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Background: Cervical cancer is one of the most common gynecological cancers
worldwide. The tumor microenvironment significantly influences the therapeutic
response and clinical outcome. However, the complex tumor microenvironment of
cervical cancer and the molecular mechanisms underlying chemotherapy resistance are
not well studied. This study aimed to comprehensively analyze cells from pretreated and
chemoresistant cervical cancer tissues to generate a molecular census of cell populations.

Methods: Biopsy tissues collected from patients with cervical squamous cell carcinoma,
cervical adenocarcinoma, and chronic cervicitis were subjected to single-cell RNA sequencing
using the 10× Genomics platform. Unsupervised clustering analysis of cells was performed to
identify the main cell types, and important cell clusters were reclustered into subpopulations.
Gene expression profiles and functional enrichment analysis were used to explore gene
expression and functional differences between cell subpopulations in cervicitis and cervical
cancer samples and between chemoresistant and chemosensitive samples.

Results: A total of 24,371 cells were clustered into nine separate cell types, including
immune and non-immune cells. Differentially expressed genes between chemoresistant
and chemosensitive patients enriched in the phosphoinositide 3-kinase (PI3K)/AKT
pathway were involved in tumor development, progression, and apoptosis, which might
lead to chemotherapy resistance.

Conclusions: Our study provides a comprehensive overview of the cancer
microenvironment landscape and characterizes its gene expression and functional
difference in chemotherapy resistance. Consequently, our study deepens the insights
into cervical cancer biology through the identification of gene markers for diagnosis,
prognosis, and therapy.

Keywords: single-cell RNA sequencing, cervical cancer, tumor microenvironment, chemotherapy resistance,
multiple pathways
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INTRODUCTION

As the fourth most common gynecological malignant tumor,
cervical cancer is a leading cause of cancer-related deaths among
women and poses a serious threat to the health of women
worldwide (1). In 2018, approximately 570,000 new cases of
cervical cancer and 311,000 deaths from this cancer were
reported (1). Paclitaxel, cisplatin, carboplatin, or a combination
of these agents is the front-line treatment for cervical cancer (2).
However, the efficacy of current chemotherapeutic agents is
limited, with relatively low response rates of 29%–63% because
of chemotherapy resistance (3). The combination of paclitaxel
and cisplatin is one of the most commonly utilized regimens in
the metastatic disease setting (4). However, in actual clinical
treatment, tumor cells often develop resistance.

The tumor microenvironment (TME) comprises various cell
types [such as fibroblasts, endothelial cells (ECs), and immune
cells] and extracellular components (such as cytokines,
hormones, extracellular matrix, and growth factors), which
surround tumor cells as a vascular network. The TME not only
plays a pivotal role during tumor initiation, progression, and
metastasis, but it also has profound effects on therapeutic
efficacy. TME-mediated chemotherapy resistance is a result of
complex crosstalk between tumor cells and their surrounding
environment (5, 6).

For example, the TME and therapeutic response can be
induced by soluble factors secreted by tumors. The adhesion of
tumor cells to stromal fibroblasts can also affect responses to
chemotherapy (7), and immune cells also play an important role
in improving and obstructing therapeutic efficacy (7). The
interaction between chemotherapy sensitivity and TME is a
complex phenomenon. Cancers can develop remarkable
resistance to various treatments that target different molecular
pathways (8).

Research studies have shown that the cellular and molecular
mechanisms underlying the development of resistance are
multifactorial and include genetic and epigenetic alterations,
cell detoxification, and abnormal drug efflux and accumulation
(9, 10). However, the molecular mechanisms underlying the
occurrence and development of resistance are poorly
understood. Thus, there is an urgent need to identify the basic
factors that determine chemotherapy resistance in cancer.

Previous studies on molecular mechanisms and
chemotherapy resistance in cervical cancer patients have
focused mainly on bulk genomic or transcriptome profiling
Abbreviations: CBP, carboplatin; CA, cervical adenocarcinoma; CE, chronic
cervicitis; CQ, cervical squamous cell carcinoma; DEGs, differentially expressed
genes; ECs, endothelial cells; FAP, fibroblast activating protein; FDR, false
discovery rate; GO, Gene Ontology; HGF, hepatocyte growth factor; KEGG,
Kyoto Encyclopedia of Genes and Genomes; PCA, principal component
analysis; PDL1, programmed cell death ligand 1; PDL2, programmed cell death
ligand 2; PLD1, phospholipase D1; PLVAP, plasmalemmal vesicle-associated
protein; scRNA-seq, single-cell RNA sequencing; SDF1, stromal cell-derived
factor 1; t-SNE, t-distributed stochastic neighbor embedding; TME, tumor
microenvironment; UMI, unique molecular identifiers; VEGF, vascular
endothelial growth factor.
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methods and in-situ hybridization techniques (11–13).
Consequently, studies of chemoresistance mechanisms based
on the signatures of distinct cell populations are obscure (10–
12). Single-cell RNA sequencing (scRNA-seq) techniques have
emerged as a powerful tool for analyzing the spectrum of cell
populations in tissues. Furthermore, these techniques have been
widely used for elucidating the complex subpopulations in
tissues of organs such as the lung (14), heart (15), and brain
(16), as well as in various cancers including melanoma (17),
ovarian (18), and colon (19) cancers (20, 21).

Although studies have used scRNA-seq on the cervix uteri
(22) and drug-resistant cell lines (12), to the best of our
knowledge, scRNA-seq profiling of human cervical cancer
tissues has not been reported to date. Although scRNA-seq is
increasingly being adopted, its application to tumors has been
limited to several types, but not cervical cancer. Because of this
limited elucidation of human tumors and the lack of TME
profiling, the intratumoral transcriptomic heterogeneity of the
most common cancer in women is largely unknown.

Exploring the molecular mechanism of chemotherapy
resistance is important in the development of strategies to
overcome tumor resistance and provides a theoretical basis for
reversing tumor resistance and improving cancer chemotherapy
efficacy. The development of chemotherapy combinations that
could simultaneously target tumor cells and themicroenvironment
may represent a solution to overcome chemotherapy resistance.
This study aimed to analyze cells from pretreated and
chemoresistant cervical cancer tissues at a much higher scale, to
generate a molecular census of cell populations.

Furthermore, we sought to uncover the cell heterogeneity
using unbiased scRNA-seq techniques. Consequently, we
performed an scRNA-seq survey of 23,444 cells from five
tissues from pretreated cervical cancer patients and constructed
a single-cell transcriptome atlas for early malignancy of cervical
cancer (Figure 1). Our study provides novel insights into the
heterogeneity of cervical cancer at the single-cell level and will
serve as a valuable resource for understanding chemotherapy
resistance mechanisms in tumor progression.
MATERIALS AND METHODS

Patients and Tumor Specimens
Four female patients with a pathologic diagnosis of cervical
cancer and one female patient diagnosed with cervicitis were
enrolled at Renmin Hospital of Wuhan University, Wuhan
(Table 1). All enrolled patients signed the written consent, and
this study was approved by the Institutional Review Board
(IRB) of Renmin Hospital of Wuhan University (IRB no.
WDRY2021-K014). Fresh tumor samples (at least 1.5 cm3)
were surgically resected from all enrolled patients. None of
the patients were treated with chemotherapy prior to tissue
sample collection. After sample resection, three of the four
cervical cancer patients were treated with chemotherapy, and
one patient was a responder and the two were resistant
to chemotherapy.
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Human Cervical Cancer Tissue Cell
Dissociation
All fresh cervical cancer tissues were transferred from the
operating room to the dissociation laboratory in cold Hank’s
balanced salt solution (HBSS) medium supplemented with 1%
Frontiers in Oncology | www.frontiersin.org 3
penicillin–streptomycin within 30 min. Samples were gently
washed in phosphate-buffered saline (PBS) after removing the
adipose tissue and minced into pieces of approximately 1 mm3

using an Iris scissors. Enzymatic digestion was performed using
the MACS tumor dissociation kit (Miltenyi Biotec) according to
FIGURE 1 | Single-cell transcriptome regulatory network of the tumor microenvironment (TME) and chemoresistance in cervical cancer. In total, 24,371cells were
clustered into nine separate cell types, including immune cells (T cells, B cells, and myeloid) and non-immune cells [fibroblast cells and endothelial cells (ECs), epithelial
cells, and smooth muscle cells]. Among these, fibroblast cells formed five distinct subtypes, and cluster 4 (C4) contained proliferative fibroblast cells enriched in cancer
samples. ECs comprised two subclusters: C0 corresponded to tumor-associated ECs. T and B cells formed five and three subclusters, respectively, where C1 of T cells
expressed higher levels of immune checkpoint molecules (PDCD1) than the other clusters did and C4 highly expressed proliferating cancer marker genes, MKI167 and
BIRC5. Subpopulations of B cells were not strongly affected by drug resistance. Differentially expressed genes (DEGs) between chemoresistant and chemosensitive patients
were enriched in phosphoinositide 3-kinase (PI3K)/AKT pathway involved in tumor development, progression, and apoptosis, which might lead to chemoresistance.
TABLE 1 | Clinical information of the five patients.

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

Sex Female Female Female Female Female
Age 52 49 45 39 46
Chemotherapy before
sampling

No No No No No

Chemotherapy drug PTX + CBP No No PTX + CBP PTX + CBP
Clinical AJCC Squamous-cell carcinoma

(IIA2)
Adenocarcinoma Cervicitis Squamous-cell carcinoma

(IIA2)
Squamous-cell carcinoma
(IIA2)

Drug tolerance Primary resistance Non-
chemotherapy

Non-
chemotherapy

Primary resistance Non-resistance

Other information / / / / /
HPV infection 31 (+) 18 (+) Negative Negative 18 (+)
November 2021 | V
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the instructions of the manufacturer. The cell suspension was
further filtered through a 40-mm cell-strainer (BD) and
centrifuged at 400g for 10 min to remove the cell aggregates.
After removing the supernatant, the pelleted cells were
resuspended in 2 ml red blood cell lysis buffer (SolarBio), and
then resuspended in PBS with 10% fetal bovine serum (FBS). The
viability of the obtained single-cell suspension was detected using
a hemocytometer with trypan blue (0.4%, 420301, Gibco).

Single-Cell RNA Capturing, Library
Preparation, and Sequencing
All single-cell capturing and downstream library construction
were performed using the 10× Chromium Single Cell platform
(Single Cell 3 library and Gel Bead kit v.3). Briefly, the cell
suspensions at a concentration of 1,000 cells/ml were loaded into
a 10x Genomics microfluidics chip and encapsulated with
barcoded gel beads to generate gel beads in emulsion (GEM).

Reverse transcription of generated droplets was performed at
53°C for 45 min. cDNA was amplified for 12 cycles total on T100
Thermal Cycler (Bio-Rad). Then, RT-cDNA was recovered using
Recovery Agent provided by 10× Genomics and purified with
DynaBeads MyOne Silane Beads (Thermo Fisher Scientific) as
outlined in the user guide. Subsequently, purified cDNAs were
amplified and cleaned up with the SPRIselect Reagent Kit
(Beckman Coulter, USA). Quantification of constructed
libraries of each sample was detected using a Qubit2.0
Fluorometer (Invitrogen) before pooling. Pooled libraries were
sequenced to a depth of an average of 50,000 reads per cell on a
NovaSeq 6000 sequencer (Illumina, San Diego) at 2 × 150 bp
sequencing model (23–25).

scRNA-Seq Data Analysis
scRNA-seq raw data were demultiplexed to FASTQ files
(observed average read depth per cell was ~1.6 million reads)
and aligned to an indexed ensembl_92-GRCh38.92 RefSeq
genome to generate gene expression matrices using 10×
Genomics pipeline CellRanger v.2.1.0 (25). The number of
unique molecular identifiers (UMIs), the number of genes, and
the percentage of mitochondrial genes were examined for quality
control. Cells expressing <500 or >4,000 genes (potential cell
duplets) and gene expression not detected in fewer than three
cells were trimmed from the library.

Cells containing >10% mitochondrial genes were also
discarded because of their poor cell viability (Table S1). We
detected 92,675 genes in 21,433 cells from five samples. After
data normalization, variably expressed genes were normalized
and scaled, where single-cell gene counts were normalized to the
total gene counts presented in that cell at a normalized
expression between a low cutoff of 0.0125 and a high cutoff of
3 and a quantile-normalized variance >0.5, using the Seurat R
package. The resulting gene expression values were transformed
into a log space.

Major Cell-Type Clustering
Principal component analysis (PCA) was used to reduce the
dimensionality of the results of variably expressed genes based on
the JackStraw function. Then, the first 10 principal components
Frontiers in Oncology | www.frontiersin.org 4
were selected as a statistically significant input for further two-
dimensional visualization using t-distributed stochastic neighbor
embedding (t-SNE) plots (RunTSNE function, the default
setting). Cell clusters were annotated and identified to known
cell types using specific marker genes identified using the Seurat
“FindAllMarkers” function with the default setting (26).

Marker Gene and Cell-Type Identification
Cluster-specific genes were acquired using the Seurat native
FindMarkers function with a log-fold change threshold of 0.25.
Receiver operating characteristic (ROC) analysis was used to
identify cell markers. To further characterize these cell types in
each cluster, we used the automated annotation tool SingleR (27)
and manually checked using known cell surface markers based
on related references.

Identification of Differential Gene
Expression and Cell Function in Different
Samples
Differential expression analysis was performed after normalization
and removal of the batch effects of total genes from the specific
cluster from different samples. The function of FindAllMarkers
wrapped in the R package of Seurat was used to identify
differentially expressed genes for each of cell clusters compared
to others. Then, the functions of FindIntegrationAnchors and
IntegrateData wrapped in the R package of Seurat were
employed to remove the batch effect referred to the standard
procedure.We detected differentially expressed genes (DEGs) with
a false discovery rate (FDR) <10e-6 and abs (log2 ratio) >2. Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analyses were performed to investigate the cell
functional status. DEGs and molecular regulators in the clusters
were investigated using GO and KEGG pathway analyses,
respectively. GO and KEGG terms with an FDR <0.05 were
considered significantly enriched (28).
RESULTS

Single-Cell Profiling of Cervical Cancer
and Chronic Cervicitis Tissues
The single-cell atlas of the cervical tissues was characterized
using five biopsy samples comprising three cervical squamous
cell carcinomas (CQ), one cervical adenocarcinoma (CA), and
one chronic cervicitis (CE). Two of the CQ patients were
chemoresistant, one was chemosensitive, and three were
infected with human papillomavirus. Each sample was
processed to isolate single cells without prior selection of cell
types, and then we performed scRNA-seq using a 10× Genomics
Chromium platform to generate RNA-seq data. After quality
filtering, 24,371 high-quality cells from five cervical biopsy
samples with a median of 1,303–2,214 genes per cell were
analyzed (Figure 2). Subsequently, the cells were further
identified to be nine separate cell types, including fibroblast
cells (34.17%), epithelial cells (24.07%), smooth muscle cells
(4.3%), ECs (4.26%), and immune cells (33.2%).
November 2021 | Volume 11 | Article 753386
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The main cell types were identified based on gene expression
patterns obtained using dimensionality reduction and
unsupervised cell clustering with the described Seurat pipeline.
Based on the marker genes of each cell cluster, nine distinct cell
clusters were assigned to known cell lineages, which mainly
comprised immune and non-immune cells (Figure 3A). The
t-SNE plot also showed distinct clustering according to the
tumor origin (Figure 3B). The heatmap showed differentially
expressed marker genes in nine clusters (Figure 3C).

The proportions and composition of cell types varied among
the different samples. The CA samples clustered with CE samples
and mainly comprised fibroblast cells, accounting for 84.7% and
63.4% of the total cells. In contrast, the corresponding CQ
werepredominantly epithelial and immune cells with almost no
fibroblasts and ECs. Immune cells mainly consisted of B cells
[CD20 (MS4A1) and CD79A] (26, 29, 30), myeloid cells (IL1B)
(29), T cells (CD3D, CD2) (29–31), and mast cells (MS4A2) (29).
The non-immunecell lineages comprised fibroblasts (DCN,
LUM, and COL1A2) (26, 32, 33), epithelial cells (KRT, SLPI,
and SFN) (32, 34), smooth muscle cells (MYL9, CALD1, and
RGS5) (35, 36), andECs [VMF, ENG, and fms-related receptor
tyrosine kinase 1 (FLT1)] (26) (Figures 3D–F).

Reclustering and Differential Gene Profiles
of Fibroblast and ECs in Cervicitis and
Cervical Cancer Samples
We detected 8,329 fibroblast cells among the five samples and
most were found in the CA and the CE samples, which
accounted for 95.1% of the total fibroblast cells of the five
samples (Figure 4A). To gain a better understanding of these
cell types, we performed a reclustering of 8,329 fibroblasts and
Frontiers in Oncology | www.frontiersin.org 5
1,037 ECs and assigned each of these subclusters based on known
cell markers.

In our study, five distinct subtypes of fibroblast cells were
identified. Cluster 0 (C0), C1, and C3 contained cells from all
samples, but C2 and C4 were strongly enriched in the CA sample
(Figure 4B). C0 and C3 were similar, corresponding to cells
expressing extracellular matrix (ECM) molecules, such as
collagen type III alpha 1 chain (COL3A1), COL6A3, and
COL1A1, and these cells represent a population of collagen-
generating fibroblasts. C1 demonstrated differential activation of
FOS, heat shock protein 90 (HSP90s), and ETS-related gene-
1 (ERG1).

Cells in C2 exhibited differentially elevated expression of
genes involved in translation initiation [ribosomal protein L10
(RPL10) and RPS3] (37) and iron metabolism regulation [ferritin
light chains (FTLs)] (38). The final subpopulation C4 was
speculated to be a group of proliferative fibroblast cells, which
has not been previously recognized, based on the expression of a
relatively high level of proliferative genes such as the S100
(s100B) and CDH19 genes (18, 39) (Figure 4C).

To better understand the differential gene expression profiles
between cervicitis and cervical cancer samples, bulk differential
gene expression analysis was performed for cervical cancer and
cervicitis samples. The two-tailed Wilcoxon rank-sum test, which
is implemented in R, was used to conduct the bulk differential gene
expression analysis. The volcano map (Figure 4D) and the heat
map (Figure 4E) showed significant diversity in the expressed
genes across the two samples.. For example, wnt2, a member of the
WNT gene family, is highly expressed in cervical cancer samples,
and WNT signaling is normally involved in the development and
progression of various cancers.
FIGURE 2 | Overview of single-cell RNA sequencing (scRNA-seq) using cervical cancer and cervicitis biopsy samples.
November 2021 | Volume 11 | Article 753386
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We also found that the extracellular sulfatase, SULT2, was
highly expressed in the cancer samples, which is consistent with
the findings of other studies (40). Upregulation of SULF2 gene
expression is associated with proliferation, invasion, and
migration of cervical cancer cells by its regulation of the
extracellular signal-related kinase (ERK)/AKT signaling
pathway (41). The ECM is important in tumor genesis and
progression and fibroblast-activating protein (FAP), which plays
a crucial role in ECM production and remodeling genes and is
highly upregulated in tumor fibroblast cells (42).

C4 mainly contained proliferative fibroblast cells, which were
mostly from the CA sample. Furthermore, we studied the gene
profiles and performed functional enrichment, which
Frontiers in Oncology | www.frontiersin.org 6
demonstrated that several crucial genes were upregulated or
downregulated in this cluster. The functional enrichment
analysis results indicated that C4 was enriched in cell adhesion
molecule binding and collagen-binding growth factor binding in
molecular functions (Figure 4F).

As shown in Figures 5A–C, the 1,037 ECs were clustered in
two separate subclusters. C0 corresponded to tumor-associated
[heparan sulfate proteoglycan 2 (HPSG2) and plasmalemmal
vesicle-associated protein (PLVAP)] and C1 ECs were blood ECs
(FLT). Cells from sample 2 were spread in C0 but not in C1.
PLVAP is located in the fenestral diaphragm and is considered to
play a role in the passage of proteins through the fenestrae (43,
44). The generation of Plvap-deficient mice has highlighted the
A B

D E

F

C

FIGURE 3 | Overview of 24,371 cells from five cervical cancer tissues. t-Distributed stochastic neighbor embedding (t-SNE) plots displaying 24,371 cell profiles with
each cell color-coded for (A) associated cell type and (B) its sample origin. (C) Heatmap shows differentially expressed marker genes (rows) in nine clusters. Yellow
and dark purple: high and low expression, respectively. (D) Proportions of cells in each sample. (E) t-SNE plots displaying 24,371 cell profiles with color-coded
sample origins. Samples 2 and 3 are gray. (F) t-SNE plot color-coded for marker gene expression (gray to white to blue) for COL1A2 (cluster 0, C0), KRT6A (C1),
CD3D (C2), IL1B (C3), MYL9 (C4), VWF (C5), CD79A (C6 and C7), and MS4A2 (C8).
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A B

D

E

F

C

FIGURE 4 | Single-cell RNA sequencing (scRNA) profiles of fibroblast cell lineages. Reclustering of 8,329 fibroblast cells color-coded by (A) clusters and (B) sample
origin (right). (C) t-Distributed stochastic neighbor embedding (t-SNE) plot color-coded for marker gene expression (gray to white to blue) for COLIAI, FOS, S100A2,
and CDH19. (D) Heatmap shows differentially expressed marker genes (rows) in five clusters. Yellow and dark purple: high and low expression, respectively.
(E) Volcano plot shows differentially expressed marker genes between cervicitis and cervical cancer samples. (F) Differences in pathway activities of cells between
cluster 1 (C1), C2, C3, and C4.
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structural role of PLVAP in the maintenance of size-selective
permeability in fenestrated endothelia (45, 46). Moreover, Plvap-
deficient mice that survived postnatally showed growth
retardation (46).

The bulk differential gene expression analysis between
cervicitis and cervical cancer samples showed that several
cancer marker genes, which have been reported in various
malignant tumors responsible for angiogenesis, metastasis, and
invasion, were significantly elevated in cancer ECs (Figure 5D).
For example, we detected elevated levels of phospholipase D1
(PLD1), a key enzyme involved in lipid metabolism, indicating
that abnormal lipid metabolism might be involved in the
tumorigenesis and progression of cervical cancer (47, 48).
Frontiers in Oncology | www.frontiersin.org 8
Acquired Resistance Was Associated With
Differential Immune Cell Subpopulation
Distribution and mRNA Expression
Both adaptive immune cells (T and B lymphocytes) and innate
immune cells (such as macrophages, mast cells, neutrophils,
dendritic cells, and natural killer cells) have critical roles in the
TME and are considered to interact with tumor cells by direct
contact or through different chemokine and cytokine signaling
pathways that regulate the response of tumors to therapy. To
explore the diversity of immune cells in cervical cancer, we
extracted 4,961 T cells, 1,480 B cells, and 1,476 myeloid cells
from three individual CQ patients and reclustered them
(Figures 6, 7). Furthermore, the main T-cell clusters could be
A

B

D

C

FIGURE 5 | Single-cell RNA sequencing (scRNA) profiles of endothelial cell (EC) lineages. (A) Reclustering of 1,037 fibroblast cells, color-coded by clusters (left) or
sample origin (right). (B) t-Distributed stochastic neighbor embedding (t-SNE) plot color-coded for marker gene expression (gray to white to blue) of HPSG2 and
PLVAP. (C) Heatmap shows differentially expressed marker genes (rows) in two clusters. Yellow and dark purple: high and low expression, respectively. (D) Volcano
plot shows differentially expressed marker genes between cervicitis and cervical cancer samples.
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classified into five subpopulations designated as T0–T4, which
were cytotoxic CD8+ T cells (CD8A+ and CD8B), CD4+ T cells
[CD4+ and interleukin 7R (IL7R)], regulatory T cells [IL2RA,
forkhead box protein P3 (FOXP3), tumor necrosis factor
receptor superfamily, member 4 (TNFRSF4)], natural killer
cells [killer cell lectin-like receptor C1 (KLRC1), X-C motif
chemokine ligand 1/2 (XCL1/2), and granulysin (GNLY)], and
proliferating T cells [marker of proliferation Ki-67 (MKI67) and
Frontiers in Oncology | www.frontiersin.org 9
baculoviral IAP repeat containing 5 (BIRC5), Figure 5A] (26,
29). Cells from all clusters were detected in all patients. Cells
from all five clusters were detected in both chemoresistant
and chemosensitive patients, except for C1, which was
predominantly derived from chemoresistant patients. It is
worth noting that there were high levels of immune checkpoint
molecules, including approved target programmed cell death 1
(PDCD1) and other targets that are currently undergoing clinical
A B

D

C

FIGURE 6 | Single-cell RNA sequencing (scRNA) profiles of T-cell lineages. Reclustering of 4,961 T cells color-coded by (A) clusters and (B) sample origin (right).
(C) t-Distributed stochastic neighbor embedding (t-SNE) plot color-coded for marker gene expression (gray to white to blue) for CD8+ (cluster 0, C0), CD4+ (C1),
IL2A (C2), GNLY (C3), MKI167, and BIRC2 (C4). (D) Volcano plot shows differentially expressed marker genes (rows) between chemoresistant patients and
chemosensitive samples.
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trials [lymphocyte activating 3 (LAG3) and hepatitis A virus
cellular receptor 2/T-cell immunoglobulin and mucin domain-3
(HAVCR2/TIM3)] (49), indicating that the cytotoxic activities of
CD8+ are significantly curtailed by high-level expression of the
checkpoint gene. The robust CD8+ response was confirmed to
play a critical role in a mammary tumor model treated with a
HER2 inhibitor (50). Additionally, the average expression of the
proliferating cancer marker genes, MKI167 and BIRC5, was
significantly enriched in C4 (Figure 6D). These two cancer
marker genes, MKI167 and BIRC5, have been reported to be
highly expressed in cervical cancer in many studies, where they
are associated with the cell cycle pathway and cell apoptosis
inhibition, respectively, and are both involved in breast cancer
pathogenesis (51–53).

B cells (1,480) were detected and reclustering from C6 and C7
revealed three subclusters, and cell type assignments were
performed based on known marker genes. C0 corresponded to
follicular B cells based on marker MS4A1, whereas C1
corresponded to plasma B cells based on MZB1, CD38, and
IGHG1 (Figures 7A, C) (29, 54). C2 contained lower quality B
cells and showed no B-cell markers; thus, it was not further
analyzed. One sample was mostly from patient 4, and two others
were mostly from patients 1 and 5. The t-SNE profile failed to
show the separation of subclusters between chemoresistant and
chemosensitive patients, indicating that the B-cell subpopulation
was not strongly affected by drug resistance.
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DEG Pathways Between Chemoresistant
and Chemosensitive Patients
To investigate the enriched functions of DEGs between
chemoresistant and chemosensitive samples, signaling pathway
analysis was performed among subpopulations of epithelial, T,
and B cells. In total, 3,157, 1,399, and 1,141 DEGs were
annotated into 327, 312, and 312 pathways for epithelial, T,
and B cells, respectively, in the KEGG database (Tables S2–S4).
The top 25 annotation results, which were classified according to
the pathway types, are shown in Figure 8. Several signaling
pathways that are closely correlated with chemotherapy were
enriched in all three subpopulations, including the PI3K/AKT
and mitogen-activated protein kinase (MAPK) signaling
pathways. The PI3K/AKT signaling pathway is involved in
tumor development, progression, cellular survival, and
apoptosis, and its correlation with chemoresistance has been
presented in numerous studies (55–57) and cervical cancer (12).
Another chemotherapy resistance-associated pathway, the
MAPK signaling pathway, was significantly enriched and
upregulated in chemoresistant patients and is responsible for
the regulation of cell migration, survival, proliferation, and
progression (58). Activation of survival pathways involving
PI3K/Akt and MAPK caused by integrins and soluble factors
secreted in the TME results in elevated expression of anti-
apoptotic proteins, leading to cell viability and drug
resistance (7).
A B

C

FIGURE 7 | Single-cell RNA sequencing (scRNA) profiles for B-cell lineages. (A) Reclustering of 1,480 B cells, color-coded by their cluster. (B) Its sample origin.
(C) t-SNE plot color-coded for marker gene expression (gray to white to blue) for MS4A1 (cluster 0), MZB1, and IGHG1 (cluster 1).
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DISCUSSION

Advanced scRNA-seq technology has allowed the comprehensive
investigation of tumor heterogeneity gene expression differences
with single-cell resolution. Although scRNA-seq profiles of
other gynecological cancers, including breast and ovarian
cancers, have been extensively studied (18, 34, 59), profiles of
the microenvironment of cervical cancer, particularly with
respect to chemotherapy resistance, have not been demonstrated.
To the best of our knowledge, this is one of the first few studies to
comprehensively characterize a single-cell atlas of cervical cancer
patients in China and worldwide (60).

Here, we present a comprehensive catalog of cell types and
subtypes, including fibroblast, endothelial, and immune cells in
CQ, adenocarcinoma, and non-tumorous CE biopsy samples at
single-cell resolution. In this study, we isolated 24,371 cells from
five cervical biopsy samples and identified nine separate cell types,
including fibroblast, epithelial, smooth muscle, and immune cells
as well as ECs. Then, we subclustered the main cell types into
different subpopulations based on the expression of the marker
gene. We then studied pathway signatures and activities of
distinct subpopulations that represent different biological and
molecular entities between cervical cancer and cervicitis samples,
and assessed the differential gene expression and signaling
pathways between chemoresistant and chemosensitive cervical
cancer patients.

Fibroblasts are considered a heterogeneous population in
many cancers, but the extent of heterogeneity remains unclear,
especially in cervical cancer because they are difficult to culture
and highly dependent on context (26). Furthermore, fibroblasts
Frontiers in Oncology | www.frontiersin.org 11
are a large source of growth factors and cytokines, including
stromal cell-derived factor 1 (SDF1), hepatocyte growth factor
(HGF), and vascular endothelial growth factor (VEGF), which all
promote tumor growth and contribute to chemotherapy
resistance (61–63). Although most clusters were composed of
cells originating from different samples, the fibroblast cells and
ECs were observably enriched in CA and CE patients.

The significant shift might have occurred because the
condition of the patients who provided the cervical squamous
cell carcinoma samples was likely more serious, which would
result in the recruitment of more immune cells to exert their
antitumor function. In addition, upregulated expression of
WNT2 in tumor fibroblast cells, which was observed in this
study, could also result in tumor growth and promotion of
invasion by activating the canonical WNT/b-catenin signaling
pathway (64, 65). A previous study also revealed that
downregulating WNT2 significantly suppressed cell motility
and invasion and reversed epithelial–mesenchymal transition
(EMT) progression in cervical cancer (66).

By comparing the differential gene expression in fibroblasts
and ECs between cervical cancer and cervicitis patients, we found
that several cancer marker genes, which have been reported in
various malignant tumors responsible for angiogenesis,
metastasis, and invasion, via various metabolic pathways
related to cervical cancer, were significantly elevated in cancer
ECs. For instance, genes involved in translation initiation such as
RPL10 and RPS3 (37) and iron metabolism regulation such as
FTLs (38), which have been reported to be involved in increased
cell viability, migration, and invasion in different cancers, were
elevated in the identified C2. This observation indicates that
A B

D E F

C

FIGURE 8 | Differences in pathway activities scored using Kyoto Encyclopedia of Genes and Genomes (KEGG) database between chemoresistant and
chemosensitive samples. Top 25 differentially expressed genes (DEGs) enriched KEGG functional annotation on (A) epithelial, (B) T, and (C) B cells. The x-axis
indicates the number of genes annotated to pathway and proportion of all DGEs, and the y-axis shows KEGG metabolic pathway. Red bar (p < 0.05). Scatter plot of
the top 25 DEGs enriched in the KEGG pathway on (D) epithelial, (E) T, and (F) B cells. Each circle indicates a KEGG pathway. Ordinate is log10 (Q value), color-
coded from green to orange to red. Circle sizes indicate enrichment level of DEGs in pathway. Q value: p-value after multiple hypothesis tests.
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these cells are highly active and associated with tumorigenesis. In
addition, the differential activation of FOS, HSP90s, and ERG1
exhibited by the cells in C1 indicated a strong correlation with
myogenesis and fibrosis (37, 67).

Tumor cells have been reported to trigger the immunosuppressive
activities of tumor-associated ECs that influence therapeutic
responses (68). ECs selectively permit transmigration of
immunosuppressive myeloid cells from the blood to the tumor,
thereby impairing antitumor immune responses (69). Moreover,
ECs involved in the TME may also suppress T-cell function
through the expression of different inhibitory molecules, such as
programmed cell death ligand 1 (PDL1) and PDL2 (70).

Checkpoint immunotherapy is rarely used in cervical cancer,
and there is a poor understanding of the outcome of
immunotherapy. The results of this study were consistent with
this phenomenon, and we found that the immune checkpoint
molecules, PDCD1, LAG3, and HAVCR2, were highly expressed
in CD8+ cells. This observation indicates that cytotoxicity was
inhibited by high checkpoint expression (54) and that
immunotherapy could also be useful in cervical cancer by
targeting these pathways. This result is in agreement with the
good clinical results observed in immunotherapy of cervical
cancer (71).

The results of the analysis of differentially enriched signaling
pathways did not show significant differences in chemoresistant
patients. However, the PI3K/AKT pathway enriched most DEGs,
which suggests that the activation state of this common pathway,
which is involved in tumor development, progression, and
apoptosis, might contribute to the development of resistance to
chemotherapy in cervical cancer patients. Inhibition of certain
components of the PI3K/AKT and MAPK pathways not only
enhances chemotherapy efficacy in cervical cancer, but also has
the potential to overcome resistance (72, 73).

There are some limitations to our study that need to be addressed
in future studies. First, because sample collection was challenging,
the number of samples in this study was relatively small, especially
the chemoresistant and chemosensitive samples, which indicates
that our observations cannot reflect the comprehensive profiles of
the TME and generalize the gene expression differences in cervical
cancer and its chemoresistant features.
CONCLUSION

In conclusion, we comprehensively described the profiles of
immune and non-immune cells in cervical cancer and
cervicitis samples at single-cell resolution. Furthermore, we
compared the distinctive features of signaling pathways among
subpopulations from chemoresistant and chemosensitive
samples in this study. Our results of the analysis of extensive
bioinformatics data demonstrated the scope and potential impact
of heterogeneity and suggest that single-cell profiling could
identify and characterize clinically important subpopulations to
develop successful targeted treatments. Our findings also
indicated the need for comprehensive single-cell gene profiling
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and characterization of heterogeneous tumors such as
chemoresistant cervical cancer. Finally, by assessing the cell
subpopulations, differential gene expression between
chemoresistant and chemosensitive samples, and distinct
signaling pathways, we expect that our findings will provide
novel and deeper insights into human cervical cancer and
facilitate the advancement of its diagnosis and treatment.
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