigens (phagosomes) and chemo-

kine receptors bind chemokines etc (Table 4 and Table S4). Each

of the significantly enriched pathways (Pval#0.05) was separately

searched in the PubMed with the subject ‘‘pathway term and

Salmonella/Salmonella Typhi’’ for its relevance, if any in the

human host during Salmonella Typhi as well as other Salmonella
spp infection and number of hits were counted and sorted in

descending order (Table S5 and Table S6). As indicated in table 3

and 4, hubs ARHGDIG, CCL2, CCR1, CD3E, CYBA, DUSP1,

FCGR2B, FOS, IRS2, JUN, NCF4, NOTCH3, PRKCA and

PYCARD with their respective interacting partners are associated

with more than one pathways. This means that the above-

mentioned hubs and their interacting partners bear strong

relevance to S. Typhi infection. Two such hubs, CCR1 chemokine

(C-C motif) receptor and IRS2 (insulin receptor substrate 2) with

Figure 1. Salmonella Typhi infection specific dynamic subnetworks. Co-expression merged with protein interaction networks, specifically
altered during acute phase of S. Typhi infection. The round and diamond shaped nodes represent the hubs and their interacting partners,
respectively. Out of 81, 6 yellow coloured hubs (IL2RA, SKP2, CIT, DTNA, CUL4A and SOCS7) represent increased Avg. PCC, while reaming 75 violet
coloured (,93%) hubs had decreased Avg. PCC during acute phase of S. Typhi infection.
doi:10.1371/journal.pone.0104911.g001
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their interacting partners also showed dynamic nature during S.
Typhi infection.

3.3 Architecture of the Salmonella Typhi infection-specific
dynamic subnetworks

To evaluate the importance of the 81 unique hubs to the

network stability, a topological measure of network connectivity

was adopted in the S. Typhi-infected uniquely-altered co-

expressed network. We used an established test for network

structure stability called the change of characteristic path length

(CPL) [35,36]. Attacking the first 71 out of 81unique hubs i.e., the

hubs having degree #18, did not significantly change the CPL

(Figure S1 and Table S7). Attack of the remaining 12 hubs i.e.,
CCR1, CD5, INADL, SKP2, SLC9A3R2, BAD, IRS2, SFN,

FOS, JUN, UBQLN4 and PRKCA (k = 21 to 174) showed a

strong antagonistic effect and removing them led to a rapid

decrease of the CPL of the network. It is known that the peripheral

nodes are relatively less essential for the stability of a network than

the centrally located nodes and most of the genes used in this study

are peripherally located in the corresponding network.

3.4 Identification of the key dynamic interactors in the
subnetworks specific to Salmonella Typhi infection

Among the hubs, which were reported to have strong relevance

to Salmonella infections (as indicated by more than one PubMed

hits) and found to be required for maintaining the subnetwork

stability, hubs CCR1 and IRS2 were considered for further

investigation for their condition-specific dynamic features during

S. Typhi infection (Figure 2 and Figure 3). After constructing a

subnetwork with CCR1 as the hub and its interacting partners as

nodes, the PCC values for all interactions were integrated and

their condition-specific dynamic properties were investigated

following labelling the edges with the respective PCC values of

individual interactors during different perturbances (Table S5). As

indicated in Figure 2, network of the interacting partners of CCR1

represents the dynamicity of the network properties during

Salmonella Typhi infection. Out of its 18 interactors as per PPI

from HPRD, CCR1 and its four interactors, which include

CCL15, CCL26, CCL8 and TPST1 showed unique correlated

expression patterns (lower PCC values corresponding to poorly

correlated expression between protein pairs) specific to Salmonella
Typhi infection (Table S8). In comparison to the controls (healthy)

and other infections, decreasing PCC values of the above

interactors of CCR1 hub indicate that they are loosely correlated

during Salmonella Typhi infection. Larger values of PCC indicate

higher correlation between evaluated gene pairs. Thus, the

expression of CCR1 is strongly correlated with the expression of

its partners in normal/convalescent phase of Salmonella Typhi

infection. Dynamic nature of the salmonella-specific subnetworks

was also apparent by the changes in the PCC of interactions in

other disease conditions studied (data not shown). Similarly,

dynamic nature of the hubs IRS2 (Figure 3 and Figure S3) and

PRKCA (Figure S2) with their interacting partners was also

investigated. Five interacting partners, such as IL4R, JAK3,

PIK3CD, SHC1 and TYK2 of the hub IRS2 are also loosely

bonded when Salmonella Typhi infects the human host as

indicated by the lower PCC values (Table S9). There exists no

previous report where direct involvement of IRS2 protein of the

human host during Salmonella Typhi infection was mentioned.

Discussion

In this study, S. Typhi infection-specific subnetworks were

identified by integrating human gene expression profiles during S.

Typhi and other bacterial infections and complex diseases like

cancer. This comparative analysis was also adopted to determine

the dynamic nature of the PPI network unique to S. Typhi

infection. Other Gram-negative bacteremic infections (Acineto-
bacter, Klebsiella, and non-typhoidal Salmonella) and Escherichia
coli-infected expression profiles were included to compare the host

expression levels during other pathogenic and phylogenetically-

affiliated bacterial infections. Similarly, gene expression profile of

human peripheral blood cell during Gram-positive (Streptococcus
pneumonia) bacteremic infections were considered to evaluate the

differences in the expression patterns because of the variation in

the outer casing of the bacteria. To make sure that the changes of

host gene expression are due to bacterial infection, one expression

profile of Acute Myeloid Leukemia (AML) [25] was also included

in this study. Leukemia gene expression data was used as negative

control dataset to exclude host gene expression changes due to

non-infectious diseases. Thus, comparison of this dataset with the

expression datasets of different bacteremic infections helped us to

identify the PIN unique to bacterial infection. All these expression

datasets were originally generated to evaluate the infection- and

disease-related changes in gene expression and relevant biological

processes related to a particular infection and/or disease. In this

study, we only focused on the changes in protein-protein

interaction patterns specific to Salmonella Typhi infection based

on the expression profiles.

Protein-protein interaction networks are static, as they include

all possible interactions regardless of when or where the

interactions take place. The integration of expression data and

the PPI network allowed us to identify functionally-important

genes, which were absent in the list of significantly differentially-

expressed genes in the expression data analysis carried out

previously [26,18,37].

A number of microarray expression data for the host and the

pathogen (S. Typhi) are available for human typhoid fever.

However, more focus should be given to find out ways to integrate

such information in order to gather disease-specific knowledge and

therapeutic targets as well as their reproducibility using different

data sources. Few previous investigations addressed this problem

by integrating gene microarray datasets to investigate the nature of

subnetworks or co-expression in heart failure [19] [20], dilated

cardiomyopathy [26], breast cancer [18] and aging [17]. Similarly,

we attempted to identify the uniquely-altered co-expression

subnetworks during Salmonella Typhi infection and characterize

their dynamic nature. A potential error that may arise due to the

so called ‘‘batch effect’’ is not applicable to our study because of

two reasons: i) Each GEO series dataset used in our study was run

in one platform only, with small sample size (varies between 6–16)

and in a single batch and ii) we computed the differential

expression profile of the hub proteins and the neighbouring nodes

(Pearson Correlation Coefficient (PCC)) based on the dynamic

protein-protein interaction network constructed with single

microarray gene expression dataset. Thus, we did not combine

independently run microarray datasets from different experiments

that give rise to the batch effect. Each microarray dataset

considered for our study was from a single experiment. Our

investigation is in line with the previously established methods,

where analysis primarily relied on the PCC values calculated from

the gene expression data to define condition-specific subnetworks

from most frequently-used curetted PPI dataset retrieved from the

HPRD database [21]. Pearson Correlation Coefficient (PCC) was

widely used as the similarity measure between the expression

profiles of the genes, which encode the interacting proteins, in

spite of its known limitation to measuring the strength of only

linear relationships. It is well known that protein pairs encoded by
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Figure 2. Network of the interacting partners of CCR1 representing the differences in dynamic network properties during S. Typhi
infection. The edges were labelled with respective PCC values of individual interactors during different perturbances. The four conditions
mentioned are A. Control (normal host cell), B. S. Typhi infection, C. other bacteremic (non-typhoid Salmonella, Klebsiella spp and Acinetobacter spp)
infections and D. Leukemia. Hub CCR1 and four interactors (e.g, CCL15, CCL26, CCL8 and TPST1) showed unique co-expression patterns (lower PCC
values corresponding to correlated expression between protein pairs) specific to S. Typhi infection.
doi:10.1371/journal.pone.0104911.g002
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co-expressed genes interact with each other more frequently than

the random pairs. The similarity in the mRNA expression profiles

has been associated with biologically relevant PPIs [46]. In the

present work, we computed the PCC between the expression

profiles of the genes whose corresponding proteins are known to

interact [47]. To determine whether mRNAs corresponding to

interacting protein pairs are likely to be co-expressed, we used

PCC of the corresponding gene pairs in all the studied conditions.

Figure 3. Network of the interacting partners of IRS2 representing differences in dynamic network properties in S. Typhi infection.
The edges were labelled with respective PCC values of individual interactors during different perturbances. The four mentioned conditions are A.
Control (normal host cell), B. S. Typhi infection, C. other bacteremic (non-typhoid Salmonella, Klebsiella spp and Acinetobacter spp) infections, D.
Leukaemia. Hub IRS2 and five interactors (e.g, IL4R, JAK3, PIK3CD, SHC1 and TYK2) showed unique co-expression pattern (lower PCC values
corresponding to correlated expression between protein pairs) specific to S. Typhi infection.
doi:10.1371/journal.pone.0104911.g003
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It is also to mention that PCC measures the relative shape of the

expression profile rather than its expression values. In addition to

that, other reasons for usefulness of PCC for co-expression studies

are reported by Mentzen and Wurtele 2008 [48] and Daub et al

2004 [49]. They estimated that the presence of strong non-linear

relationships between gene expression profiles in the expression

data, which would not be picked up by Pearson’s R, is relatively

rare. The PCC is easy to calculate and is familiar to experimental

biologists [50]. Gustin et al 2008 [51] indicated that genes are

usually said to be co-expressed or connected when their expression

levels are linearly linked within a group. The PCC remains the

basic method for assessing pairwise expression of linearly-linked

genes.

CCR1, a chemokine (C-C motif) receptor, is one of the hubs of

S. Typhi infection-specific dynamic subnetworks. Significantly-

enriched pathways in KEGG represented by this hub and its

interactors include cytokine-cytokine receptor interaction and

chemokine signalling pathway, while the same in REACTOME

are chemokine receptors bind chemokines and regulation of IFNc
signalling. Polymorphism in the CCR1 region is associated with

coeliac disease in humans [38] and Salmonella infection in pig

[39]. This is the first study to show an association between CCR1

and Salmonella Typhi infection in humans. There are no reports

where the direct involvement of IRS2 protein of human host

during Salmonella Typhi infection was evidenced. Previous studies

revealed that IL-4 (Interleukin 4) receptors (IL4R, one of the

interacting partners of IRS2) are involved in auto and/or trans-

phosphorylation of Janus kinases 1 and 3 (JAK1 and JAK3) and

activation of the IL-4 signalling pathways [40,41]. These pathways

include signal transducer and activator Insulin receptor substrate 2

(IRS2) [42,43]. It was also reported that IL-4 and IRS2 play a

critical role in the regulation of immune responses [44] and the

pathogenesis of inflammatory bowel diseases.

Our results suggest that disorganization of CCR1 and IRS2 by

the loss of co-ordinated co-expression components is associated

with S. Typhi infection. Thus, changes in the dynamic network

modularity that are associated with S. Typhi infection may

provide a prognostic signature, which may help to identify the

molecular markers of human typhoid fever.

Conclusion

This network-based comparative analysis approach integrates

protein-protein interactions with gene expression profiles to reveal

dynamic nature of the network under different biological states.

The dynamic features of identified S. Typhi infection-specific

subnetworks may account for the underlying disease mechanisms.

The molecular modules identified might be used as potential drug

targets and provide new directions for further clinical validation

and understanding of the diseases at the cellular level.

Supporting Information

Figure S1 The 81 selected genes are important to
dynamic subnetworks stability. Attacking the genes in this

subnetwork decreases the CLP of the network.

(TIF)

Figure S2 Network of the interacting partners of
PRKCA representing differences in dynamic network
properties in Salmonella infection. The edges were labelled

with respective PCC values of individual interactors during

different perturbances. The conditions mentioned are A. Control

(normal host cell), B. Salmonella infection, C. other bacteremic

(non-typhoid Salmonella, Klebsiella spp and Acinetobacter spp)

infection, D. Ecoli infection, E. Streptococcus pneumoniae and F.

Leukemia. As indicated PRKCA and few interactors (e.g,

ADRBK1, ANXA7, ARHGEF1, CBL, CISH, CORO1B,

DLG4, EWSR1, GFAP, GFPT1, HES1, HLA-A, MBP, MYOD1,

NOS1, PLD2, PRKCZ, PTGIR, RHO, RRAD, TERT, TIAM1

and TRIM29) showed unique expression patterns (lower PCC

values corresponding to correlated expression between protein

pairs) specific to S. Typhi infection.

(TIF)

Figure S3 Network of the interacting partners of IRS2
representing differences in dynamic network properties
in Salmonella infection. The edges were labelled with

respective PCC values of individual interactors during different

perturbances. The four mentioned conditions are A. Control

(normal host cell), B. Salmonella infection, C. other bacteremic

(non-typhoid Salmonella, Klebsiella spp and Acinetobacter spp)

infection, D. E.coli infection, E. Streptococcus pneumoniae and F.

Leukaemia. Hub IRS2 and four interactors (e.g, IL4R, JAK3,

PIK3CD, SHC1 and TYK2) showed unique expression patterns

(lower PCC values corresponding to correlated expression between

protein pairs) specific to S. Typhi infection.

(TIF)

Table S1 List of common hubs present in all the studied
datasets with their respective Avg. PCC.

(XLSX)

Table S2 The list of common interactors present in all
the studied datasets with their respective PCC.

(XLSX)

Table S3 Significantly enriched gene ontology biological
process term of 81 hubs and their interactors using
DAVID database.

(DOCX)

Table S4 Biological pathway analysis of 81 hubs and
their interactors by ClueGO (KEGG_24.05.2012 and
REACTOME_10.07.2012). Only those enriched Biological

pathways GOTerm were selected that showed low Pvalue (Pvalue

#0.05).

(DOCX)

Table S5 List of enriched pathway term (analysed using
REACTOME databases) that showed higher number of
hits when searched in PubMed with the subject ‘‘path-
ways term and Salmonella/Salmonella Typhi.’’

(DOCX)

Table S6 List of enriched pathway term (analysed using
KEGG databases) that showed higher number of hits
when searched in PubMed with the subject ‘‘pathways
term and Salmonella/Salmonella Typhi.’’

(DOCX)

Table S7 Pearson Correlation Coefficient (PCC) values
of hubs IRS2 with its interactors.

(XLSX)

Table S8 Degree of Salmonella Typhi infection specific.

(XLSX)

Table S9 Pearson Correlation Coefficient (PCC) values
of hubs CCR1 with its interactors.

(XLSX)
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