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Introduction

As diabetes, especially type 2 diabetes mellitus (T2DM), is a
recognized risk factor for developing the more severe forms of
coronavirus disease 2019 (COVID-19) [1–3], increasing interest is
emerging regarding the potential impact of different glucose-
lowering agents on the clinical outcomes associated with severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection
[4–7]. The potentially positive influence of metformin [8] and the
pros and cons regarding the use of sodium–glucose cotransporter
type-2 inhibitors (SGLT2is) have recently been reviewed [9]. How-
ever, although the role of dipeptidyl peptidase-4 inhibitors (DPP-
4is) has been recently discussed in many short reports, mostly
commentaries and hypothesis-based papers, there have been no
clear-cut conclusions [10–14].

DPP-4is have raised considerable interest because of the
extensive use of this pharmacological class in the management
of T2DM that has resulted in an excellent well-recognized safety
profile [15], the potential involvement of DPP-4 (originally known
as ‘lymphocyte cell surface protein CD26’) in infectious disease
processes [16] and, more recently, the possible contribution of the
DPP-4 enzyme, recognized as coronavirus receptor protein, to
intracellular entry of SARS-CoV-2 [17]. Within the immune system,
DPP-4/CD26 proteins may be involved in amplifying the signals
derived from interactions with an antigen, thereby leading to T-cell
activation. Interestingly, this immune function appears to be
independent of the catalytic activity of DPP-4 [16]. Given its
various roles, the altered expression and/or activity of DPP-4 have
been implicated in several pathological processes, including viral
entry and inflammation as well as immune-mediated disorders
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A B S T R A C T

Dipeptidyl peptidase-4 inhibitors (DPP-4is) have gained a key place in the management of type

2 diabetes mellitus (T2DM) essentially because of their good safety profile even in the frail population.

DPP-4, originally known as ‘T-cell antigen CD26’, is expressed in many immune cells and regulates their

functions, so the initial concern over the use of DPP-4is was the possible increased susceptibility to

infections. Furthermore, because of the high affinity between human DPP-4 and the spike (S) receptor-

binding domain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), it was suspected that

this virus, responsible for coronavirus disease 2019 (COVID-19), might be able to use the DPP-4 enzyme

as a functional receptor to gain entry into the host. However, DPP-4is also exert anti-inflammatory

effects, which could be beneficial in patients exposed to cytokine storms due to COVID-19. Yet, when

observational (mostly retrospective) studies compared clinical outcomes in DPP-4i users vs non-users

among diabetes patients with COVID-19, the overall results regarding the risk of progression towards

more severe forms of the disease and mortality were heterogeneous, thereby precluding any definite

conclusions. Nevertheless, new expectations have arisen following recent reports of significant

reductions in admissions to intensive care units and mortality in DPP-4i users. However, given the

limitations inherent in such observational studies, any available results should be considered, at best, as

hypothetical and only suggestive of potentially substantial benefits with DPP-4is in diabetes patients

with COVID-19. While the safe use of DPP-4is in COVID-19 patients appears to be an acceptable

hypothesis, all such positive findings still need to be confirmed in randomized controlled trials (a few of

which are currently ongoing) before any recommendations can be made for clinical practice.
�C 2020 Elsevier Masson SAS. All rights reserved.
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[18]. In addition, because DPP-4 can be viewed as a multifunctional
protein with a wide spectrum of actions that go beyond its role as a
proteolytic enzyme, it can be difficult to predict the possible effects
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f its inhibition [18,19]. Thus, among the multiple risk and
rotective factors that have so far been identified [20], the effects
f DPP-4is on clinical outcomes in T2DM patients exposed to
OVID-19 remain unclear [4,10] (Fig. 1). However, until there is
eal-life evidence with reports of clear-cut observational findings
nd, ideally, robust results of randomized controlled trials (RCTs)
egarding the impact of DPP-4is in patients with T2DM, no definite
onclusions can as yet be made as to whether these glucose-
owering agents are beneficial, neutral or harmful in the setting of
OVID-19 infection [21,22].

The aim of the present short narrative review is to summarize
ll the available data regarding the potential impact of DPP-4is on
linical outcomes, especially disease severe enough to require
atient management in intensive care units (ICUs), and on the in-
ospital mortality of patients with T2DM during the COVID-19
utbreak.

ationale supporting potential interference by DPP-4is

DPP-4, originally known as ‘T-cell antigen CD26’, is a
ultifunctional soluble and cell-bound serine protease that is

bundantly expressed in lymphocytes and adipocytes as well as
any other cellular types, including endothelial and epithelial

ells in the lungs [16,23]. It is also widely expressed in many types
f immune cells (CD4+ and CD8+ T cells, B cells, natural killer (NK)
ells, dendritic cells, macrophages) and regulates their functions.
hus, DPP-4 plays a critical role not only in glucose homoeostasis,
ut also in inflammatory and immune responses. In addition, DPP-
 is capable of modulating numerous cytokines, chemokines and
eptide hormones, all of which may be involved in cardiovascular
iology [24,25].

Accordingly, DPP-4/CD26 is speculated to be involved in various
mmune/inflammatory disorders, while DPP-4is are known to

odify the biological activities of multiple immunomodulatory
ubstrates [16,23,26]. The anti-inflammatory properties of antidi-
betic drugs have been considered the ‘promised land’ during this
OVID-19 era [6] and DPP-4is may be able to exert anti-

nflammatory effects that might be positive for cardiovascular
nd renal protection [27]. DPP-4is such as sitagliptin can reduce
nflammation intensity mostly by affecting the nuclear factor
appa-light-chain-enhancer of activated B cells (NF-kB) signalling
athway [28], and the potent and rapid anti-inflammatory effect of
itagliptin was confirmed by another study in patients with T2DM
29]. Also, a meta-analysis of 16 studies reported a significant
eduction in the inflammatory biomarker C-reactive protein
ollowing DPP-4i therapy compared with placebo [30]. As inflam-

atory mediators are strongly active in patients with COVID-19
nd contribute to disease severity, pneumonia leading to acute
espiratory distress syndrome (ARDS) and also coagulopathies,
PP-4is could also help to block pathways leading to cytokine

torms (Fig. 1, lower).

PP-4is and infections before the COVID-19 era

Initially, there were some questions as to whether or not DPP-
is might compromise immune function and increase the risk of
espiratory tract infections (RTIs), given the role of DPP-4/CD26 in
he regulation of T-cell activity (Fig. 1, upper) [16]. However,
either innate nor adaptive immune responses are affected by the

any increased risk of infections in either pooled safety analyses or
large prospective cardiovascular outcome trials comparing DPP-
4is with placebo [15]. One meta-analysis of 29 RCTs concluded
that DPP-4is could increase the risk of nasopharyngitis and
urinary tract infections, but not of RTIs [33]; the latter finding was
also confirmed in a real-life setting using the UK-based Clinical
Practice Research Datalink (CPRD) [34]. A more recent meta-
analysis of two observational studies and 41 RCTs published
before the COVID-19 pandemic showed no effect of DPP-4is on
pneumonia risk. Thus, in general, the use of DPP-4is can be
considered safe as regards the risk of common pneumonia
[35]. This conclusion is in line with the idea that the catalytic
activity of DPP-4 is not essential for the co-stimulatory role of
CD26 in T-cell activation [16].

In 2013, DPP-4 was identified as a functional receptor for
human coronavirus Erasmus Medical Centre (hCoV-EMC), the virus
responsible for Middle East respiratory syndrome (MERS) that is
genetically similar to SARS-CoV-2 [36]. Interestingly, the naturally
occurring polymorphisms in DPP-4 that negatively impact cellular
entry of MERS-CoV have recently been identified and may thus
help to modulate MERS development in infected patients [37]. Also,
the spatial and cellular localization of DPP-4 was investigated to
evaluate its association with MERS clinical disease [38]: within the
human respiratory tract, immunoreactive DPP-4 was localized to
immune and endothelial cells, pneumocytes, the pleural meso-
thelium and lymphatic vessels [38]. However, if SARS-CoV-2 is also
able to interact with the DPP-4 enzyme as a coreceptor, this
interaction is not as strong as that with angiotensin-converting
enzyme 2 (ACE2), the most important coreceptor used by the virus
for cellular entry [39].

Of note, in a mouse model of ARDS, DPP-4 inhibition by
sitagliptin alleviated the histological alterations caused by lung
injury by inhibiting the proinflammatory cytokines interleukin
(IL)-1b, tumour necrosis factor (TNF)-a and IL-6 [40]. However,
there is little evidence that such animal findings can be translated
to the human lung.

Findings in silico with SARS-CoV-2

Bioinformatics approaches combining human–virus protein
interaction prediction and protein docking based on crystal
structures have revealed a high affinity between human DPP-4
and the spike (S) receptor-binding domain of SARS-CoV-2 [39]. This
observation raises the hypothesis that SARS-CoV-2 might also use
the DPP-4 enzyme as a functional receptor to gain entry into the
host [41].

The three-dimensional (3D) structure of the main SARS-CoV-2
protease was compared with the 3D structures of several
proteases, including DPP-4. Although results in silico warrant
further evaluation for viral anticipation, it has nonetheless been
suggested that DPP-4is with antiviral actions may be useful for
COVID-19-infected patients with diabetes [42]. However, another
study failed to show that SARS-CoV-2 binds to DPP-4, but found
instead that beta-coronaviruses are capable of entering human
cells through an unknown receptor in addition to the well-
recognized ACE2 [43]. As most of the current data point to
membrane-bound ACE2 in contrast to DPP-4 as the major binding
partner for COVID-19 internalization into host immune cells, the
finding that the circulating soluble form of DPP-4 is reduced in
PP-4is routinely used in clinical practice [31]. On the other hand,
 nested case–control study using VigiBase, the World Health
rganization’s adverse drug reactions (WHO-ADR) database,

ndicated an increased reporting of infections, particularly upper
TIs, in users of DPP-4is compared with users of other antidiabetic
rugs [32]. Reassuringly, though, there has been no evidence of
2

patients hospitalized with SARS-CoV-2 suggests a regulatory role
of both ACE2 and DPP-4 enzymes in the course of COVID-19
infection [44].

In addition, computational studies have raised further specula-
tion as to whether or not using DPP-4is to target one of the
potential host determinants of virulence would be useful for
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attenuating COVID-19 severity after viral exposure [10,45], even
though this hypothesis has also been disputed [46].

Observational studies with DPP-4is during COVID-19

DPP-4 distribution in the human respiratory tract may facilitate
entry of the virus into the airways tract itself, thereby contributing
to the development of cytokine storms and immunopathology by
causing fatal COVID-19 pneumonia. Thus, theoretically, the use of
DPP-4is in patients with COVID-19 with, or even without, T2DM
might offer a simple way to reduce virus entry and replication in
the airways, and hamper sustained cytokine storms and inflam-

disease—generally requiring the transfer of patients to an ICU—
are summarized in Table 1 [48–55]. In fact, there was wide
heterogeneity across these studies, with hazard ratios (HRs) ranging
from 0.36 to 1.81. Although outcomes differed slightly among the
reports, such differences cannot explain the widely divergent
results. Likewise, the effects of DPP-4is on in-hospital mortality are
summarized in Table 2 [48–50,53,49–55] and, here again, there was
marked heterogeneity across these studies with HRs ranging from
0.13 to 1.48. In fact, there is no obvious explanation for such
between-study heterogeneity. It is worth noting, however, that
most of these studies were not designed to investigate the
hypothesis—for example, the French Coronavirus SARS-CoV-2

Fig. 1. Hypothetical interactions between dipeptidyl peptidase (DPP)-4 inhibition and infections such as coronavirus disease 2019 (COVID-19) in patients with type

2 diabetes: (upper) initial concerns for a possibly increased risk of infection; (lower) recent expectations that DPP-4 inhibition might improve the prognosis of patients

exposed to COVID-19 through various yet-to-be-confirmed mechanisms. SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.

Table 1
Relationship between dipeptidyl peptidase (DPP)-4 inhibitor therapy and poorer outcomes/prognoses during the coronavirus disease 2019 (COVID-19) pandemic.

References Country Type of study n/N OR or HR (95% CI) Outcome

Chen et al. [48] China Retrospective 20/120 1.81 (0.51–6.37), P = 0.36 Poor prognosis

Cariou et al. [49] France Observational cohort 285/1317 1.01 (0.75–1.34), P = NR Tracheal intubation and/or death

Fadini et al. [50] Italy Retrospective 9/85 1.73 (33.3% vs 19.2%), P = 0.33 ICU admission

Montastruc et al. [51] France Case series 10/27 0.53 (43% vs 81%), P = NR Intubation

Rhee et al. [52] South Korea Population-based 263/832 0.36 (0.14–0.97), P = NR Severe COVID-19

Solerte et al. [53] Italy Case–control, retrospective

observational

169/338 0.51 (0.27–0.95), P = 0.03 ICU admission

Kim et al. [54] South Korea Retrospective 85/235 1.05 (0.44–2.49), P = 0.92 Severe COVID-19

Mirani et al. [55] Italy Case series 11/90 NR, P = 0.029 Less mechanical ventilation

n/N, DPP-4 inhibitor users/all type 2 diabetes patients; OR, odds ratio; HR, hazard ratio; CI, confidence interval; NR, not reported; ICU, intensive care unit.
mation within the lungs of patients diagnosed with COVID-19
infection (Fig. 1, lower) [47].

Given this hypothesis, several observational retrospective
studies have been performed to investigate the impact of
DPP-4is on clinical outcomes in T2DM patients hospitalized for
COVID-19. The results regarding transition to more severe
3

and Diabetes Outcomes (CORONADO) study [49] —and some
recruited only a limited number of patients treated with DPP-4is,
thereby attenuating the level of confidence and exposing results to a
lack of statistical power. Nevertheless, of potential interest is the
study that specifically investigated the effect of a DPP-4i
(sitagliptin) using a case–control design and recruiting a relatively
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arge number of patients, and reported the most impressive results
HR: 0.51, 95% confidence interval (CI): 0.27–0.95; P = 0.03] for ICU
dmission (Table I), and an HR of 0.44 (95% CI: 0.29–0.66; P =
.0001) for mortality (Table 2) when comparing sitagliptin users vs

on-users [53]. However, as the methodology of the study has come
nder criticism [56], caution is therefore required before translating
his approach into clinical practice (see below).

imitations of the available data

First, findings in T2DM patients were mostly collected from
etrospective observational studies, and the potential biases
nherent in such studies are well known [57]. Also, in the absence
f randomization, selection biases (possible differences between
ubjects included in two compared groups) cannot be excluded,
nd both the indications and contraindications may differ between
arious antidiabetic medications. Thus, the patients’ characteris-
ics among DPP-4i users vs non-users may have differed (in age,
enal function, established cardiovascular disease . . .) and poten-
ially influenced outcomes independently of any effect of the DPP-
i itself. As a consequence, it is possible that selection biases and
onfounding factors may have led to misleading results [57].

Second, it is accepted that the quality of glucose control during
ospitalization can influence the outcome of COVID-19 in patients
ith T2DM [2]. Yet, in all published studies thus far, no information

n glucose control during hospital stays has been reported.
urthermore, it is unclear whether any DPP-4i treatment, which
as noted at the time of hospital admission, was maintained

uring hospitalization or not.
Finally, the results recently reported by Solerte et al. [53] and

irani et al. [55] were discussed and criticized in an accompanying
ommentary [56] because of several limitations and shortcomings.
herefore, the evidence for DPP-4is reducing the mortality
ssociated with COVID-19 should be considered as only suggestive
t best. Nevertheless, it is certainly mandatory to consider those
wo reports, along with those listed in Tables 1 and 2, as
ypothesis-generating clues pointing to potentially substantial
enefits with DPP-4is (for example, sitagliptin) in patients with
2DM and COVID-19 infection. These findings now need to be
onfirmed in well-designed, prospective, high-quality RCTs [56].

ngoing randomized controlled trials

Because of the possible biases inherent in observational
etrospective studies, and the divergent and inconclusive
ndings derived from such studies until now (Tables 1 and

other in Israel (ClinicalTrials.gov identifier: NCT 04371978;
100 participants); and the third is the open-label Effect of
Sitagliptin Treatment in COVID-19-Positive Diabetic Patients
(SIDIACO) RCT in Italy to evaluate the effect of sitagliptin as an
add-on to standard care with nutritional therapy with or
without insulin treatment (ClinicalTrials.gov identifier: NCT
04365517; 170 participants).

It has been hypothesized that, thanks to their ancillary effects,
DPP-4is could potentially be ‘repurposed’ as salutary drugs against
COVID-19 even for non-diabetes patients [58]. Interestingly, DPP-
4is are known to be associated with little or no risk of
hypoglycaemia [15], which means they could also be used safely
in patients without diabetes. Clinical studies need to be specifically
designed to investigate this possibility but, to our knowledge, none
is currently underway to test this hypothesis in patients without
diabetes.

Real-life and practical recommendations

To test the hypothesis that treatment with DPP-4is might be
able to influence COVID-19 progression in patients with T2DM, a
nationwide study of 3818 charts of patients with fatal COVID-19
found that geographical differences in DPP-4i use across regions of
Italy did not correlate with diabetes prevalence among COVID-19
deaths. Thus, these findings do not support the hypothesis of any
clinically relevant involvement of DPP-4is in COVID-19 develop-
ment and progression [59].

As COVID-19 is a new viral infection with as yet numerous
unknowns and uncertainties, and with data that are still rather
limited, the expert recommendations conform to strategies
classically used for diabetes patients with severe infections
[60]. Thus, the importance of good glycaemic control during this
COVID-19 pandemic has been emphasized [61], and it has even
been suggested that optimalizing glycaemic control might reduce
the risk of severe COVID-19 infection [2,3]. Furthermore, dis-
continuing glucose-lowering agents in general is not recommen-
ded prophylactically for asymptomatic outpatients with T2DM nor
in the absence of evidence of a serious case of COVID-19 [60]. On
the other hand, DPP-4is are associated with a low risk of
hypoglycaemia even when combined with insulin, and are
relatively safe across a wide range of renal function. At present,
there is no convincing evidence to suggest that DPP-4is be
discontinued even in hospitalized patients with mild-to-moderate
symptoms, and the recommendation is that they may be continued
in non-critically ill patients [60]. Indeed, in addition to glucagon-
like peptide (GLP)-1 receptor agonists and insulin, DPP-4is are the

able 2
elationship between dipeptidyl peptidase (DPP)-4 inhibitor therapy and in-hospital mortality during the coronavirus disease 2019 (COVID-19) pandemic.

References Country Type of study n/N OR or HR (95% CI)

Chen et al. [48] China Retrospective 20/120 1.48 (0.40–5.53), P = 0.56

Cariou et al. [49] France Observational cohort 285/1317 0.85 (0.55–1.32), P = NR

Fadini et al. [50] Italy Retrospective 9/85 0.80 (11.1% vs 13.9%), P = 0.82

Solerte et al. [53] Italy Case–control, retrospective,

observational

169/338 0.44 (0.29–0.66), P = 0.0001

Kim et al. [54] South Korea Retrospective 85/235 1.47 (0.45–4.78), P = 0.52

Mirani et al. [55] Italy Case series 11/90 0.13 (0.02–0.92), P = 0.042

ata are adapted from Mirabelli et al. [4]; n/N, DPP-4 inhibitor users/all type 2 diabetes patients; OR, odds ratio; HR, hazard ratio; CI, confidence interval; NR, not reported.
), definitive answers will only be provided by RCTs. For this
eason, at least three parallel-group RCTs investigating the
ffects of DPP-4is on the prognosis for COVID-19 are currently
ngoing: two of them are looking at the effects of linagliptin
dded to background insulin therapy (one in the US, Clinical-
rials.gov identifier: CT 04341935; 20 participants only), the
4

preferred options for glucose control, given their flat profile and
low glycaemic variability particularly in hospitalized patients
[62]. Nevertheless, despite the recent positive findings reported
with sitagliptin in reducing mortality [53], there are insufficient
data to support the introduction of a DPP-4i to the treatment of a
patient with T2DM exposed to SARS-CoV-2 with the aim of
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avoiding a poorer outcome [56]. New-onset diabetes has been
reported in some patients exposed to COVID-19, and may be
explained by both increased insulin resistance and defective
insulin secretion due to cytokine storms and the tropism of SARS-
CoV-2 towards pancreatic beta cells [63]. Possible deterioration of
glucose homoeostasis could also be amplified if glucocorticoids
such as dexamethasone are administered [3]. Although the use of
DPP-4is in such patients with new-onset diabetes may be
potentially helpful, their efficacy and safety are as yet insufficiently
documented [60]. Finally, as DPP-4is are likely to be of less
therapeutic benefit for patients with severe COVID-19 infection,
they should be omitted in cases of acute severe illness (such as
patients hospitalized in ICUs) and replaced by insulin, the
alternative treatment of choice, where necessary [60,62].

Further analyses of affected patients using various antidiabetic
treatments who also have COVID-19 could allow more precise
counselling regarding the use of glucose-lowering agents in
general, while elucidating the effects of DPP-4is in particular.

Conclusion

Given that the DPP-4 enzyme is involved in so many biological
processes, including immune and inflammatory mechanisms, the
hypothesis was proposed that DPP-4is might be able to moderate
the outcomes in T2DM patients infected by SARS-CoV-2. However,
some mechanisms appear to be deleterious whereas others might
be associated with favourable effects in patients exposed to
infections such as COVID-19. Thus, it is difficult to determine
whether DPP-4is would be beneficial, neutral or harmful in the
setting of COVID-19 infection. Whereas findings from observa-
tional studies have been heterogeneous, collectively the available
data indicate that DPP-4is do no harm to patients with both T2DM
and COVID-19. However, except for one case–control retrospective
study showing a significant reduction in ICU admission and
mortality in sitagliptin users vs non-users, no other sufficiently
large observational study has yet found any clear-cut protection in
patients treated with DPP-4is compared with patients receiving
other glucose-lowering agents. Moreover, while there is no reason
to eliminate DPP-4i use in patients with T2DM and COVID-19
except for those who are critically ill, there is still insufficient
evidence to support the introduction of a DPP-4i with the intention
to improve the prognosis of patients exposed to SARS-CoV-2. Thus,
the conclusion at this time is that DPP-4is do not modify the
outcome of COVID-19, a finding that remains to be confirmed by
the results of ongoing RCTs.
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