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a b s t r a c t 

Canonical Correlation Analysis (CCA) and its regularised versions have been widely used in the neuroimaging 

community to uncover multivariate associations between two data modalities (e.g., brain imaging and behaviour). 

However, these methods have inherent limitations: (1) statistical inferences about the associations are often not 

robust; (2) the associations within each data modality are not modelled; (3) missing values need to be imputed or 

removed. Group Factor Analysis (GFA) is a hierarchical model that addresses the first two limitations by provid- 

ing Bayesian inference and modelling modality-specific associations. Here, we propose an extension of GFA that 

handles missing data, and highlight that GFA can be used as a predictive model. We applied GFA to synthetic 

and real data consisting of brain connectivity and non-imaging measures from the Human Connectome Project 

(HCP). In synthetic data, GFA uncovered the underlying shared and specific factors and predicted correctly the 

non-observed data modalities in complete and incomplete data sets. In the HCP data, we identified four relevant 

shared factors, capturing associations between mood, alcohol and drug use, cognition, demographics and psy- 

chopathological measures and the default mode, frontoparietal control, dorsal and ventral networks and insula, 

as well as two factors describing associations within brain connectivity. In addition, GFA predicted a set of non- 

imaging measures from brain connectivity. These findings were consistent in complete and incomplete data sets, 

and replicated previous findings in the literature. GFA is a promising tool that can be used to uncover associations 

between and within multiple data modalities in benchmark datasets (such as, HCP), and easily extended to more 

complex models to solve more challenging tasks. 
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. Introduction 

In the past few years, there has been a substantial increase in the ap-

lication of multivariate methods, such as Canonical Correlation Anal-

sis (CCA) ( Hotelling, 1936 ), to identify associations between two data

odalities (e.g., brain imaging and behaviour). CCA uncovers underly-

ng associations between two sets of variables by finding linear combi-

ations of variables from each modality that maximise the correlation

etween them. This is particularly relevant in brain imaging research,

here different types of data (e.g., brain structural/functional data, be-

avioural and cognitive assessments) are collected from the same in-

ividuals to investigate the population variability. Moreover, the unsu-

ervised nature of CCA has made it increasingly popular in fields such

s psychiatric neuroscience, where there is a lack of objective biomark-

rs of illness and the diagnostic categories are not reliable ( Bzdok and

eyer-Lindenberg, 2017; Insel et al., 2010 ). 
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CCA and regularised variants of CCA, such as sparse CCA ( Lê Cao

t al., 2009; Waaijenborg et al., 2008; Witten et al., 2009 ), have been

sed to identify associations, for instance, between brain connectivity

nd cognitive/psychopathology measures ( Drysdale et al., 2017; Miha-

ik et al., 2019; Xia et al., 2018 ), brain connectivity and general lifestyle,

emographic and behavioural measures ( Alnæs et al., 2020; Bijsterbosch

t al., 2018; Lee et al., 2019; Li et al., 2019; Smith et al., 2015 ), brain

tructure, demographic and behavioural measures ( Mihalik et al., 2020;

onteiro et al., 2016 ) and between different brain imaging modalities

 Sui et al., 2012 ). 

Nonetheless, these methods have some limitations. First, they do not

rovide an inherent robust inference approach to infer the relevant as-

ociations. This is usually done by assessing the statistical significance

f the associations using permutation inference ( Winkler et al., 2020 ) or

old-out sets ( Mihalik et al., 2020; Monteiro et al., 2016 ). Second, the

ssociations within data modalities, which might explain important vari-
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nce in the data, are not modelled. Finally, CCA assumes data pairing

etween data modalities, which is problematic when values are missing

n one or both data modalities. This is a common issue in clinical and

euroimaging datasets, in which the missing values usually need to be

mputed or removed before applying the models. 

One potential way to address the limitations mentioned above is to

olve the CCA problem within a probabilistic framework. Bach and Jor-

an (2006) proposed a probabilistic interpretation of CCA, but showed

hat the maximum likelihood estimates are equivalent to the solution

hat standard CCA finds. Nevertheless, probabilistic CCA provided an

nitial step towards robust inference by allowing estimation of the un-

ertainty of the parameters and it could be used as building block for

ore complex models, such as Bayesian CCA proposed by Klami and

aski (2007) and Chong Wang (2007) . In both papers, the authors in-

roduced a hierarchical Bayesian extension of CCA by adding suitable

rior distributions over the model parameters to automatically infer the

umber of relevant latent components (i.e., relevant associations) using

ayesian inference. 

Bayesian CCA has some limitations, however: it is not able to uncover

ssociations within data modalities and, in high dimensional data sets, it

an be computationally infeasible ( Klami et al., 2013 ). Virtanen and col-

eagues ( Klami et al., 2013; Virtanen et al., 2011 ) proposed an extension

f Bayesian CCA to solve these two limitations, whilst removing irrel-

vant latent components (i.e., components that explain little variance).

his model was further extended to include more than two data modal-

ties (termed “groups ”) and was named Group Factor Analysis (GFA)

 Klami et al., 2015; Virtanen et al., 2012 ). Examples of GFA applica-

ions are still scarce: it has mostly been used on genomics data ( Klami

t al., 2013; Suvitaival et al., 2014; Zhao et al., 2016 ), drug response

ata ( Khan et al., 2014; Klami et al., 2015 ) and task-based fMRI ( Klami

t al., 2015; Virtanen et al., 2011; 2012 ). To the best of our knowledge,

FA has not been applied to uncover associations between brain con-

ectivity and behaviour, especially using high dimensional data. 

The original GFA implementation still does not address the third lim-

tation mentioned above, i.e., it cannot be applied to data modalities

ith missing data. Therefore, we propose an extension of GFA that can

andle missing data and allows more flexible assumptions about noise.

e first applied our GFA extension to synthetic data to assess whether

t can find known associations among data modalities. We then applied

t to data from the Human Connectome Project (HCP) to uncover associ-

tions between brain connectivity and non-imaging measures (e.g., de-

ographics, psychometrics and other behavioural measures). We eval-

ated the consistency of the findings across different experiments with

omplete and incomplete data sets. Finally, even though the GFA model

as proposed for unsupervised tasks, it can also be used as a predictive

odel: we applied our GFA implementation to synthetic and HCP data

o assess whether it was able to predict missing data and non-observed

ata modalities from those observed, in incomplete data sets. 

To illustrate the differences between GFA and CCA, we also applied

CA to both datasets. First, we hypothesised that GFA would replicate

revious CCA findings using broadly the same HCP dataset, where pre-

ious investigators identified a single mode of population covariation

epresenting a “positive-negative ” factor linking lifestyle, demographic

nd psychometric measures to specific patterns of brain connectivity

 Smith et al., 2015 ). Second, we expected CCA to show poorer perfor-

ance when data was missing, whereas GFA results would be consistent

cross experiments with complete and incomplete data sets. Due to its

exibility and robustness, the proposed extension of GFA provides an

ntegrative framework that can be used to uncover associations among

ultiple data modalities in benchmark neuroimaging datasets. 

. Materials and methods 

We first describe the link between CCA and GFA ( Section 2.1 ), then

e explain how we modified the GFA model to accommodate missing

ata ( Section 2.2 ) and used it to make predictions ( Section 2.3 ). These
2 
ubsections are followed by descriptions of experiments where we assess

he effectiveness of the model on synthetic data ( Section 2.4.1 ), as well

s on HCP data ( Section 2.4.2 ). 

.1. From CCA to GFA 

In this section, we show that the probabilistic extension of CCA

erves as a building block for GFA. We begin by describing CCA

 Section 2.1.1 ), which is followed by the descriptions of probabilistic

 Section 2.1.2 ) and Bayesian CCA ( Section 2.1.3 ). We finish this section

y describing the GFA model and its inference ( Section 2.1.4 ). 

.1.1. CCA 

Canonical Correlation Analysis was introduced by

otelling (1936) and is a classical method for seeking maximal

orrelations between linear combinations of two multivariate data sets,

hich can be seen as two different data modalities from the same

bservations or individuals. This can be illustrated using the follow-

ng notation: 𝐗 

(1) ∈ ℝ 

𝐷 1 ×𝑁 and 𝐗 

(2) ∈ ℝ 

𝐷 2 ×𝑁 are two data matrices

ontaining multivariate data from the same N observations, where 𝐷 1 
nd 𝐷 2 denote the number of variables of 𝐗 

(1) and 𝐗 

(2) , respectively.

CA finds pairs of weight vectors 𝐮 𝑘 ∈ ℝ 

𝐷 1 ×1 and 𝐯 𝑘 ∈ ℝ 

𝐷 2 ×1 that

aximise the correlation between the corresponding projections 𝐮 𝑇 
𝑘 
𝐗 

(1) 

nd 𝐯 𝑇 
𝑘 
𝐗 

(2) (also known as canonical scores), 𝑘 = 1 , … , 𝐾 (where 𝐾 is

he number of canonical directions, also called CCA modes). This is

chieved by solving: 

ax 𝐮 𝑘 , 𝐯 𝑘 𝐮 
𝑇 
𝑘 
𝐗 

(1) 𝐗 

(2) 𝑇 𝐯 𝑘 , 
subject to 𝐮 𝑇 

𝑘 
𝐗 

(1) 𝐗 

(1) 𝑇 𝐮 𝑘 = 1 and 𝐯 𝑇 
𝑘 
𝐗 

(2) 𝐗 

(2) 𝑇 𝐯 𝑘 = 1 , 
(1) 

here the variables (i.e., rows of 𝐗 

(1) and 𝐗 

(2) ) are considered to be

tandardised to zero mean and unit variance. The optimisation prob-

em in Eq. (1) can be solved using a standard eigenvalue solution

 Hotelling, 1936 ), singular value decomposition (SVD) ( Uurtio et al.,

017 ), alternating least squares (ALS) ( Golub and Zha, 1994 ) or non-

inear iterative partial least squares (NIPALS) ( Wegelin, 2000 ). 

As mentioned above, CCA lacks robust inference methods and does

ot model the associations within data modalities. Probabilistic ap-

roaches, such as probabilistic CCA, might be used to overcome these

imitations, in which the generative nature of the models offers straight-

orward extensions to novel models through simple changes of the gen-

rative description, and more robust inference methods (e.g., Bayesian

nference). 

.1.2. Probabilistic CCA 

The probabilistic interpretation of CCA ( Bach and Jordan, 2006 ) as-

umes that 𝑁 observations of 𝐗 

(1) and 𝐗 

(2) (similarly defined as above)

re generated by the same latent variables 𝐙 ∈ ℝ 

𝐾×𝑁 capturing the as-

ociations between data modalities ( Fig. 1 a), where 𝐾 corresponds to

he number of components (which are equivalent to the CCA modes de-

cribed in Section 2.1.1 ): 

 𝑛 ∼  ( 𝟎 , 𝐈 𝐾 ) , 
 

(1) 
𝑛 ∼  ( 𝐀 

(1) 𝐳 𝑛 + 𝝁(1) , 𝚿(1) ) , 
 

(2) 
𝑛 ∼  ( 𝐀 

(2) 𝐳 𝑛 + 𝝁(2) , 𝚿(2) ) , 
(2) 

here  ( ⋅) represents the multivariate normal distribution, 𝐀 

(1) ∈
 

𝐷 1 ×𝐾 and 𝐀 

(2) ∈ ℝ 

𝐷 2 ×𝐾 are the projection matrices (also known as

oading matrices) that represent the transformations of the latent vari-

bles 𝐳 𝑛 ∈ ℝ 

𝐾×1 (which corresponds to a column vector of 𝐙 ) into the

nput space. The projection matrices are equivalent to the (horizontal)

oncatenation of all pairs of weight vectors 𝐮 𝑘 and 𝐯 𝑘 that CCA finds

see Section 2.1.1 ). 𝚿(1) ∈ ℝ 

𝐷 1 ×𝐷 1 , 𝚿(2) ∈ ℝ 

𝐷 2 ×𝐷 2 denote the noise co-

ariance matrices. 

Bach and Jordan proved that the maximum likelihood estimates of

he parameters in Eq. (2) lead to the same canonical directions as stan-

ard CCA up to a rotation ( Bach and Jordan, 2006 ), i.e., the posterior
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Fig. 1. Graphical representation of (a) Probabilistic CCA, (b) Bayesian CCA and 

(c) GFA. A separate mean parameter is not included for GFA, but it assumes 

zero-mean data without loss of generality ( Section 2.1.4 ). 
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(  
xpectations 𝐸( 𝐙 |𝐗 

(1) ) and 𝐸( 𝐙 |𝐗 

(2) ) lie in the same subspace that stan-

ard CCA finds, where the subspace is represented by the canonical

cores 𝐔 

𝑇 𝐗 

(1) and 𝐕 

𝑇 𝐗 

(2) , where 𝐔 ∈ ℝ 

𝐷 1 ×𝐾 and 𝐕 ∈ ℝ 

𝐷 2 ×𝐾 . Moreover,

n equivalent representation of the latent variables 𝐙 can be obtained

 for CCA - by averaging the canonical scores obtained for each data

odality ( Klami et al., 2013 ). 

Although probabilistic CCA does not provide an explicit inference

pproach to infer the number of relevant components, it was used as a

uilding block for Bayesian CCA that - as described in the next section -

rovides a solution for this limitation. 

.1.3. Bayesian CCA 

Klami and Kaski (2007) and Chong Wang (2007) proposed a hier-

rchical Bayesian extension of CCA by giving full Bayesian treatment

o the probabilistic CCA model, introducing suitable prior distributions

ver the model parameters, which can be inferred using Bayesian infer-

nce. 

The goal of Bayesian inference is to provide a procedure for incorpo-

ating our prior beliefs with any evidence (i.e., data) that we can collect

o obtain an updated posterior belief. This is done using the Bayes’ the-

rem: 𝑝 ( 𝚯|𝐗 ) = 𝑝 ( 𝐗 |𝚯) 𝑝 ( 𝚯)∕ 𝑝 ( 𝐗 ) , where 𝑝 ( 𝚯) represents the prior dis-

ributions over the model parameters 𝚯 (here, 𝚯 denotes the model

arameters { 𝐀 , 𝜶, 𝚿, 𝝁} and latent variables 𝐙 ), 𝑝 ( 𝐗 |𝚯) represents the

ikelihood and 𝑝 ( 𝚯|𝐗 ) represents the joint posterior distribution that ex-

resses the uncertainty about the model parameters after accounting

or the prior knowledge and data. 𝑝 ( 𝐗 ) represents the model evidence,

r marginal likelihood, which is usually considered a normalising con-

tant. In this way, Bayes’ theorem is formulated as: 𝑝 ( 𝚯|𝐗 ) ∝ 𝑝 ( 𝐗 |𝚯) 𝑝 ( 𝚯) ,
hich means that the posterior distribution is proportional to the like-

ihood times the prior. 

In the Bayesian CCA model (represented in Fig. 1 b), the observations

 

( 𝑚 ) are assumed to be generated by Eq. (2) . The joint probabilistic dis-

ribution of the model is given by Chong Wang (2007) : 

 ( 𝐗 , 𝐙 , 𝐀 , 𝜶, 𝚿, 𝝁) = 

∏𝑀 

𝑚 =1 

[ 
𝑝 ( 𝐗 

( 𝑚 ) |𝐙 , 𝐀 

( 𝑚 ) , 𝚿( 𝑚 ) , 𝝁( 𝑚 ) )×

 ( 𝐀 

( 𝑚 ) |𝜶( 𝑚 ) ) 𝑝 ( 𝜶( 𝑚 ) ) 𝑝 ( 𝚿( 𝑚 ) ) 𝑝 ( 𝝁( 𝑚 ) ) 
] 
𝑝 ( 𝐙 ) , 

(3) 

here 𝑀 is the number of data modalities, 𝐀 

( 𝑚 ) and 𝐙 are defined as in

q. (2) and 𝜶( 𝑚 ) ∈ ℝ 

1×𝐾 . The prior distributions are chosen to be conju-

ate (i.e., the posterior distribution has the same functional form as the

rior distribution) which simplifies the inference: 

 ( 𝐀 

( 𝑚 ) |𝜶( 𝑚 ) ) = 

∏𝐷 𝑚 
𝑗=1 

∏𝐾 

𝑘 =1  ( 𝑎 ( 𝑚 ) 
𝑗𝑘 

|0 , ( 𝛼( 𝑚 ) 
𝑘 

) −1 ) , 𝑝 ( 𝜶( 𝑚 ) ) = 

∏𝐾 

𝑘 =1 Γ( 𝛼
( 𝑚 ) 
𝑘 

|𝑎 ( 𝑚 𝜶

 ( 𝝁( 𝑚 ) ) =  ( 𝝁( 𝑚 ) |0 , ( 𝛽( 𝑚 ) ) −1 𝐈 ) , 𝑝 ( 𝚿( 𝑚 ) ) =  

−1 ( 𝚿( 𝑚 ) |𝐒 ( 𝑚 ) 0 , 𝜈
( 𝑚 ) 
0 ) , 

(4) 
3 
) , 

here 𝐒 ( 𝑚 ) 0 is a symmetric positive definite matrix, 𝜈
( 𝑚 ) 
0 denotes the

egrees of freedom for the inverse Wishart distribution (  

−1 ( ⋅) ) and

( ⋅) represents the Gamma distribution. The prior over the projection

atrices 𝐀 

( 𝑚 ) is the Automatic Relevance Determination (ARD) prior

 Mackay, 1995 ), which is used to find the relevant latent components

i.e., rows of 𝐙 ). This is done by allowing some 𝛼
( 𝑚 ) 
𝑘 

to be pushed to-

ards infinity, which consequently drives the loadings (i.e., elements of

he projection/loading matrices) of the 𝑘 columns of 𝐀 

( 𝑚 ) close to zero

nd the corresponding irrelevant latent components 𝑘 to be pruned out

uring inference. 

For learning the Bayesian CCA model, we need to infer the model

arameters and latent variables from data, which can be done by es-

imating the posterior distribution 𝑝 ( 𝐙 , 𝐀 , 𝜶, 𝚿, 𝝁|𝐗 ) and marginalising

ut uninteresting variables. However, these marginalisations are often

nalytically intractable, and therefore the posterior distribution needs to

e approximated. This can be done using mean-field variational Bayes

 Chong Wang, 2007 ) or Gibbs sampling ( Klami and Kaski, 2007 ), since

ll conditional distributions are conjugate. However, the inference of

he Bayesian CCA model is difficult for high dimensional data as the

osterior distribution needs to be estimated over large covariance ma-

rices 𝚿( 𝑚 ) ( Klami et al., 2013 ). The inference algorithms usually need to

nvert those matrices in every step, which results in 𝑂( 𝐷 

3 
𝑚 
) complexity,

eading to long computational times. Moreover, Bayesian CCA does not

ccount for the modality-specific associations. 

Virtanen et al. (2011) proposed an extension of Bayesian CCA to

mpose modality-wise sparsity to separate associations between data

odalities from those within data modalities. Moreover, this model as-

umes spherical noise covariance matrices ( 𝚿( 𝑚 ) = 𝜎( 𝑚 ) 
2 𝐈 , where 𝜎( 𝑚 ) 

2 

orresponds to the noise variance of data modality 𝑚 ) for more effi-

ient inference. The same authors proposed a further extension of the

odel to uncover associations between more than two groups (e.g., data

odalities), called Group Factor Analysis (GFA) ( Klami et al., 2015; Vir-

anen et al., 2012 ). 

.1.4. Group factor analysis 

In the GFA problem, we assume that a collection of 𝑁 observations,

tored in 𝐗 ∈ ℝ 

𝐷×𝑁 , have disjoint 𝑀 partitions of variables 𝐷 𝑚 called

roups. In this and the following two sections ( Sections 2.2 and 2.3 ),

e refer to a given data modality as a group of variables of 𝐗 ( 𝐗 

( 𝑚 ) ∈
 

𝐷 𝑚 ×𝑁 for the 𝑚 -th group), in accordance with the GFA nomenclature.

oreover, we introduce the concept “factor ” that corresponds to the

oadings in a given column 𝑘 of the loading matrices (represented as

 in Fig. 1 c). The latent factors correspond to the rows of the latent

ariables 𝐙 ∈ ℝ 

𝐾×𝑁 (equivalent to a latent component in probabilistic

nd Bayesian CCA). 

GFA finds the set of 𝐾 latent factors that can separate the associ-

tions between groups (i.e., shared factors) from those within groups

i.e., group-specific factors) by considering a joint factor model ( Fig.

 c), where each 𝑚 -th group is generated as follows Klami et al. (2015) ;

irtanen et al. (2012) : 

 𝑛 ∼  ( 𝟎 , 𝐈 𝐾 ) , 
 

( 𝑚 ) 
𝑛 ∼  ( 𝐖 

( 𝑚 ) 𝐳 𝑛 , 𝐓 

( 𝑚 ) −1 ) , 
(5) 

here 𝐓 

( 𝑚 ) −1 is a diagonal covariance matrix ( 𝐓 

( 𝑚 ) = diag ( 𝝉 ( 𝑚 ) ) , where
( 𝑚 ) represents the noise precision, i.e., inverse noise variance of the 𝑚 -

h group), 𝐖 

( 𝑚 ) ∈ ℝ 

𝐷 𝑚 ×𝐾 is the loading matrix of the 𝑚 -th group and

 𝑛 ∈ ℝ 

𝐾×1 is the latent variable for a given observation 𝐱 ( 𝑚 ) 𝑛 (i.e., col-

mn of 𝐗 

( 𝑚 ) ). The model assumes zero-mean data without loss of gen-

rality. Alternatively, a separate mean parameter could have been in-

luded; however, its estimate would converge close to the empirical

ean, which can be subtracted from the data before estimating the

odel parameters ( Klami et al., 2013 ). 

If we consider 𝑀 = 2 (also known as Bayesian CCA via group spar-

ity ( Virtanen et al., 2011 ) or Bayesian inter-battery factor analysis

 Klami et al., 2013 )), the noise covariance matrix is given by 𝐓 =
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K

𝔼

𝐓 

(1) 0 
0 𝐓 

(2) 
)

and 𝐖 = 

[ 
𝐀 

(1) 𝐁 

(1) 𝟎 
𝐀 

(2) 𝟎 𝐁 

(2) 

] 
, where 𝐀 

(1) and 𝐀 

(2) repre-

ent the loading matrices containing the shared factors and 𝐁 

(1) and

 

(2) correspond to the loading matrices containing the group-specific

actors. The structure of 𝐖 and the corresponding latent structure (rep-

esented by 𝐙 ) is learned automatically by imposing group-wise spar-

ity on the factors, i.e., the matrices 𝐀 and 𝐁 are not explicitly specified

 Klami et al., 2013 ). This is achieved by assuming independent ARD pri-

rs to encourage sparsity over the groups ( Klami et al., 2013; Virtanen

t al., 2011 ): 

 ( 𝐖 |𝜶) = 

𝑀 ∏
𝑚 =1 

𝐷 𝑚 ∏
𝑗=1 

𝐾 ∏
𝑘 =1 

 ( 𝑤 

( 𝑚 ) 
𝑗𝑘 

|0 , ( 𝛼( 𝑚 ) 
𝑘 

) −1 ) , 𝑝 ( 𝜶) = 

𝑀 ∏
𝑚 =1 

𝐾 ∏
𝑘 =1 

Γ( 𝛼( 𝑚 ) 
𝑘 

|𝑎 𝜶( 𝑚 ) , 𝑏 𝜶( 𝑚

(6) 

hich is a simple extension of the single ARD prior used by

hong Wang (2007) . Here, a separate ARD prior is used for each 𝐖 

( 𝑚 ) ,

hich are chosen to be uninformative to enable the automatic prun-

ng of irrelevant latent factors. Γ( ⋅) represents a gamma distribution

ith shape parameter 𝑎 𝜶( 𝑚 ) and rate parameter 𝑏 𝜶( 𝑚 ) . These separate

riors cause groups of variables to be pushed close to zero for some

actors 𝑘 ( 𝐰 

( 𝑚 ) 
𝑘 

→ 0 ) by driving the corresponding 𝛼
( 𝑚 ) 
𝑘 

towards infin-

ty. If the loadings of certain factors are pushed towards zero for all

roups, the underlying latent factor is deemed inactive and pruned out.

lami et al. (2013) . Finally, the prior distributions over the noise and

atent variables 𝐙 are: 

 ( 𝝉) = 

𝑀 ∏
𝑚 =1 

𝐷 𝑚 ∏
𝑗=1 

Γ( 𝜏( 𝑚 ) 
𝑗 

|𝑎 𝝉( 𝑚 ) , 𝑏 𝝉( 𝑚 ) ) , 𝑝 ( 𝐙 ) = 

𝐾 ∏
𝑘 =1 

𝑁 ∏
𝑛 =1 

 ( 𝑧 𝑘𝑛 |0 , 1) , (7)

here Γ( ⋅) represents a gamma distribution with shape parameter 𝑎 𝝉( 𝑚 ) 

nd rate parameter 𝑏 𝝉( 𝑚 ) . The hyperparameters 𝑎 𝜶( 𝑚 ) , 𝑏 𝜶( 𝑚 ) , 𝑎 𝝉( 𝑚 ) , 𝑏 𝝉( 𝑚 ) can

e set to a very small number (e.g., 10 −14 ), resulting in uninformative

riors. The joint distribution 𝑝 ( 𝐗 , 𝐙 , 𝐖 , 𝜶, 𝝉) is hence given by: 

 ( 𝐗 , 𝐙 , 𝐖 , 𝜶, 𝝉) = 𝑝 ( 𝐗 |𝐙 , 𝐖 , 𝝉) 𝑝 ( 𝐙 ) 𝑝 ( 𝐖 |𝜶) 𝑝 ( 𝜶) 𝑝 ( 𝝉) . (8)

As mentioned in Section 2.1.3 , the calculations needed to infer the

odel parameters and latent variables from data are often analytically

ntractable. Therefore, the posterior distribution needs to be approxi-

ated by applying, for instance, mean field variational approximation

similarly to Bayesian CCA ( Chong Wang, 2007 )). This involves approxi-

ating the true posterior 𝑝 ( 𝜽|𝐗 ) by a suitable factorized distribution 𝑞( 𝜽)
 Bishop, 1999 ). The marginal log-likelihood ( ln 𝑝 ( 𝐗 ) ) can be decomposed

s follows Bishop (2006) : 

n 𝑝 ( 𝐗 ) =  ( 𝑞) + 𝐷 𝐾𝐿 ( 𝑞||𝑝 ) , 
 ( 𝑞) = ∫ 𝑞( 𝜽) ln 𝑝 ( 𝐗 , 𝜽) 

𝑞( 𝜽) 𝑑 𝜽, 

 𝐾𝐿 ( 𝑞||𝑝 ) = ∫ 𝑞( 𝜽) ln 𝑝 ( 𝜽|𝐗 ) 
𝑞( 𝜽) 𝑑 𝜽, 

(9) 

here 𝐷 𝐾𝐿 ( 𝑞||𝑝 ) is the Kullback-Leibler divergence between 𝑞( 𝜽) and

 ( 𝜽|𝐗 ) and  ( 𝑞) is the lower bound of the marginal log-likelihood. Since

n 𝑝 ( 𝐗 ) is constant, maximising the lower bound  ( 𝑞) is equivalent to

inimising the KL divergence 𝐷 𝐾𝐿 ( 𝑞||𝑝 ) , which means 𝑞( 𝜽) can be used

o approximate the true posterior distribution 𝑝 ( 𝜽|𝐗 ) ( Bishop, 1999 ). As-

uming that 𝑞( 𝜽) can be factorised such that 𝑞( 𝜽) = 

∏
𝑖 𝑞 𝑖 ( 𝜽𝑖 ) , the  ( 𝑞) can

e maximised with respect to all possible distributions 𝑞 𝑖 ( 𝜽𝑖 ) as follows

ishop (1999, 2006) : 

n 𝑞 𝑖 ( 𝜽𝑖 ) = ⟨ln 𝑝 ( 𝐗 , 𝛉) ⟩𝑗≠𝑖 + const , (10)

here ⟨⋅⟩𝑗≠𝑖 denotes the expectation taken with respect to 
∏

𝑗≠𝑖 𝑞 𝑗 ( 𝜽𝑗 )
or all 𝑗 ≠ 𝑖 . In GFA, the full posterior is approximated by: 

( 𝜽) = 𝑞( 𝐙 ) 
𝑀 ∏
𝑚 =1 

[
𝑞( 𝐖 

( 𝑚 ) ) 𝑞( 𝜶( 𝑚 ) ) 𝑞( 𝝉 ( 𝑚 ) ) 
]
, (11)

here 𝜽 denotes the model parameters and latent variables ( 𝜽 =
 𝐙 , 𝐖 , 𝜶, 𝝉} ). As conjugate priors are used, the free-form optimisation
 =

4 
f 𝑞( 𝜽) (using Eq. (10) ) results in the following analytically tractable

istributions: 

( 𝐙 ) = 

∏𝑁 

𝑛 =1  ( 𝐳 𝑛 |𝝁𝐳 𝑛 , 𝚺𝐳 𝑛 ) , 𝑞( 𝐖 

( 𝑚 ) ) = 

∏𝐷 𝑚 
𝑗=1  ( 𝐖 

( 𝑚 ) 
𝑗, ∗ |𝝁𝐖 

( 𝑚 ) 
𝑗, ∗ 
, 𝚺𝐖 

( 𝑚 ) 
𝑗, ∗ 
) , 

( 𝜶( 𝑚 ) ) = 

∏𝐾 

𝑘 =1 Γ( 𝛼
( 𝑚 ) 
𝑘 

|𝑎̃ 𝜶( 𝑚 ) , ̃𝑏 
( 𝑘 ) 
𝜶( 𝑚 ) ) , 𝑞( 𝝉 ( 𝑚 ) ) = 

∏𝐷 𝑚 
𝑗=1 Γ( 𝜏

( 𝑚 ) 
𝑗 

|𝑎̃ ( 𝑗) 
𝝉( 𝑚 ) 

, ̃𝑏 
( 𝑗) 
𝝉( 𝑚 ) 

) , 

(12) 

here 𝐳 𝑛 is the 𝑛 -th column of 𝐙 and 𝐖 

( 𝑚 ) 
𝑗, ∗ denotes the 𝑗-th row of 𝐖 

( 𝑚 ) .

he optimisation is done using variational Expectation-Maximization

EM), where the parameters in Eq. (12) are updated sequentially un-

il convergence, which is achieved when a relative change of the ev-

dence lower bound (ELBO)  ( 𝑞) falls below an arbitrary low number

e.g., 10 −6 ). The recommended choice for the maximal number of latent

actors is 𝐾 = min ( 𝐷 1 , 𝐷 2 ) , but in some settings this leads to large 𝐾 and

onsequently long computational times ( Klami et al., 2013 ). In practice,

 𝐾 value that leads to the removal of some irrelevant latent factors

hould be a reasonable choice ( Klami et al., 2013 ). In our experiments

ith synthetic data, we initialised the model with different values of 𝐾

nd the results were consistent across the different experiments (Sup-

lementary Fig. 1). 

.2. Our proposed GFA extension 

Here, we propose an extension of the GFA model to handle missing

ata by modifying the inference algorithm of variational factor analysis

roposed by Luttinen and Ilin (2010) . The extended GFA model assumes

ndependent noise for each variable (i.e., diagonal noise) within a group

 𝑝 ( 𝝉) = 

∏𝑀 

𝑚 =1 
∏𝐷 𝑚 

𝑗=1 Γ( 𝜏
( 𝑚 ) 
𝑗 

|𝑎 𝝉( 𝑚 ) , 𝑏 𝝉( 𝑚 ) ) ). This assumption enables a more

exible model because a noise variance parameter can be computed for

ach variable (which is useful to inform us about the uncertainty of each

ariable). Furthermore, we use only the noise parameters of non-missing

ariables when updating the parameters of the posterior distribution. 

In summary, the proposed inference algorithm ( Algorithm 1 ) starts

y updating the parameters of the distribution over each latent vari-

ble ( 𝑞( 𝐳 𝑛 ) ) using the loadings and noise parameters of the non-missing

ariables of the 𝑛 -th sample/subject ( 𝑗 ∈ 𝑂 

( 𝑚 ) 
𝑛 , where 𝑂 

( 𝑚 ) 
𝑛 is the set of

ndices in the 𝑛 -th column of 𝐗 

( 𝑚 ) that are not missing). After that, the

arameters of the distribution over each row of the loading matrices are

omputed using the updated latent variables of the non-missing sam-

les of the 𝑗-th variable ( 𝑛 ∈ 𝑂 

( 𝑚 ) 
𝑗 

, where 𝑂 

( 𝑚 ) 
𝑗 

is the set of indices in

he 𝑗-th row of 𝐗 

( 𝑚 ) that are not missing). The parameters of the dis-

ribution over 𝜶( 𝑚 ) and 𝝉 ( 𝑚 ) are then updated using the updated latent

ariables and loading matrices. Finally, the ELBO is calculated with the

pdated parameters. These update steps are repeated until convergence,

.e., when a relative change of the ELBO falls below an arbitrarily low

umber (10 −6 in our implementation). The derivations of the variational

pdate rules and ELBO calculations can be found in Appendix A and

ppendix B , respectively. 

Although we just show here examples of our GFA extension being

pplied to two data modalities, our Python implementation ( Section 2.5 )

an be used for more than two data modalities. 

.3. Multi-output and missing data prediction 

As mentioned above, GFA can be used as a predictive model. As

he groups are generated by the same latent variables, the unobserved

roup of new (test) observations ( 𝐗 

( 𝑚 ) ⋆ ) can be predicted from the ob-

erved ones on the test set ( 𝐗 

−( 𝑚 ) ⋆ ) using the predictive distribution

 ( 𝐗 

( 𝑚 ) ⋆ |𝐗 

−( 𝑚 ) ⋆ ) ( Klami et al., 2015 ). This distribution is analytically in-

ractable, but its expectation can be approximated using the parameters

earned during the variational approximation ( Appendix B ) as follows

lami et al. (2015) : 

 [ 𝐗 

( 𝑚 ) ⋆ |𝐗 

−( 𝑚 ) ⋆ ] = ⟨𝐖 

( 𝑚 ) 𝐙 ⟩
𝑞 ( 𝐖 

( 𝑚 ) ) , 𝑞 ( 𝐙 |𝐗 −( 𝑚 ) ⋆ ) , 
 ⟨𝐖 

( 𝑚 ) ⟩𝚺⋆ ⟨𝐖 

−( 𝑚 ) 𝑇 ⟩𝐓 

⋆ 𝐗 

−( 𝑚 ) ⋆ , 
(13) 
𝑍 
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Algorithm 1 Pseudocode of the variational updates of GFA to handle 

missing data. 

repeat 

⊳ Update 𝑞( 𝐙 ) 
for 𝑛 = 1 …𝑁 do 

𝚺𝐳 𝑛 ← 

[ 
𝐈 𝐾 + 

∑𝑀 

𝑚 =1 
∑

𝑗∈𝑂 ( 𝑚 ) 𝑛 

𝑎̃ 
( 𝑗) 
𝝉( 𝑚 ) 

𝑏̃ 
( 𝑗) 
𝝉( 𝑚 ) 

( 

𝝁𝑇 

𝐖 

( 𝑚 ) 
𝑗, ∗ 
𝝁𝐖 

( 𝑚 ) 
𝑗, ∗ 

+ 𝚺𝐖 

( 𝑚 ) 
𝑗, ∗ 

) ] 
−1 

𝝁𝐳 𝑛 ← 𝚺𝐳 𝑛 

( ∑𝑀 

𝑚 =1 
∑

𝑗∈𝑂 ( 𝑚 ) 𝑛 

𝑎̃ 
( 𝑗) 
𝝉( 𝑚 ) 

𝑏̃ 
( 𝑗) 
𝝉( 𝑚 ) 

𝝁𝑇 

𝐖 

( 𝑚 ) 
𝑗, ∗ 
𝑥 
( 𝑚 ) 
𝑗,𝑛 

) 

end for 

for 𝑚 = 1 …𝑀 do 

⊳ Update 𝑞( 𝐖 

( 𝑚 ) ) 

𝐇 

( 𝑚 ) ← diag 

( 

𝑎̃ 
𝜶( 𝑚 ) 

𝐛̃ 
𝜶( 𝑚 ) 

) 

for 𝑗 = 1 …𝐽 do 

𝚺𝐖 

( 𝑚 ) 
𝑗, ∗ 

← 

[ 
𝐇 

( 𝑚 ) + 

𝑎̃ 
( 𝑗) 
𝝉( 𝑚 ) 

𝑏̃ 
( 𝑗) 
𝝉( 𝑚 ) 

∑
𝑛 ∈𝑂 ( 𝑚 ) 

𝑗 

(
𝝁𝐳 𝑛 𝝁

𝑇 
𝐳 𝑛 
+ 𝚺𝐳 𝑛 

)] 
−1 

𝝁𝐖 

( 𝑚 ) 
𝑗, ∗ 

← 

𝑎̃ 
( 𝑗) 
𝝉( 𝑚 ) 

𝑏̃ 
( 𝑗) 
𝝉( 𝑚 ) 

( ∑
𝑛 ∈𝑂 ( 𝑚 ) 

𝑗 

𝑥 
( 𝑚 ) 
𝑗,𝑛 

𝝁𝑇 
𝐳 𝑛 

) 

𝚺𝐖 

( 𝑚 ) 
𝑗, ∗ 

end for 

⊳ Update 𝑞( 𝜶( 𝑚 ) ) 

𝐂 

( 𝑚 ) ← 

∑𝐷 𝑚 
𝑗=1 

( 

𝝁𝑇 

𝐖 

( 𝑚 ) 
𝑗, ∗ 
𝝁𝐖 

( 𝑚 ) 
𝑗, ∗ 

+ 𝚺𝐖 

( 𝑚 ) 
𝑗, ∗ 

) 

𝑎̃ 𝜶( 𝑚 ) ← 𝑎 𝜶( 𝑚 ) + 

1 
2 𝐷 𝑚 

𝑏̃ 
( 𝑘 ) 
𝜶( 𝑚 ) ← 𝑏 𝜶( 𝑚 ) + 

1 
2 𝑐 

( 𝑚 ) 
𝑘,𝑘 

⊳ Update 𝑞( 𝝉 ( 𝑚 ) ) 
for 𝑗 = 1 …𝐽 do 

𝑎̃ 
( 𝑗) 
𝝉( 𝑚 ) 

← 𝑎 𝝉( 𝑚 ) + 

1 
2 𝑁 

( 𝑚 ) 
𝑗 

𝑏̃ 
( 𝑗) 
𝝉( 𝑚 ) 

← 𝑏 𝝉( 𝑚 ) + 

1 
2 
∑

𝑛 ∈𝑂 ( 𝑚 ) 
𝑗 

( 

𝑥 
( 𝑚 )2 
𝑗,𝑛 

− 2 𝑥 ( 𝑚 ) 
𝑗,𝑛 

𝝁𝐖 

( 𝑚 ) 
𝑗, ∗ 
𝝁𝐳 𝑛 

) 

+ 

1 
2 
∑

𝑛 ∈𝑂 ( 𝑚 ) 
𝑗 

Tr 

[ ( 

𝝁𝑇 

𝐖 

( 𝑚 ) 
𝑗, ∗ 
𝝁𝐖 

( 𝑚 ) 
𝑗, ∗ 

+ 𝚺𝐖 

( 𝑚 ) 
𝑗, ∗ 

) (
𝝁𝐳 𝑛 𝝁

𝑇 
𝐳 𝑛 
+ 𝚺𝐳 𝑛 

)] 

end for 

end for 

until convergence 
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here ⟨⋅⟩ denotes expectations, 𝚺⋆ 
𝑍 
= 𝐈 𝐾 + 

∑
𝑙≠𝑚 

∑𝐷 𝑙 
𝑗 

⟨𝜏( 𝑙) 
𝑗 
⟩⟨𝐖 

( 𝑙) 𝑇 
𝑗, ∗ 𝐖 

( 𝑙) 
𝑗, ∗ ⟩,

𝐖 

( 𝑙) 𝑇 
𝑗, ∗ 𝐖 

( 𝑙) 
𝑗, ∗ ⟩ = 𝚺𝐰 ( 𝑙) 

𝑗 

+ 𝝁𝑇 

𝐖 

( 𝑙) 
𝑗, ∗ 
𝝁𝐖 

( 𝑚 ) 
𝑗, ∗ 

( 𝚺𝐖 

( 𝑚 ) 
𝑗, ∗ 

and 𝝁𝐖 

( 𝑚 ) 
𝑗, ∗ 

are the variational pa-

ameters obtained for 𝑞( 𝐖 

( 𝑚 ) ) in Eq. A.11 ) and 𝐓 

⋆ = { diag ( ⟨𝝉 ( 𝑙) ⟩)} 𝑙≠𝑚 . In
ll experiments, 𝔼 [ 𝐗 

( 𝑚 ) ⋆ |𝐗 

−( 𝑚 ) ⋆ ] was used for prediction. 

Additionally, the missing data can be predicted using Eq. (13) where,

n this case, the observed groups 𝐗 

−( 𝑚 ) ⋆ correspond to the training ob-

ervations in group 𝑚 and the missing data is represented as 𝐗 

( 𝑚 ) ⋆ =
 

( 𝑚 ) ⋆ 

𝑛𝑗∈𝑂 ( 𝑚 ) 
𝑛𝑗 

. 

.4. Experiments 

We begin this section by detailing the experiments that we ran on

ynthetic data ( Section 2.4.1 ), which is followed by the description of

he experiments on the HCP dataset ( Section 2.4.2 ). 

.4.1. Synthetic data 

We validated the extended GFA model on synthetic data drawn from

q. (5) . We generated 𝑁 = 500 observations for two data modalities

ith 𝐷 1 = 50 ( 𝐗 

(1) ∈ ℝ 

50×500 ) and 𝐷 2 = 30 ( 𝐗 

(2) ∈ ℝ 

30×500 ), respectively.

he data modalities were generated from two shared and two modality-

pecific latent factors, which were manually specified, similarly to the

xamples generated in Klami et al. (2013) ( Fig. 2 ). The shared factors

orrespond to latent factor 1 and 2, the latent factor specific to 𝐗 

(1) is
5 
epresented in latent factor 4 and the latent factor specific to 𝐗 

(2) is rep-

esented in latent factor 3. The 𝜶( 𝑚 ) parameters were set to 1 for the

ctive factors and 10 6 for the inactive ones. The loading matrices 𝐖 

( 𝑚 ) 

ere drawn from the prior ( Eq. (6) ) and diagonal noise with fixed pre-

isions ( 𝜏1 = 5 𝐈 𝐷 1 and 𝜏2 = 10 𝐈 𝐷 2 ) was added to the observations. 

We ran experiments with the proposed extension of GFA on the fol-

owing selections of synthetic data: 

1. Complete data . In this experiment, we compared the extended GFA

model to the vanilla GFA implementation of Klami et al. (2015) . 

2. Incomplete data : 

(a) 20% of the elements of 𝐗 

(2) were randomly removed. 

(b) 20% of the observations (i.e., rows) in 𝐗 

(1) were randomly re-

moved. 

n all experiments, the model was initialised with 𝐾 = 15 (number of la-

ent factors) to assess whether it can learn the true latent factors while

utomatically removing the irrelevant ones. We ran additional experi-

ents with complete data where the model was initialised with 𝐾 = 30
o assess whether it could still converge to a good solution when the

umber of latent factors were overestimated in low and high dimen-

ional data (Supplementary Fig. 1). 

As the variational approximations for GFA are deterministic, and the

odel converges to a local optimum that depends on the initialisation,

ll experiments were randomly initialised 10 times. The initialisation

ith the largest variational lower bound was considered to be the best

ne. For visualization purposes, we matched the true and inferred la-

ent factors by calculating the maximum similarity (using Pearson’s cor-

elation) between them, in all experiments. If a correlation value was

egative, the corresponding inferred factor was multiplied by −1 . The

nferred factors with correlations greater than 0.70 were visually com-

ared with the true ones. 

For each random initialisation, in all experiments, the data was split

nto training (80 % ) and test (20 % ) sets. The model performance was as-

essed by predicting one data modality from the other on the test set

e.g., predict 𝐗 

(2) from 𝐗 

(1) ) using Eq. (13) . The mean and standard de-

iation of the mean squared error (MSE) (calculated between the true

nd predicted values of the non-observed data modality on the test set)

as calculated across the different initialisations. The chance level of

ach experiment was obtained by calculating the MSE between the ob-

ervations on the test set and the means of the corresponding variables

n the training set. 

In the incomplete data experiments, the missing data was predicted

sing Eq. (13) . We calculated the mean and standard deviation (across

nitialisations) of the Pearson’s correlations between the true and pre-

icted missing values to assess the ability of the model to predict missing

ata. To compare our results with a common strategy for data imputa-

ion in the incomplete data experiments, we ran GFA with complete

ata, after imputing the missing values using the median of the respec-

ive variable. We ran additional experiments with missing data (see Sup-

lementary Materials and Methods), including when values from the

ails of the distribution of 𝐗 

(2) were randomly removed (Supplementary

ig. 2a) and when values in 𝐗 

(1) and 𝐗 

(2) were missing for low (Supple-

entary Fig. 2b) and high dimensional data (Supplementary Fig. 2c).

urthermore, the performance of the proposed extension of GFA was as-

essed with increasing percentages of missing data when values of 𝐗 

(2) 

ere missing from the tails of the distribution (Supplementary Fig. 5a)

r randomly (Supplementary Fig. 5b). For each of these settings, we ran

xperiments with no missing data in 𝐗 

(1) and 20% missing rows in 𝐗 

(1) 

blue and orange lines in Supplementary Fig.5, respectively). Finally,

e also ran experiments applying CCA to complete and incomplete data

Supplementary Fig. 4). 

.4.2. HCP Data 

We applied our GFA extension to the publicly available resting-state

unctional MRI (rs-fMRI) and non-imaging measures (e.g., demograph-

cs, psychometrics and other behavioural measures) obtained from 1003
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Fig. 2. Complete data experiment: (a) true la- 

tent factors and model parameters; (b) inferred 

latent factors and model parameters obtained 

with our GFA extension; (c) inferred latent fac- 

tors and model parameters obtained with the 

vanilla GFA implementation of Klami et al. 

(2015) . The latent factors and parameters used 

to generate the data are plotted on the left-hand 

side, and the ones inferred by the model are 

plotted on the right-hand side. The four rows 

on the top represent the four latent factors. The 

loading matrices of the first and second data 

modality are represented on the left and right- 

hand side of the red line in 𝐖 

𝑇 , respectively. 

The alphas of the first and second data modal- 

ity are shown in the form of a Hinton diagram 

in the first and second columns of 𝜶𝑇 , respec- 

tively, where the alphas are proportional to the 

area of the squares. The small black dots and 

big black squares represent active and inactive 

factors, respectively. 
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ubjects (only these had rs-fMRI data available) of the 1200-subject data

elease of the HCP ( https://www.humanconnectome.org/study/hcp-

oung-adult/data-releases ). Two subjects were missing the family struc-

ure information that we needed to perform the restricted permutations

n the CCA analysis, so were excluded. 

In particular, we used the brain connectivity features of the ex-

ensively processed rs-fMRI data using pairwise partial correlations

etween 200 brain regions from a parcellation estimated by in-

ependent component analysis. The data processing was identical to

mith et al. (2015) , yielding 19,900 brain variables for each subject (i.e.,

he lower triangular part of the brain connectivity matrix containing

air-wise connectivity among all 200 regions). The vectors were con-

atenated across subjects to form 𝐗 

(1) ∈ ℝ 

19900×1001 . We used 145 items

f the non-imaging measures used in Smith et al. (2015) as the remain-

ng measures (SR_Aggr_Pct, ASR_Attn_Pct, ASR_Intr_Pct, ASR_Rule_Pct,

SR_Soma_Pct, ASR_Thot_Pct, ASR_Witd_Pct, DSM_Adh_Pct,

SM_Antis_Pct, DSM_Anxi_Pct, DSM_Avoid_Pct, DSM_Depr_Pct,

SM_Somp_Pct) were not available in the 1200-subject data re-

ease. The non-imaging matrix contained 145 variables from 1001

ubjects ( 𝐗 

(2) ∈ ℝ 

145×1001 ). 

Similarly to Smith et al. (2015) , nine confounding variables (acqui-

ition reconstruction software version, summary statistic quantifying

verage subject head motion during acquisition, weight, height, blood

ressure systolic, blood pressure diastolic, hemoglobin A1C measured

n blood, the cube-root of total brain and intracranial volumes esti-

ated by FreeSurfer) were regressed out from both data modalities.

inally, each variable was standardised to have zero mean and unit vari-

nce. For additional details of the data acquisition and processing, see

mith et al. (2015) . 

We ran GFA experiments on the following selections of HCP data: 

1. Complete data . 

2. Incomplete data : 

(a) 20% of the elements of 𝐗 

(2) were randomly removed. 

(b) 20% of the subjects were randomly removed from 𝐗 

(1) . 

n all experiments, the model was initialised with 𝐾 = 80 latent factors.

s in the experiments with synthetic data, all experiments were ran-

omly initialised 10 times and the data was randomly split into training

 80% ) and test ( 20% ) sets. The initialisation with the largest variational

ower bound was considered to be the best one. 

As a considerable number of relevant factors might remain after au-

omatically pruning out the noisy ones, showing all factors is not possi-

le due to space constraints. Furthermore, as the number of brain con-

ectivity variables is much greater than non-imaging measures ( ∼100

imes more brain connectivity variables than non-imaging measures),
6 
sing the percentage of variance explained by each factor is not a good

riterion, because the factors explaining most variance in the data are

ost likely brain-specific (Supplementary Fig. 6a). Therefore, we pro-

ose a criterion to identify the most relevant factors by calculating the

elative variance explained (rvar) by each factor 𝑘 within each data

odality 𝑚 (i.e., 𝑘 -th column of 𝐖 

( 𝑚 ) ): 

var 
( 𝑚 ) 
𝑘 

= 

𝐰 

( 𝑚 ) 𝑇 
𝑘 

𝐰 

( 𝑚 ) 
𝑘 

Tr ( 𝐖 

( 𝑚 ) 𝐖 

( 𝑚 ) 𝑇 ) 
, (14)

here Tr ( ⋅) represents the trace of the matrix. The factors explaining

ore than 7 . 5% variance within any data modality were considered most

elevant. Then, in order to decide whether a given most relevant fac-

or was modality-specific or shared, the ratio between the variance ex-

lained (var) by the non-imaging and brain loadings of the 𝑘 -th factor

as computed: 

 𝑘 = 

var 
(2) 
𝑘 

var 
(1) 
𝑘 

, (15)

here var 
( 𝑚 ) 
𝑘 

= 

𝐰 ( 𝑚 ) 
𝑇 

𝑘 
𝐰 ( 𝑚 ) 
𝑘 

Tr ( 𝐖 

( 𝑚 ) 𝐖 

( 𝑚 ) 𝑇 + 𝐓 ( 𝑚 ) −1 ) 
, and 𝐓 

( 𝑚 ) −1 is the diagonal covariance

atrix in Eq. (5) . A factor was considered shared if 0 . 001 ≤ 𝑟 𝑘 ≤ 300 ,
on-imaging specific if 𝑟 𝑘 > 300 or brain-specific if 𝑟 𝑘 < 0 . 001 (Sup-

lementary Fig. 6b illustrates how many factors would be considered

hared or specific in the complete HCP data using these thresholds).

hese values were selected taking into account that there was an imbal-

nce in the total number of variables across the data modalities. These

hresholds were validated in high dimensional synthetic data (Supple-

entary Table 1 ). 

To assess whether the missing data affected the estimation of the

ost relevant factors, we calculated the Pearson’s correlations between

he factors obtained in the complete data experiment and the incomplete

ata experiments. In the multi-output prediction task, all non-imaging

easures were predicted from brain connectivity on the test set. The

odel performance was assessed by calculating the mean and standard

eviation of the relative MSE (rMSE) between the true and predicted

alues of each non-imaging measure on the test set, across the different

nitialisations: 

MSE 𝑗 = 

1 
𝑁 

∑𝑁 

𝑛 =1 ( 𝑥 
(2) 
𝑛𝑗 

− 𝑥 
(2) ∗ 
𝑛𝑗 

) 2 

1 
𝑁 

∑𝑁 

𝑛 =1 ( 𝑥 
(2) 
𝑛𝑗 
) 2 

, (16)

here 𝑁 is the number of subjects, 𝑥 
(2) 
𝑛𝑗 

and 𝑥 
(2) ∗ 
𝑛𝑗 

are the true and pre-

icted non-imaging measure 𝑗 on the test set. The chance level was ob-

ained by calculating the relative MSE between each non-imaging mea-

https://www.humanconnectome.org/study/hcp-young-adult/data-releases
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Table 1 

Most relevant shared and modality-specific factors obtained with complete data 

according to the proposed criteria. Factors explaining more than 7 . 5% variance 

within any data modality were considered most relevant. A factor was consid- 

ered shared if 0 . 001 ≤ 𝑟 𝑘 ≤ 300 , non-imaging (NI) specific if 𝑟 𝑘 > 300 or brain- 

specific if 𝑟 𝑘 < 0 . 001 . rvar - relative variance explained; var - variance explained; 

𝑟 𝑘 - ratio between the variance explained by the non-imaging and brain loadings 

in factor 𝑘 . 

rvar (%) var (%) 𝐫 𝐤 

Factors Brain NI Brain NI var NI /var brain 

Shared a 0.096 8.103 0.007 0.028 4.03 

b 0.032 17.627 0.002 0.061 26.22 

c 0.011 9.869 7.65 × 10 −4 0.034 44.32 

d 0.008 33.336 5.46 × 10 −4 0.114 209.65 

Brain a 14.267 2.311 × 10 −9 1.028 7.93 × 10 −12 7.72 × 10 −12 

b 11.407 0.036 0.822 1.23 × 10 −4 1.50 × 10 −4 
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ure in the test set and the mean of the corresponding non-imaging mea-

ure in the training data. 

Similarly to the incomplete data experiments on synthetic data, the

issing data was predicted using Eq. (13) and the mean and standard

eviation (across initialisations) of the Pearson’s correlations between

he true and predicted missing values were calculated. 

.5. Data and code availability 

The data used in this study was downloaded

rom the Human Connectome Project website

 https://www.humanconnectome.org/study/hcp-young- 

dult/document/extensively-processed-fmri-data-documentation ). 

he GFA models and experiments were implemented in Python 3.9.1

nd are available here: https://github.com/ferreirafabio80/gfa . The

CA experiments (Supplementary Materials and Methods) were run in a

ATLAB toolkit that will be made publicly available in an open-access

latform soon. 

.6. Ethics statement 

All authors involved in data curation and analysis agreed to the HCP

pen and restricted access data use terms and were granted access. The

tudy was approved by the UCL Research Ethics Committee (Project No.

356/003). 

. Results 

In this section, we present the results of the experiments on synthetic

ata ( Section 3.1 ) and real data from the Human Connectome Project

 Section 3.2 ). 

.1. Synthetic data 

In this section, we applied the proposed extension of GFA to the

ynthetic data described in Section 2.4.1 . We ran separate experiments

sing three different selections of synthetic data: no missing data (com-

lete data experiment), when data was missing randomly ( 20% of the

lements of 𝐗 

(2) missing) and one group/modality was missing for some

bservations ( 20% of the rows of 𝐗 

(1) missing). Fig. 2 shows the results

f the extended GFA model applied to complete data. The model cor-

ectly inferred the factors, identifying two of them as shared and the

ther two as modality-specific. These factors were all considered most

elevant based on the rvar metric ( Eq. (14) ) and were all correctly as-

igned as shared or modality-specific based on the ratio 𝑟 𝑘 ( Eq. (15) ).

he structure of the inferred latent factors was similar to those used for

enerating the data ( Fig. 2 ). The results were robust to initialisation, i.e.,
7 
he model converged to similar solutions across the different initialisa-

ions. Furthermore, the irrelevant latent factors were correctly pruned

ut during inference. The noise parameters were also inferred correctly

i.e., the average values of 𝜏s were close to the real ones ( 𝜏1 = 5 𝐈 𝐷 1 and

2 = 10 𝐈 𝐷 2 ): 𝜏
(1) ≈ 5 . 08 and 𝜏(2) ≈ 10 . 07 ). Furthermore, our GFA exten-

ion showed very similar results to the vanilla GFA implementation of

lami et al. (2015) ( Fig. 2 c). 

Fig. 3 and 4 display the results of the incomplete data experiments

hen data was missing randomly (20% of the elements of 𝐗 

(2) missing),

nd one group was missing for some observations (20% of the rows of

 

(1) missing), respectively. The parameters inferred using our GFA ex-

ension (middle column) were compared to those obtained using the

edian imputation approach (right column). The results were compa-

able when the amount of missing data was small ( Fig. 3 ), i.e., both

pproaches were able to infer the model parameters fairly well. Even

o, the model misses completely the true value of the noise parame-

er of 𝐗 

(2) ( ̂𝜏(1) ≈ 5 . 14 and 𝜏(2) ≈ 5 . 22 ) when the median imputation ap-

roach is used. Whereas, the noise parameters were correctly recovered

 ̂𝜏(1) ≈ 5 . 15 and 𝜏(2) ≈ 10 . 17 ) when the proposed extension of GFA was

pplied. The parameters were not inferred correctly by the median im-

utation approach (although the noise parameters were recovered fairly

ell, 𝜏(1) ≈ 6 . 24 and 𝜏(2) ≈ 10 . 20 ), when the number of missing observa-

ions was considerable ( Fig. 4 ). This was not observed when our GFA

xtension was applied ( ̂𝜏(1) ≈ 5 . 04 and 𝜏(2) ≈ 10 . 24 ). 
The extended GFA model predicted missing data consistently well in

oth incomplete data experiments. The averaged Pearson’s correlation

btained between the missing and predicted values across initialisations

as 𝜌 = 0 . 868 ± 0 . 016 when data was missing randomly, and 𝜌 = 0 . 680 ±
 . 039 when one group was missing for some observations. 

In the multi-output prediction task, we showed that the model could

ake reasonable predictions when the data was missing randomly or

ne modality was missing for some observations, i.e., the MSEs were

imilar across experiments and below chance level ( Fig. 5 ). Moreover,

here seems to be no improvement in prediction between using the pro-

osed extension of GFA or imputing the median before training the

odel. 

In additional experiments (presented in the Supplementary Materials

nd Methods), we showed that the extended GFA model outperforms the

edian imputation approach (in inferring the model parameters and

redicting one unobserved data modality from the other), when values

rom the tails of the data distribution are missing (Supplementary Fig.

a and 3). The proposed extension of GFA also outperformed the median

mputation approach, when both data modalities were generated with

issing values in low (Supplementary Fig. 2b) and high dimensional

Supplementary Fig. 2c) data. 

.2. HCP Data 

In this section, we applied the proposed extension of GFA to the

CP data described in Section 2.4.2 . We ran separate experiments using

hree different selections of HCP data: no missing data (complete data

xperiment), when data was missing randomly ( 20% of the elements

f the non-imaging matrix missing) and when one data modality was

issing for some subjects ( 20% of the subjects missing from the brain

onnectivity matrix). In the complete data experiment, the model con-

erged to a solution comprising 75 latent factors, i.e., five factors were

nactive for both data modalities (the loadings were close to zero) and

ere consequently pruned out. The model converged to similar solu-

ions across different initialisations, i.e., the number of inferred latent

actors was consistent across initialisations. The total percentage of vari-

nce explained by the latent factors ( 
∑2 

𝑚 =1 
∑75 

𝑘 =1 var 
( 𝑚 ) 
𝑘 

) corresponded

o ∼ 7 . 55% , leaving 92 . 45% of the variance captured by residual error.

ithin the variance explained, six factors were considered most rele-

ant ( rvar 
( 𝑚 ) 
𝑘 

> 7 . 5% ), which captured ∼ 27 . 8% of the variance explained

y the total number of factors ( Table 1 ). Based on the ratio between the

https://www.humanconnectome.org/study/hcp-young-adult/document/extensively-processed-fmri-data-documentation
https://github.com/ferreirafabio80/gfa
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Fig. 3. True and inferred latent factors and 

model parameters obtained when data is miss- 

ing randomly (20% of the elements of 𝐗 

(2) miss- 

ing). (Left column) latent factors and parame- 

ters used to generate the data. (Middle column) 

Latent factors and parameters inferred using 

the proposed extension of GFA. (Right column) 

Latent factors and parameters inferred using 

the median imputation approach. The loading 

matrices ( 𝐖 

𝑇 ) and alphas ( 𝜶𝑇 ) can be inter- 

preted as in Fig. 2 . 

Fig. 4. True and inferred latent factors and 

model parameters obtained when one group 

was missing for some observations (20% of the 

rows of 𝐗 

(1) were randomly removed). (Left col- 

umn) latent factors and parameters used to gen- 

erate the data. (Middle column) latent factors 

and parameters inferred using the proposed ex- 

tension of GFA. (Right column) latent factors 

and parameters inferred using the median im- 

putation approach (the latent factors were not 

ordered because the model did not converge to 

the right solution). The loading matrices ( 𝐖 

𝑇 ) 

and alphas ( 𝜶𝑇 ) can be interpreted as in Fig. 2 . 

Fig. 5. Prediction errors of the multi-output 

prediction tasks. The bars and error bars cor- 

respond to the mean and standard deviation 

of the MSEs across 10 initialisations, respec- 

tively. (a) MSEs between the test observations 

𝐗 

(1) ⋆ and the mean predictions 𝔼 [ 𝐗 

(1) ⋆ |𝐗 

(2) ⋆ ] 
are shown for all experiments; (b) MSEs be- 

tween 𝐗 

(2) ⋆ and 𝔼 [ 𝐗 

(2) ⋆ |𝐗 

(1) ⋆ ] are shown for 

all experiments. ours - the proposed extension 

of GFA; imputation - median imputation ap- 

proach; chance - chance level. Incomplete data 

exp. 1 - 20% of the elements of 𝐗 

(2) missing; in- 

complete data exp. 2 -20% of the rows of 𝐗 

(1) 

missing. 
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ariance explained by the non-imaging and brain factors 𝑟 𝑘 ( Eq. (15) ),

e identified four shared factors (displayed in Fig. 6 ) and two brain-

pecific factors (displayed in Fig. 7 ), ordered from the highest to the

owest ratio 𝑟 𝑘 ( Table 1 ). Using the variance explained as a criterion to

elect the most relevant factors leads to the selection of mostly brain-

pecific factors due to the imbalance in the number of brain connectivity

eatures and non-imaging measures (see Supplementary Fig. 6a-b). 

In Fig. 6 , we display the loadings of the shared GFA factors ob-

ained with complete data. To aid interpretation, the loadings of the

rain factors were multiplied by the sign of the population mean corre-

ation to obtain a measure of edge strength increase or decrease (as in

mith et al. (2015) ). The first factor ( Fig. 6 a) relates cognitive perfor-
8 
ance (loading positively), smoking and drug use (loading negatively)

o the default mode and frontoparietal control networks (loading posi-

ively) and insula (loading negatively). The second shared factor ( Fig.

 b) relates negative mood, long-term frequency of alcohol use (load-

ng negatively) and short-term alcohol consumption (loading positively)

o the default mode and dorsal and ventral attentional networks (load-

ng negatively), and frontoparietal networks loading in the opposite di-

ection. The third shared factor ( Fig. 6 c) is dominated by smoking be-

aviour (loading negatively) and, with much lower loadings, externalis-

ng in the opposite direction, which are related to the somatomotor and

rontotemporal networks (loading positively). The fourth shared factor

 Fig. 6 d) seems to relate emotional functioning, with strong negative
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Fig. 6. Non-imaging measures and brain networks de- 

scribed by the first (a), second (b), third (c) and fourth 

(d) shared GFA factors obtained in the complete data ex- 

periment. For illustrative purposes, the top and bottom 15 

nonimaging measures of each factor are shown. The brain 

surface plots represent maps of brain connection strength 

increases/decreases, which were obtained by weighting 

each node’s parcel map with the GFA edge-strengths 

summed across the edges connected to the node (for de- 

tails, see the Supplementary Materials and Methods). Sep- 

arate thresholded maps of brain connection strength in- 

creases and decreases can be found in Supplementary Fig. 

10. 
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9  

j  

m  
oadings on a variety of psychopathological aspects (including both in-

ernalising and externalising symptoms), and positive loadings on traits

uch as conscientiousness and agreeableness and other aspects of well-

eing to cingulo-opercular network (loading negatively), and the left

ided default mode network (loading positively). 

Fig. 7 shows the loadings of the brain-specific factors obtained with

omplete data. The first factor ( Fig. 7 a) contains positive loadings on

any areas within the frontoparietal control network, including dorso-

ateral prefrontal areas and inferior frontal gyrus, supramarginal gyrus,

osterior inferior temporal lobe and parts of the cingulate and superior

rontal gyrus. The second factor ( Fig. 7 b) includes positive loadings on

any default mode network areas, such as medial prefrontal, posterior

ingulate and lateral temporal cortices, and parts of angular and inferior

rontal gyri. These factors show that there is great variability in these
9 
etworks across the sample, however this variability was not linked to

he non-imaging measures included in the model. 

The model converged to a similar solution when data was missing

andomly ( 20% of the elements of the non-imaging matrix were ran-

omly removed), which included 73 factors and the total percentage

f variance explained by these was ∼ 7 . 60% . The number of most rele-

ant factors, based on the rvar metric ( Eq. (14) ), was six, and they were

imilar to those obtained in the complete data experiment ( Table 2 ),

apturing ∼ 28 . 2% of the variance explained by all factors (Supplemen-

ary Table 2 ). Four of these were considered shared factors (Supplemen-

ary Fig. 7) and two were considered brain-specific (Supplementary Fig.

a,c). When one modality was missing for some subjects ( 20% of the sub-

ects were randomly removed from the brain connectivity matrix), the

odel converged to a solution containing 63 factors and that explained
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Fig. 7. Brain networks associated with the brain-specific GFA factors obtained 

in the complete data experiment. The brain surface plots represent maps of 

brain connection strength increases/decreases, which were obtained by weight- 

ing each node’s parcel map with the GFA edge-strengths summed across the 

edges connected to the node (for details, see the Supplementary Materials and 

Methods). 

Table 2 

Similarity (measured by Pearsons correlation) between the most relevant fac- 

tors obtained in the complete and the most relevant factors obtained when 

data was missing randomly (incomplete data exp. 1) and one modality was 

missing for some subjects (incomplete data exp. 2) (first and second row, re- 

spectively). The shared factors obtained with complete data are displayed in 

Fig. 6 . and those obtained with incomplete data are shown in Supplementary 

Fig. 7–8 . The brain-specific factors obtained with complete data are presented 

in Fig. 7 and those identified with incomplete data are shown in Supplemen- 

tary Fig. 9. 

Shared factors Brain factors 

a b c d a b 

Incomplete data exp. 1 0.896 0.964 0.954 0.989 0.974 0.974 

Incomplete data exp. 2 0.907 0.973 0.954 0.995 0.941 0.942 
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5 . 21% of the total variance. Although more factors were removed and

 loss of variance explained was noticeable, the most relevant factors

ere similar to those obtained in the other experiments ( Table 2 , Sup-

lementary Fig. 8 and Supplementary Fig. 9b,d), capturing ∼ 33 . 2% of

he variance explained by all factors (Supplementary Table 3). 

In the multi-output prediction task, the extended GFA model pre-

icted several non-imaging measures better than chance ( Fig. 8 ) using

omplete data. The top 10 predicted variables corresponded to those

ith the highest loadings obtained mainly in the first shared factor ( Fig.

 a) and were consistent across the incomplete data experiments (Sup-

lementary Fig. 11). Finally, our GFA extension failed to predict the

issing values in both incomplete data experiments: 𝜌 = 0 . 112 ± 0 . 011
experiment 1, 20% of the elements of the non-imaging matrix missing);

= 0 . 003 ± 0 . 007 (experiment 2, 20% of the subjects missing in the brain

onnectivity matrix). 

. Discussion 

In this study, we proposed an extension of the Group Factor Analysis

GFA) model that can uncover multivariate associations among multi-

le data modalities, even when these modalities have missing data. We

howed that our proposed GFA extension can: (1) find associations be-

ween high dimensional brain connectivity data and non-imaging mea-

ures (e.g., demographics, psychometrics, and other behavioural mea-

ures) and (2) predict non-imaging measures from brain connectivity

hen either data is missing at random or one modality is missing for

ome subjects. Moreover, we replicated previous findings obtained in a

ubset of the HCP dataset using CCA ( Smith et al., 2015 ). 

We showed, using synthetic data, that our GFA extension can cor-

ectly learn the underlying latent structure, i.e., it separates the shared

actors from the modality-specific ones, when data is missing. In addi-

ion, it obtained very similar results to those obtained by the vanilla

FA ( Klami et al., 2015 ) ( Fig. 2 ). Moreover, the proposed extension of

FA inferred the model parameters better than the median imputation

pproach in different incomplete data scenarios. Whereas, CCA was only
10 
ble to recover the shared latent factors and identified spurious latent

actors when the values of the tails of the data distribution were miss-

ng (Supplementary Fig. 4). These findings underline the importance of

sing approaches that can handle missing data and model the modality-

pecific associations. Interestingly, in the multi-output prediction task,

ur GFA extension only outperformed the median imputation approach

hen the most informative values of the data (i.e., the values on the tails

f the data distribution) were missing (Supplementary Fig. 3). This indi-

ates that these values might be driving the predictions, and the model

ails to predict one data modality from the other when these values are

ot carefully imputed. The proposed GFA extension performed worse

hen the percentage of missing values in the tails of the distribution in-

reased (especially when it was greater than 32%, Supplementary Fig.

a), whereas the performance remained constant when the percentage

f random missing values increased (Supplementary Fig. 5b). Finally,

ur GFA extension was able to predict the missing values in different

ncomplete data scenarios. 

In applying the proposed GFA extension to the HCP dataset, we iden-

ified 75 relevant factors. Although all factors are relevant (i.e., the high-

st ELBO is obtained when all factors are included in the model, see Sup-

lementary Fig. 6c), it is challenging to interpret all of them, especially

hen most of them are brain-specific (Supplementary Fig. 6b). In addi-

ion, the variance explained by each factor alone is not an informative

riterion to select the most relevant factors, because there is a consider-

ble imbalance between the number of brain connectivity features and

on-imaging features, and it is expected that variability within the func-

ional brain connectivity is not necessarily related to the non-imaging

easures included in this study. Therefore, if the most relevant fac-

ors were based on the variance explained by each factor, most of them

ould probably be considered brain-specific. As can be seen in Supple-

entary Figs. 6a-b, the top 14 factors that explained most variance were

rain-specific. Based on the criteria proposed to overcome this issue, we

btained six most relevant factors: four describing associations between

rain connectivity and non-imaging measures and two describing as-

ociations within brain connectivity. Importantly, these were consistent

cross the experiments with complete and incomplete data sets. Of note,

nly a small proportion of the variance was captured by the GFA latent

tructure, which may be explained by two main reasons: the brain con-

ectivity data is noisy and/or the shared variance between the included

on-imaging measures and the brain connectivity measures is relatively

mall with respect to the overall variance in brain connectivity. 

Interestingly, most of the featured domains of non-imaging measures

ere not unique to particular factors, but appeared in different arrange-

ents across the four factors. For instance, alcohol use appeared in three

ut of four factors: in the first, it loads in the opposite direction to cog-

itive performance, in the second, its frequency loads in the same di-

ection as low mood and internalising, and in the third, its total amount

oads in the same direction as externalising. For a more detailed discus-

ion about the alcohol use loadings, see Supplementary Results. The first

FA factor was almost identical to the first CCA mode (Supplementary

ig. 12 and Supplementary Table 4), which resembled the CCA mode

btained using a subset of this data set ( Smith et al., 2015 ). The sec-

nd and third CCA modes presented similar most positive and negative

on-imaging measures to the first GFA factor (for a more detailed de-

cription of the CCA modes, see the Supplementary Results). A possible

xplanation of the differences observed between the CCA and GFA re-

ults is that we had to apply principal component analysis to reduce

he dimensionality of the data before applying CCA. This extra prepro-

essing step makes the CCA approach less flexible because the model

annot explore all variance in the data, whereas in GFA this does not

appen because no dimensionality reduction technique is needed. For

ore details about the HCP experiments using CCA, see Supplementary

aterials and Methods. 

The brain-specific factors were difficult to interpret - as would be ex-

ected due to the inherent complexity of this data modality. Their par-

ial similarity to known functional connectivity networks (frontopari-
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Fig. 8. Multi-output predictions of the non- 

imaging measures using complete data. The top 10 

predicted variables are described on the right-hand 

side. For each non-imaging measure, the mean and 

standard deviation of the relative MSE ( Eq. (16) ) 

between the true and predicted values on the test 

set was calculated across different random initial- 

isations of the experiments. 
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N

tal and default mode) indicates, unsurprisingly, that there are aspects

f these networks that are not related to the non-imaging measures in-

luded here. Interestingly, the second brain factor ( Fig. 7 b) showed a

ew similarities ( 𝜌 ≈ 0 . 39 , Supplementary Table 4) with the fifth CCA

ode (Supplementary Fig. 12e), which indicates that this mode could

e either a spurious association or a brain-specific factor that CCA is

ot able to explicitly identify. This finding indicates the importance of

eparating the shared factors from the modality-specific ones and the

se of more robust inference methods. Furthermore, the relevance of

he modality-specific associations would have been more evident if we

ad included more than two data modalities, where associations within

ubsets of data modalities could be identified. 

Finally, our GFA extension was able to predict a few non-imaging

easures from brain connectivity in incomplete data sets. Even though

he relative MSE values were modest, the model could predict several

easures better than chance. Importantly, the best predicted measures

orresponded to the loadings most informative in the shared factors (i.e.,

he highest absolute loadings), which demonstrates the potential of GFA

s a predictive model. 

Although the findings from both synthetic and real datasets were

obust, there are still a few inherent limitations in our GFA extension.

irstly, the number of initial latent factors 𝐾 needs to be chosen; how-

ver, we have shown in synthetic data that the model can still converge

o a good solution even if the number of latent factors is overestimated

Supplementary Fig. 1). Secondly, although the criteria used to select

he most relevant factors were validated on synthetic data, these can be

urther improved, e.g., by including the stability of the factors across

ultiple initialisations. Thirdly, our GFA extension is computationally

emanding to run experiments with incomplete data sets (e.g., the CPU

ime was approximately 50 hours per initialisation in the HCP experi-

ents). 

Future work should investigate GFA with more data modalities,

hich could potentially uncover other interesting multivariate associ-

tions and improve the predictions of the non-observed data modalities

nd missing data. Moreover, strategies to improve the interpretability

f the factor loadings (e.g., adding additional priors to impose sparsity

imultaneously on the group and variable-level) could be implemented.

dditionally, automatic inference methods such as Hamiltonian Monte

arlo or Automatic Differentiation Variational Inference could be imple-

ented, as these would provide a more flexible framework, permitting

ew extensions of the model without the need to derive new inference

quations. Finally, further extensions of the generative description of

FA could be investigated to improve its predictive accuracy. 
11 
. Conclusions 

In this study, we have shown that GFA provides an integrative and

obust framework that can be used to explore associations among mul-

iple data modalities (in benchmark datasets, such as HCP) and/or pre-

ict non-observed data modalities from the observed ones, even if data

s missing in one or more data modalities. Due to its Bayesian nature,

FA provides great flexibility to be extended to more complex models

o solve more complex tasks, for instance, in neuroscience. 
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A

ng the log of the joint distribution 𝑝 ( 𝐗 , 𝜽) with respect to all other variational 

p n is defined as follows: 

l (A.1) 

w  Eq. (7) ) are given by: 

l  𝐱 ( 𝑚 ) 
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( 𝑚 ) 𝐳 𝑛 ) 
] 
, 

 

, 

( 𝑚 ) 𝛼
( 𝑚 ) 
𝑘 

] 
, 

 𝑚 ) 𝜏
( 𝑚 ) 
𝑗 

] 
, (A.2) 

w n of 𝐗 

( 𝑚 ) , 𝐰 

( 𝑚 ) 
𝑘 

is a column vector representing the 𝑘 -th column of 𝐖 

( 𝑚 ) and 

𝑎 ns in Eqs. 6 –7 . 

A

tions is calculated using Eq. (10) : 
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are the variational parameters 
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𝑗, ∗ 

are the variational parameters obtained for 𝑞( 𝐖 

( 𝑚 ) ) in 

E hat are not missing. In Eq. (A.3) omits constant terms that do not depend on 

𝐙 variate normal distribution: 
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𝚺
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A

ibutions, is obtained by calculating: 
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ppendix A. Variational updates of GFA 

The variational updates of the model parameters are derived by writi

osteriors ( Eq. (10) ). Considering Eq. (8) , the log of the joint distributio

n 𝑝 ( 𝐗 , 𝐙 , 𝐖 , 𝜶, 𝝉) = ln [ 𝑝 ( 𝐗 |𝐙 , 𝐖 , 𝝉) 𝑝 ( 𝐙 ) 𝑝 ( 𝐖 |𝜶) 𝑝 ( 𝜶) 𝑝 ( 𝝉)] + const , 

here the individual log-densities (considering the priors in Eq. (6) and
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n 𝑞( 𝐖 

( 𝑚 ) ) = 𝔼 𝑞 ( 𝐙 ) ,𝑞 ( 𝜶( 𝑚 ) ) ,𝑞 ( 𝝉( 𝑚 ) ) [ ln 𝑝 ( 𝐗 

( 𝑚 ) |𝐙 , 𝐖 

( 𝑚 ) , 𝝉 ( 𝑚 ) ) + ln 𝑝 ( 𝐖 

( 𝑚 ) |𝜶( 𝑚 ) )] , 

= − 

1 
2 

𝑁 ∑
𝑛 =1 

⟨( 𝐱 𝑛 − 𝐖 

( 𝑚 ) 𝐳 𝑛 ) 𝑇 𝐓 

( 𝑚 ) ( 𝐱 𝑛 − 𝐖 

( 𝑚 ) 𝐳 𝑛 ) ⟩ − 

1 
2 

𝐾 ∑
𝑘 =1 

⟨𝛼( 𝑚 ) 
𝑘 

𝐰 

( 𝑚 ) 𝑇 
𝑘 

𝐰

12 
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w t term of Eq. (A.6) can be expanded as follows: 

 ) 𝑇 
 

, (A.7) 

w  of 𝑞( 𝐙 ) in Eq. A.5 ) and 𝑂 

( 𝑚 ) 
𝑗 

is the set of indices in the 𝑗-th row of 𝐗 

( 𝑚 ) ( 𝑥 ( 𝑚 ) ( 𝑗, ∶) ) 

t

− (A.8) 

w ariational parameters of 𝑞( 𝜶( 𝑚 ) ) in Eq. (A.14) ). Putting both terms together 

w

l

(A.9) 

ultivariate normal distribution: 

𝑞 (A.10) 

𝚺

(A.11) 

A

ibutions is obtained by calculating: 

l

𝛼
( 𝑚 ) 
𝑘 

] 
, 

 ) 
, (A.12) 

w ed. Taking the exponential of the log density, the optimal 𝑞( 𝜶( 𝑚 ) ) is a Gamma 

d

𝑞 (A.13) 

𝑏 (A.14) 

w

here ⟨⋅⟩ = 𝔼 𝑞 ( 𝐙 ) ,𝑞 ( 𝜶( 𝑚 ) ) ,𝑞 ( 𝝉( 𝑚 ) ) [ ⋅] . The constant term was omitted. The firs

− 

1 
2 

𝑁 ∑
𝑛 =1 

⟨(𝐱 𝑛 − 𝐖 

( 𝑚 ) 𝐳 𝑛 
)𝑇 𝐓 

( 𝑚 ) (𝐱 𝑛 − 𝐖 

( 𝑚 ) 𝐳 𝑛 
)⟩ = 

= 

𝐷 𝑚 ∑
𝑗=1 

⟨𝜏( 𝑚 ) 
𝑗 

⟩⎛ ⎜ ⎜ ⎜ ⎝ 
∑

𝑛 ∈𝑂 ( 𝑚 ) 
𝑗 

𝑥 
( 𝑚 ) 
𝑗,𝑛 

⟨𝐳 𝑇 
𝑛 
⟩⎞ ⎟ ⎟ ⎟ ⎠ 𝐖 

( 𝑚 ) 𝑇 
𝑗, ∗ + 

𝐷 𝑚 ∑
𝑗=1 

− 

1 
2 
𝐖 

( 𝑚 ) 
𝑗, ∗ 

⎛ ⎜ ⎜ ⎜ ⎝ ⟨𝜏
( 𝑚 ) 
𝑗 

⟩ ∑
𝑛 ∈𝑂 ( 𝑚 ) 

𝑗 

⟨𝐳 𝑛 𝐳 𝑇 𝑛 ⟩
⎞ ⎟ ⎟ ⎟ ⎠ 𝐖 

( 𝑚
𝑗, ∗

here ⟨𝐳 𝑛 𝐳 𝑇 𝑛 ⟩ = 𝚺𝐳 𝑛 + 𝝁𝐳 𝑛 𝝁
𝑇 
𝐳 𝑛 

( 𝚺𝐳 𝑛 and 𝝁𝐳 𝑛 are the variational parameters

hat are not missing. The second term of Eq. (A.6) is given by: 

 

1 
2 

𝐾 ∑
𝑘 =1 

⟨𝛼( 𝑚 ) 
𝑘 

𝐰 

( 𝑚 ) 𝑇 
𝑘 

𝐰 

( 𝑚 ) 
𝑘 

⟩ = − 

1 
2 

𝐷 𝑚 ∑
𝑗=1 

𝐖 

( 𝑚 ) 
𝑗, ∗ ⟨𝐇 

( 𝑚 ) ⟩𝐖 

( 𝑚 ) 𝑇 
𝑗, ∗ , 

here ⟨𝐇 

( 𝑚 ) ⟩ = diag ( ⟨𝜶( 𝑚 ) ⟩) and ⟨𝜶( 𝑚 ) ⟩ = 

𝑎̃ 
𝜶( 𝑚 ) 

𝐛̃ 
𝜶( 𝑚 ) 

( ̃𝑎 𝜶( 𝑚 ) and ̃𝐛 𝜶( 𝑚 ) are the v

e get: 

n 𝑞 
(
𝐖 

( 𝑚 ) ) = 

𝐷 𝑚 ∑
𝑗=1 

⎡ ⎢ ⎢ ⎢ ⎣ ⟨𝜏
( 𝑚 ) 
𝑗 

⟩⎛ ⎜ ⎜ ⎜ ⎝ 
∑

𝑛 ∈𝑂 ( 𝑚 ) 
𝑗 

𝑥 
( 𝑚 ) 
𝑗,𝑛 

⟨𝐳 𝑇 
𝑛 
⟩⎞ ⎟ ⎟ ⎟ ⎠ 𝐖 

( 𝑚 ) 𝑇 
𝑗, ∗ 

− 

1 
2 
𝐖 

( 𝑚 ) 
𝑗, ∗ 

⎛ ⎜ ⎜ ⎜ ⎝ ⟨𝐇 

( 𝑚 ) ⟩ + ⟨𝜏( 𝑚 ) 
𝑗 

⟩ ∑
𝑛 ∈𝑂 ( 𝑚 ) 

𝑗 

⟨𝐳 𝑛 𝐳 𝑇 𝑛 ⟩
⎞ ⎟ ⎟ ⎟ ⎠ 𝐖 

( 𝑚 ) 𝑇 
𝑗, ∗ 

⎤ ⎥ ⎥ ⎥ ⎦ . 
Taking the exponential of the log density, the optimal 𝑞( 𝐖 

( 𝑚 ) ) is a m

( 𝐖 

( 𝑚 ) ) = 

𝐷 𝑚 ∏
𝑗=1 

𝑞( 𝐖 

( 𝑚 ) 
𝑗, ∗ ) = 

𝐷 𝑚 ∏
𝑗=1 

 ( 𝐖 

( 𝑚 ) 
𝑗, ∗ |𝝁𝐖 

( 𝑚 ) 
𝑗, ∗ 
, 𝚺𝐖 

( 𝑚 ) 
𝑗, ∗ 
) . 

Then the updates equations for 𝑞( 𝐖 

( 𝑚 ) ) are: 

𝐖 

( 𝑚 ) 
𝑗, ∗ 

= 

[ ⟨𝐇 

( 𝑚 ) ⟩ + ⟨𝜏( 𝑚 ) 
𝑗 

⟩ ∑
𝑛 ∈𝑂 ( 𝑚 ) 

𝑗 

⟨𝐳 𝑛 𝐳 𝑇 𝑛 ⟩] −1 , 
𝝁𝐖 

( 𝑚 ) 
𝑗, ∗ 

= ⟨𝜏( 𝑚 ) 
𝑗 

⟩ ∑
𝑛 ∈𝑂 ( 𝑚 ) 

𝑗 

( 

𝑥 
( 𝑚 ) 
𝑗,𝑛 

⟨𝐳 𝑇 
𝑛 
⟩) 

𝚺𝐖 

( 𝑚 ) 
𝑗, ∗ 
. 

3. 𝑞 𝛼𝑚 distribution 

The optimal log-density for 𝑞( 𝜶( 𝑚 ) ) , given the other variational distr

n 𝑞( 𝜶( 𝑚 ) ) = 𝔼 𝑞( 𝐖 

( 𝑚 ) ) [ ln 𝑝 ( 𝐖 

( 𝑚 ) |𝜶( 𝑚 ) ) + ln 𝑝 ( 𝜶( 𝑚 ) )] , 

= 

𝐾 ∑
𝑘 =1 

[ 
𝐷 𝑚 

2 
ln 𝛼( 𝑚 ) 

𝑘 
− 

1 
2 
𝛼
( 𝑚 ) 
𝑘 

⟨𝐰 

( 𝑚 ) 𝑇 
𝑘 

𝐰 

( 𝑚 ) 
𝑘 

⟩ + ( 𝑎 𝜶( 𝑚 ) − 1) ln 𝛼( 𝑚 ) 
𝑘 

− 𝑏 𝜶( 𝑚 ) 

= 

𝐾 ∑
𝑘 =1 

( 

𝐷 𝑚 

2 
+ 𝑎 𝜶( 𝑚 ) − 1 

) 

ln 𝛼( 𝑚 ) 
𝑘 

− 

𝐾 ∑
𝑘 =1 

( 

𝑏 𝜶( 𝑚 ) + 

1 
2 
⟨𝐰 

( 𝑚 ) 𝑇 
𝑘 

𝐰 

( 𝑚 ) 
𝑘 

⟩) 

𝛼
( 𝑚
𝑘 

here ⟨⋅⟩ = 𝔼 𝑞( 𝐖 

( 𝑚 ) ) [ ⋅] . Constant terms that do not depend on 𝜶 are omitt

istribution: 

( 𝜶( 𝑚 ) ) = 

𝐾 ∏
𝑘 =1 

𝑞( 𝜶( 𝑚 ) 
𝑘 

) = 

𝐾 ∏
𝑘 =1 

Γ( 𝛼( 𝑚 ) 
𝑘 

|𝑎̃ 𝜶( 𝑚 ) , ̃𝑏 
( 𝑘 ) 
𝜶( 𝑚 ) ) . 

And the update equations for 𝑞( 𝜶( 𝑚 ) ) are: 

𝑎̃ 𝜶( 𝑚 ) = 𝑎 𝜶( 𝑚 ) + 

1 
2 
𝐷 𝑚 , 

̃
 

( 𝑘 ) 
𝜶( 𝑚 ) = 𝑏 𝜶( 𝑚 ) + 

1 
2 
⟨𝐰 

( 𝑚 ) 𝑇 
𝑘 

𝐰 

( 𝑚 ) 
𝑘 

⟩, 
here ⟨𝐰 

( 𝑚 ) 𝑇 
𝑘 

𝐰 

( 𝑚 ) 
𝑘 

⟩ = 

∑𝐷 𝑚 
𝑗=1 

( 

𝝁𝑇 

𝐖 

( 𝑚 ) 
𝑗, ∗ 
𝝁𝐖 

( 𝑚 ) 
𝑗, ∗ 

+ 𝚺𝐖 

( 𝑚 ) 
𝑗, ∗ 

) 

( 𝑘,𝑘 ) 

. 
13 
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A

butions is obtained in the following way: 

l

⟨𝐳 𝑛 𝐳 𝑇 𝑛 ⟩] ) 

 

( 𝑚 ) 
𝑗,𝑛 

⟨𝐖 

( 𝑚 ) 
𝑗, ∗ ⟩⟨𝐳 𝑛 ⟩

(A.15) 

w of 𝐗 

( 𝑚 ) and ⟨⋅⟩ = 𝔼 𝑞 ( 𝐙 ) ,𝑞 ( 𝐖 

( 𝑚 ) ) [ ⋅] . Constant terms that do not depend on 𝜏 are 

o s a Gamma distribution: 

𝑞 (A.16) 

w

𝑎

(A.17) 

nt in factor analysis models, we used a similar approach previously proposed 

b 12 ), which consists of maximising the variational lower bound with respect 

t ariational EM updates. This also improves convergence and speeds up the 

l

A



 𝝉)] 

(B.1) 

w

𝔼  𝝉( 𝑚 ) ) 
) ] 

, (B.2) 

𝔼 (B.3) 

𝔼
 

ln (2 𝜋) 
] 
, (B.4) 

𝔼 𝛼
( 𝑚 ) 
𝑘 

⟩] , (B.5) 

𝔼  𝑚 ) 
 

⟩] , (B.6) 

w  𝜶( 𝑚 ) ) − ln ̃𝑏 ( 𝑘 ) 
𝜶( 𝑚 ) and 𝜓( ⋅) is a digamma function. ⟨𝜏( 𝑚 ) 

𝑗 
⟩, ⟨𝐳 𝑛 𝐳 𝑇 𝑛 ⟩, ⟨𝛼( 𝑚 ) 𝑘 

⟩ and ⟨ A.14) , respectively. 
4. 𝑞𝜏𝑚 distribution 

The optimal log-density for 𝑞( 𝝉 ( 𝑚 ) ) , given the other variational distri

n 𝑞( 𝝉 ( 𝑚 ) ) = 𝔼 𝑞 ( 𝐙 ) ,𝑞 ( 𝐖 

( 𝑚 ) ) [ ln 𝑝 ( 𝐗 

( 𝑚 ) |𝐙 , 𝐖 

( 𝑚 ) , 𝝉 ( 𝑚 ) ) + ln 𝑝 ( 𝝉 ( 𝑚 ) )] 

= − 

1 
2 

𝐷 𝑚 ∑
𝑗=1 

[ 
𝜏
( 𝑚 ) 
𝑗 

∑
𝑛 ∈𝑂 ( 𝑚 ) 

𝑗 

( 

𝑥 
( 𝑚 )2 
𝑗,𝑛 

− 2 𝑥 ( 𝑚 ) 
𝑗,𝑛 

⟨𝐖 

( 𝑚 ) 
𝑗, ∗ ⟩⟨𝐳 𝑛 ⟩ + Tr [ ⟨𝐖 

( 𝑚 ) 𝑇 
𝑗, ∗ 𝐖 

( 𝑚 ) 
𝑗, ∗ ⟩

+ 

𝑁 

( 𝑚 ) 
𝑗 

2 
ln 𝜏( 𝑚 ) 

𝑗 
+ ( 𝑎 𝝉( 𝑚 ) − 1) ln 𝜏( 𝑚 ) 

𝑗 
− 𝑏 𝝉( 𝑚 ) 𝜏

( 𝑚 ) 
𝑗 

] 
= 

𝐷 𝑚 ∑
𝑗=1 

( 

𝑎 𝝉( 𝑚 ) + 

𝑁 

( 𝑚 ) 
𝑗 

2 
− 1 

) 

ln 𝜏( 𝑚 ) 
𝑗 

− 

𝐷 𝑚 ∑
𝑗=1 

( 

𝑏 𝝉( 𝑚 ) + 

1 
2 

∑
𝑛 ∈𝑂 ( 𝑚 ) 

𝑗 

𝑥 
( 𝑚 )2 
𝑗,𝑛 

− 2 𝑥

+ Tr [ ⟨𝐖 

( 𝑚 ) 𝑇 
𝑗, ∗ 𝐖 

( 𝑚 ) 
𝑗, ∗ ⟩⟨𝐳 𝑛 𝐳 𝑇 𝑛 ⟩] ) 

𝜏
( 𝑚 ) 
𝑗 

, 

here 𝑁 

( 𝑚 ) 
𝑗 

is the number of non-missing observations in the 𝑗-th row 

mitted. Taking the exponential of the log density, the optimal 𝑞( 𝝉 ( 𝑚 ) ) i

( 𝝉 ( 𝑚 ) ) = 

𝐷 𝑚 ∏
𝑗=1 

𝑞( 𝝉 ( 𝑚 ) 
𝑗 

) = 

𝐷 𝑚 ∏
𝑗=1 

Γ( 𝜏( 𝑚 ) 
𝑗 

|𝑎̃ ( 𝑗) 
𝝉( 𝑚 ) 

, ̃𝑏 
( 𝑗) 
𝝉( 𝑚 ) 

) , 

here the variational parameters are calculated by: 

̃ 
( 𝑗) 
𝝉( 𝑚 ) 

= 𝑎 𝝉( 𝑚 ) + 

1 
2 
𝑁 

( 𝑚 ) 
𝑗 

, 

𝑏̃ 
( 𝑗) 
𝝉( 𝑚 ) 

= 𝑏 𝝉( 𝑚 ) + 

1 
2 

∑
𝑛 ∈𝑂 ( 𝑚 ) 

𝑗 

𝑥 
( 𝑚 )2 
𝑗,𝑛 

− 2 𝑥 ( 𝑚 ) 
𝑗,𝑛 

⟨𝐖 

( 𝑚 ) 
𝑗, ∗ ⟩⟨𝐳 𝑛 ⟩ + Tr [ ⟨𝐖 

( 𝑚 ) 𝑇 
𝑗, ∗ 𝐖 

( 𝑚 ) 
𝑗, ∗ ⟩⟨𝐳 𝑛 𝐳 𝑇 𝑛 ⟩] . 

Finally, to solve the rotation and scaling ambiguity known to be prese

y Virtanen and colleagues ( Klami et al., 2013; Virtanen et al., 2011; 20

o a linear transformation 𝐑 of the latent space, after each round of v

earning. 

ppendix B. Evidence lower bound of GFA 

Considering Eq. (9) , the lower bound of ln 𝑝 ( 𝐗 ) is given by: 

 ( 𝑞) = 𝔼 [ ln 𝑝 ( 𝐗 , 𝐙 , 𝐖 , 𝛂, 𝛕)] − 𝔼 [ ln 𝑞( 𝐙 , 𝐖 , 𝛂, 𝛕)] 
= 𝔼 [ ln 𝑝 ( 𝐗 |𝐙 , 𝐖 , 𝛕)] + 𝔼 [ ln 𝑝 ( 𝐙 )] + 𝔼 [ ln 𝑝 ( 𝐖 |𝜶)] + 𝔼 [ ln 𝑝 ( 𝜶)] + 𝔼 [ ln 𝑝 (

− 𝔼 [ ln 𝑞( 𝐙 )] + 𝔼 [ ln 𝑞( 𝐖 )] + 𝔼 [ ln 𝑞( 𝜶)] + 𝔼 [ ln 𝑞( 𝝉)] , 

here the expectations of the ln 𝑝 ( ⋅) terms are given by (see Eq. (A.2) ): 

 𝑞( 𝜽) [ ln 𝑝 ( 𝐗 |𝐙 , 𝐖 , 𝛕)] = 

𝑀 ∑
𝑚 =1 

[ 𝐷 𝑚 ∑
𝑗=1 

( 𝑁 

( 𝑚 ) 
𝑗 

2 
( ⟨ln 𝜏( 𝑚 ) 

𝑗 
⟩ − ln (2 𝜋)) − ⟨𝜏( 𝑚 ) 

𝑗 
⟩( ̃𝑏 ( 𝑗) 

𝝉( 𝑚 ) 
− 𝑏

 [ ln 𝑝 ( 𝐙 )] = − 

1 
2 

𝑁 ∑
𝑛 =1 

Tr [ ⟨𝐳 𝑛 𝐳 𝑇 𝑛 ⟩] − 

𝑁𝐾 

2 
ln (2 𝜋) , 

 𝑞( 𝜶) [ ln 𝑝 ( 𝐖 |𝜶)] = 

𝑀 ∑
𝑚 =1 

[ 
𝐷 𝑚 

2 

𝐾 ∑
𝑘 =1 

⟨ln 𝛼( 𝑚 ) 
𝑘 

⟩ − 

𝐾 ∑
𝑘 =1 

Tr [ ⟨𝛼( 𝑚 ) 
𝑘 

⟩⟨𝐰 

( 𝑚 ) 𝑇 
𝑘 

𝐰 

( 𝑚 ) 
𝑘 

⟩] + 

𝐷 𝑚 𝐾

2 

 [ ln 𝑝 ( 𝜶)] = 

𝑀 ∑
𝑚 =1 

𝐾 ∑
𝑘 =1 

[ 
𝑎 𝜶( 𝑚 ) ln 𝑏 𝜶( 𝑚 ) − ln Γ( 𝑎 𝜶( 𝑚 ) ) + ( 𝑎 𝜶( 𝑚 ) − 1) ⟨ln 𝛼( 𝑚 ) 

𝑘 
⟩ − 𝑏 𝜶( 𝑚 ) ⟨

 [ ln 𝑝 ( 𝝉)] = 

𝑀 ∑
𝑚 =1 

𝐷 𝑚 ∑
𝑗=1 

[ 
𝑎 𝝉( 𝑚 ) ln 𝑏 𝝉( 𝑚 ) − ln Γ( 𝑎 𝝉( 𝑚 ) ) + ( 𝑎 𝝉( 𝑚 ) − 1) ⟨ln 𝜏( 𝑚 ) 

𝑗 
⟩ − 𝑏 𝝉( 𝑚 ) ⟨𝜏(𝑗

here 𝑞( 𝜽) = 𝑞( 𝐙 ) 𝑞( 𝐖 ) 𝑞( 𝝉) , ⟨ln 𝜏( 𝑚 ) 
𝑗 

⟩ = 𝜓( ̃𝑎 ( 𝑗) 
𝝉( 𝑚 ) 

) − ln ̃𝑏 ( 𝑗) 
𝝉( 𝑚 ) 

, ⟨ln 𝛼( 𝑚 ) 
𝑘 

⟩ = 𝜓( ̃𝑎

𝐰 

( 𝑚 ) 𝑇 
𝑘 

𝐰 

( 𝑚 ) 
𝑘 

⟩ are calculated as in Eq. (A.3) , Eq. (A.7) , Eq. (A.8) and Eq. (
14 



F.S. Ferreira, A. Mihalik, R.A. Adams et al. NeuroImage 249 (2022) 118854 

mply

𝔼

𝔼

𝔼 𝛼
( 𝑚 ) 
𝑘 

⟩]

𝔼  𝑚 ) 
 

⟩] . 
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L  

 

M  
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The terms involving expectations of the logs of the 𝑞( ⋅) distributions si

 [ ln 𝑞( 𝐙 )] = − 

1 
2 

[ 𝑁 ∑
𝑛 =1 

ln |Σ𝐳 𝑛 | + 𝐾(1 + ln (2 𝜋)) 
] 
, 
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2 

[ 𝐷 𝑚 ∑
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ln |Σ𝐖 
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| + 𝐾(1 + ln (2 𝜋)) 
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, 

 [ ln 𝑞( 𝜶)] = 
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