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Abstract
Warfarin remains the most widely prescribed oral anticoagulant in sub-Saharan 
Africa. However, because of its narrow therapeutic index, dosing can be chal-
lenging. We have therefore (a) evaluated and compared the performance of 
21  machine-learning techniques in predicting stable warfarin dose in sub-
Saharan Black-African patients and (b) externally validated a previously devel-
oped Warfarin Anticoagulation in Patients in Sub-Saharan Africa (War-PATH) 
clinical dose–initiation algorithm. The development cohort included 364 patients 
recruited from eight outpatient clinics and hospital departments in Uganda and 
South Africa (June 2018–July 2019). Validation was conducted using an external 
validation cohort (270 patients recruited from August 2019 to March 2020 in 12 
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INTRODUCTION

Warfarin remains the most commonly prescribed oral an-
ticoagulant in sub-Saharan Africa.1 Dosing is, however, 
difficult because of its narrow therapeutic index and large 
intrapatient and interpatient variabilities in dose require-
ments. Suboptimal dosing can result in thrombotic events 
(too little warfarin) or hemorrhagic events (too much war-
farin). Consequently, warfarin is responsible for the high-
est number of hospitalizations attributed to preventable 
adverse drug reactions in South Africa.2

To optimize dosing, numerous algorithms have been 
developed. For example, our recently conducted system-
atic review identified 433 dosing algorithms, of which 

86% were for dose initiation.3 In the same review, most 
(65%) of the algorithms were developed using multi-
ple linear regression techniques, of which ordinary 
least squares regression was the most common. Several 
machine-learning techniques including artificial neural 
networks, support vector regression, k-nearest neigh-
bors, regression trees, model trees, least angle regres-
sion, least absolute shrinkage and selection operator, 
multivariate adaptive regression splines, boosted trees, 
and bagged trees to construct ensemble models, and 
others were also reported. It is thought that more com-
plex techniques such as artificial neural networks (used 
to develop 7% of algorithms) and support vector regres-
sion (used to develop 6% of algorithms) may outperform 
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outpatient clinics and hospital departments). Based on the mean absolute error 
(MAE; mean of absolute differences between the actual and predicted doses), 
random forest regression (12.07 mg/week; 95% confidence interval [CI], 10.39–
13.76) was the best performing machine-learning technique in the external vali-
dation cohort, whereas the worst performing technique was model trees (17.59 
mg/week; 95% CI, 15.75–19.43). By comparison, the simple, commonly used re-
gression technique (ordinary least squares) performed similarly to more complex 
supervised machine-learning techniques and achieved an MAE of 13.01 mg/week 
(95% CI, 11.45–14.58). In summary, we have demonstrated that simpler regres-
sion techniques perform similarly to more complex supervised machine-learning 
techniques. We have also externally validated our previously developed clinical 
dose–initiation algorithm, which is being prospectively tested for clinical utility.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
To improve warfarin dose prediction, numerous algorithms, including our pre-
viously reported clinical dose–initiation algorithm, have been developed using 
several techniques. 
WHAT QUESTION DID THIS STUDY ADDRESS?
Do simpler regression techniques perform similarly to more complex supervised 
machine-learning techniques, and what is the external validity of our previously 
developed clinical dose–initiation model? 
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
We have shown that simpler regression techniques perform similarly to more 
complex supervised machine-learning techniques and also externally validated 
our previously developed clinical dose–initiation algorithm. 
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
Our short-term aim is to evaluate the utility of our externally validated clinical 
dose–initiation algorithm to facilitate dose prediction in sub-Saharan African pa-
tients. In the longer term, simple regression techniques will be used to develop 
a pharmacogenetic model to further improve the quality of anticoagulation with 
warfarin.
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multiple linear regression because of the ability to cap-
ture very complex relationships.4 In our review, multi-
ple linear regression seemed to perform comparably to 
machine-learning techniques, although the evidence 
was inconclusive because of a small number of direct 
comparisons and infrequent external validations. In 
addition, none of the other techniques were applied to 
sub-Saharan African patients.

The mathematical backgrounds, strengths, and weak-
nesses of various machine-learning techniques have been 
extensively explored5–9 and are therefore not included in 
this report. Rather, the focus of this study was to evaluate 
and compare the performance (in terms of prediction ac-
curacy, bias, clinical relevance, and risk of underdosing or 
overdosing) of several machine-learning techniques with 
regard to predicting stable warfarin doses in sub-Saharan 
black-African patients. We also externally validated a pre-
viously developed Warfarin Anticoagulation in Patients in 
Sub-Saharan Africa (War-PATH) clinical dose–initiation 
algorithm.10

METHODS

This report follows the Transparent Reporting of a 
Multivariable Prediction Model for Individual Prognosis 
or Diagnosis (TRIPOD) statement11 (TRIPOD checklist in 
Table S1).

Source of data

We used the same development cohort that we previously 
used to develop the War-PATH clinical dose–initiation 
algorithm.10 Briefly, this comprised 364 warfarin-treated 
patients on stable warfarin dose who were recruited 
from eight outpatient clinics and hospital departments 
in Uganda and South Africa between June 2018 and 
July 2019. Patients (n  =  270) recruited using the same 
eligibility criteria between August 2019 and March 2020 
formed the external validation cohort (164 were a tempo-
ral validation cohort, recruited from the aforementioned 
eight outpatient clinics/hospital departments,10 and 106 
were a geographical validation cohort, recruited from 
the following four additional outpatient clinics/hospital 
departments: Charlotte Maxeke Johannesburg Academic 
Hospital, Johannesburg; Michael Mapongwana 
Community Health Centre, Cape Town; Nolungile 
Community Health Centre, Cape Town; and, Victoria 
Hospital, Cape Town). The study complied with all rel-
evant ethical requirements including obtaining insti-
tutional review board approvals and individual-patient 
informed consent.10

Participants

As previously reported,10 consenting adult patients (aged 
≥18 years) of self-reported Black-African ancestry treated 
with warfarin for venous thromboembolism, atrial fi-
brillation, or valvular heart disease were included in the 
War-PATH cohort, whereas patients who were unwilling 
to take part, not on a stable warfarin dose (defined in the 
“Outcome” sub-section), or pregnant women and patients 
with any other contraindications based on clinician judg-
ment were excluded.

Outcome

The outcome was stable warfarin dose, defined as the 
same dose prescribed at two consecutive clinic visits in 
the 12  months preceding recruitment, with the interna-
tional normalized range (INR) being in therapeutic range 
at each of those visits.10

Predictors

During the development of the War-PATH clinical dose–
initiation algorithm and based on expert guidance and lit-
erature review, we selected seven predictors (country of 
recruitment, age, sex, weight, target INR range, human 
immunodeficiency virus [HIV] status, and simvastatin/
amiodarone status) for use during the modeling process.10 
From these, four (age, weight, target INR range, and HIV 
status) were included in the final War-PATH clinical 
dose–initiation algorithm. During the evaluation of the 
machine-learning techniques, all of the aforementioned 
seven predictors were considered.

Sample size

All available data were used during algorithm development 
and external validation to maximize the power and gen-
eralizability of the results. With eight candidate predictor 
parameters (HIV status had three factor levels), the study 
participant-per-candidate predictor parameter was 46 (War-
PATH development cohort). The War-PATH external vali-
dation cohort included data from more than 100 individuals, 
the currently recommended sample size for validation.12

Missing data

We used multivariate imputation by chained equations 
in R13 to impute missing data using all included predictor 
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variables and untransformed stable wafarin dose,14 as pre-
viously described.10 Predictive mean matching was used 
for continuous variables with logistic regression being 
used for binary variables. The number of imputed data 
sets was based on the rule of thumb of having the imputed 
data sets to at least equal the percentage of incomplete 
cases.15 During model fitting, we were not interested in 
within-imputation and between-imputation variabilities, 
so we analyzed the imputed data sets as a single/stacked 
data set15 with a length of 1092 (three imputed data sets, 
only 3% cases were missing data,10 multiplied by 364, the 
number of patients per data set). Once the model was fit-
ted and to ensure the performance standard errors were 
not underestimated, performance metrics were evaluated 
in each imputed data set with estimates from the imputed 
data sets being combined using Rubin's rules.16

Statistical analysis methods

All analyses were conducted in R version 4.0.217 (R code 
used is available in Text S1, which also includes an exam-
ple data set and its results).

Outcome transformation

To model a proportional/multiplicative scale that is clinically 
relevant and easy to interpret,18,19 nonlinear least squares 
(log-log) regression used an untransformed dose, whereas 
other techniques used a logarithmic transformation.10

Predictor handling

We neither transformed nor categorized predictor vari-
ables. Nonlinearity between continuous predictors and 
stable dose was previously assessed using restricted cubic 
splines.10 Categorical variables were dummy coded in R.17

Type of model

We used 21  machine-learning techniques as detailed in 
Table  S2 (selection was guided by our previous review3 
and other literature5–9).

Predictor selection before modeling

As described previously, we used the seven predictors that 
were previously selected based on expert guidance and lit-
erature review.10

Predictor selection during modeling

Except for the techniques such as least absolute shrinkage 
and selection operator regression, elastic net, multivariate 
adaptive regression splines, and tree-based methods that 
perform automatic predictor selection during parameter 
tuning or model fitting, we did not perform predictor se-
lection during modeling.

Parameter tuning and uniform shrinkage

For some techniques and to prevent overfitting, the 
out-of-bag bootstrap approach (in which the test per-
formance was computed using the samples not in-
cluded in each bootstrap iteration)8 with 1000 repeats 
was used to tune model parameters or uniformly 
shrink model coefficients depending on the technique 
(Text S1, Table S2). Because the stacked data set that 
we used comprised three imputed data sets, each pa-
tient was represented three times, which meant that 
bootstrapping this stacked data set would likely result 
in information from the same patient appearing in 
both the bootstrap and out-of-bag samples. To attain 
independent bootstrap and out-of-bag samples, we 
therefore performed bootstrapping in each imputed 
(nonstacked) data set before stacking the resultant 
bootstrap and out-of-bag samples (illustrated under 
ridge regression in Text S1). During parameter tuning, 
the performance measure that we used was the mean 
absolute logarithm of the accuracy ratio, where accu-
racy ratio is the dose predicted by an algorithm divided 
by the patient's actual dose.10

Model validation

Algorithms produced by the 21  machine-learning 
techniques, the War-PATH clinical dose–initiation al-
gorithm10 and fixed-dose initiation (35 mg/week, com-
mon practice in sub-Saharan Africa20 in which dosing 
is started empirically at 5 mg/day) were externally vali-
dated using the War-PATH external validation cohort 
(n = 270).

Performance measures

During both model development and validation, we 
computed prediction accuracy based on the mean ab-
solute error (MAE) and the “unbiased” mean absolute 
percentage error (“unbiased” MAPE).10  These meas-
ures are highly correlated, but we present both because 
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unbiased MAPE is the least biased measure, whereas 
MAE is more widely known/understood. Bias was as-
sessed using a logarithm of the accuracy ratio-derived 
measure, whereas clinical relevance was represented 
by the percentage of patients with ideal dose (defined 
as predicted dose within 20% of actual dose). Lastly, we 
also calculated the percentage of patients at risk of un-
derdosing or overdosing (defined as having an actual 
dose at least 40% lower or higher than the predicted 
dose, respectively). Justifications for these measures 
were provided in our previous article.10 During external 
validation of the War-PATH clinical dose–initiation al-
gorithm, we compared its performance with fixed-dose 
initiation, and statistical significance was considered 
as 95% confidence intervals (CIs) that did not contain 
zero.

RESULTS

Participants

Characteristics of the War-PATH external validation 
cohort are presented in Table 1. To enable a quick com-
parison, the War-PATH development cohort, which we 
previously reported,10 is also included.

Performances of the machine-
learning techniques

The performances of the various algorithms in the War-
PATH development and external validation cohorts are 
summarized in Figure 1 and Tables S3 and S4.

Predictive accuracy and bias of predictions

In the development data set and in terms of the MAE, 
bagged trees (2.26 mg/week; 95% CI, 1.95–2.56) and Cubist 
(6.98 mg/week; 95% CI, 6.20–7.76) were the top performing 
techniques, with the other techniques having similar perfor-
mances, which ranged from 10.58 mg/week (95% CI, 9.39–
11.76) for random forest regression to 11.91 mg/week (95% 
CI, 10.55–13.27) for k-nearest neighbors. In the external 
validation data set, random forest regression had the lowest 
MAE (12.07; 95% CI, 10.39–13.76), although this was not very 
different from most of the other techniques, with the excep-
tion of model trees (17.59 mg/week; 95% CI, 15.75–19.43). 
The simple, commonly used, ordinary least squares regres-
sion (13.01 mg/week; 95% CI, 11.45–14.58) was the 15th best 
performing technique (a joint position with principal com-
ponents regression), although its performance was similar to 

that of random forest regression (Figure 1a). A similar trend 
was observed with the unbiased MAPE (Figure 1b).

Except for model trees, which systematically overpre-
dicted in the development data set (bias of 17.93% above 
the actual dose; 95% CI, 14.25%–21.73%), all other tech-
niques were unbiased in the development data set. In the 
external validation set, all techniques overpredicted doses, 
but only bagged trees, cubist, model trees, support vector 
regression, quantile regression, and robust regression sys-
tematically overpredicted (i.e., had 95% CIs that did not 
include zero; Figure 1c).

Clinical relevance and risk of under- or  
over-dosing

Similar to predictive accuracy measures, bagged trees 
(97.34% patients with ideal dose; 95% CI, 95.66%–99.03%) 

T A B L E  1   Patient characteristics

Variables
Development 
cohort, n = 364

External validation 
cohort, n = 270

Country of recruitment, n (%)

South Africa 193 (53.0) 171 (63.3)

Uganda 171 (47.0) 99 (36.7)

Age, y

Median (IQR) 46.0 (34.0–56.7) 45.0 (35.0–59.0)

Sex, n (%)

Female 266 (73.1) 195 (72.2)

Male 98 (26.9) 75 (27.8)

Weight, kg

Median (IQR) 71.0 (59.4–85.0) 73.4 (60.0–90.0)

Missing, n (%) 11 (3.0) 1 (0.4)

INR target range,a n (%)

2.0–3.0 237 (65.1) 181 (67.0)

2.5–3.5 127 (34.9) 89 (33.0)

HIV status, n (%)

Negative 282 (77.5) 207 (76.7)

Positive 59 (16.2) 58 (21.5)

Unknown 23 (6.3) 5 (1.9)

Simvastatin/amiodarone, n (%)

Yes 36 (9.9) 22 (8.1)

No 328 (90.1) 248 (91.9)

Stable warfarin dose, mg/week

Median (IQR) 35.0 (30.0–52.5) 35.0 (30.0–45.0)

Abbreviations: HIV, human immunodeficiency virus; INR, international 
normalized range; IQR, interquartile range.
aThose with heart valve disorders have a higher target range (2.5–3.5) than 
the rest (2.0–3.0) who include those with atrial fibrillation and venous 
thromboembolism.
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F I G U R E  1   Performance of the 
various algorithms in the Warfarin 
Anticoagulation in Patients in Sub-
Saharan Africa development (N = 364) 
and external validation (N = 270) cohorts. 
(a) Mean absolute error (MAE), defined 
as the mean of absolute differences 
between the actual and predicted doses. 
(b) Unbiased mean absolute percentage 
error (MAPE), where unbiased MAPE 
= (exp(mean(absolute(log(predicted 
dose/actual dose))))– 1) × 100. (c) Bias, 
computed as (exp(mean(log(predicted 
dose/actual dose))) – 1) × 100, with 
negative and positive values respectively 
implying underestimation and 
overestimation. (d) Percentage of patients 
with ideal dose, where the ideal dose was 
defined as a predicted dose within 20% of 
the actual dose. (e) Low risk of suboptimal 
anticoagulation, defined as having an 
actual dose within 40% of the predicted 
dose. Error bars represent 95% confidence 
intervals. Based on three imputed data 
sets (the imputation models incorporated 
all predictor variables and the stable 
weekly dose). LASSO, least absolute 
shrinkage and selection operator
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and Cubist (65.02% patients with ideal dose; 95% CI, 
60.14%–69.90%) were the top performing models in the 
development cohort. Other models performed similarly, 
ranging from 46.61% (95% CI, 41.56%–51.66%) patients 
with ideal dose for Bayesian additive regression trees 
to 41.12% (95% CI, 36.01%–46.22%) patients with ideal 
dose for ordinary least squares/principal components 
regression. In the external validation cohort, elastic 
net regression (50.00% patients with ideal dose; 95% CI, 
44.11%–55.89%) and k-nearest neigbors (49.63% patients 
with ideal dose; 95% CI, 44.35%–54.91%) were the top per-
formers, although this was similar to the performance of 
other models. Bagged trees and model trees, however, per-
formed poorly (Figure 1d). Regarding the risk of under-
dosing or overdosing, the best models (those that would 
put the lowest number of patients at risk of suboptimal 
anticoagulation) in the validation cohort were Bayesian 
additive regression trees, boosted trees, and quantile re-
gression, although the differences in performance with 
other models were slight (Figure 1e).

External validation of the War-PATH 
clinical dose–initiation algorithm

In the external validation cohort (Table  S4), the War-
PATH algorithm (12.57 mg/week; 95% CI, 10.99–14.15) 
had a higher MAE than fixed-dose initiation (11.91 
mg/week; 95% CI, 10.04–13.78), although the difference 
(0.66 mg/week; 95% CI, −1.79 to 3.11) was not statisti-
cally significant. Unbiased MAPE followed a similar trend, 
with the War-PATH algorithm predicting doses that were 
on average within 38.21% (95% CI, 33.80%–42.78%) of the 
actual doses, which was higher than fixed-dose initiation 
by 2.55% (95% CI, −2.30% to 7.41%), a difference that was 

again not statistically significant. In terms of the extent 
of the bias of predictions, both the War-PATH algorithm 
(bias of 3.84% above the actual dose; 95% CI, −1.40% to 
9.36%) and fixed dose (3.34% below the actual dose; 95% CI, 
−1.97% to 8.38%) were unbiased (95% CIs contained zero).

In terms of clinical relevance, the War-PATH algorithm 
(43.33% patients with ideal dose; 95% CI, 37.32%–49.35%) 
again had a lower performance than fixed-dose initia-
tion (50.37% patients with ideal dose; 95% CI, 44.52%–
56.22%), but the difference (−7.04%; 95% CI, −15.43% to 
1.35%) was not statistically significant. With a fixed dose 
of 35 mg/week, 30/270 and 54/270 patients, respectively, 
required 40% less warfarin (≤21 mg/week) and 40% more 
warfarin (≥49  mg/week), which translated into 11.11% 
and 20.00% of the patients being at high risk of overdosing 
and underdosing. This implied that 68.89% of the patients 
were at low risk of suboptimal dosing as shown in Figure 2. 
Using the same 40% threshold, 14.44% and 16.30% patients 
would, respectively, be at high risk of overdosing and un-
derdosing with the War-PATH algorithm, whereas 69.26% 
would be at low risk of suboptimal dosing. Using the War-
PATH algorithm would therefore increase the percentage 
of patients at low risk of suboptimal dosing from 68.89% 
to 69.26% by only 0.37% (95% CI, −7.24% to 7.98%), which 
is also not statistically significant.

DISCUSSION

In this study, we compared the performances of 
21  machine-learning techniques with regard to predict-
ing stable warfarin dose in sub-Saharan Black-African 
patients. As previously observed, simple multiple regres-
sion techniques such as ordinary least squares regression 
performed similarly or even better than more complex 

F I G U R E  2   Percentage of patients at 
risk of suboptimal dosing in the external 
validation cohort (N = 270). Error bars 
represent 95% confidence intervals. Being 
at risk of underdosing or overdosing was 
defined as, respectively, having an actual 
dose at least 40% lower or higher than 
the predicted dose. War-PATH, Warfarin 
Anticoagulation in Patients in Sub-
Saharan Africa
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machine-learning techniques.3 Indeed, the model that 
consistently performed poorest in the validation cohort 
was model trees. Importantly, no parameter was tuned for 
model trees because the M5P function in the Rweka pack-
age21,22 automatically performs tree pruning during the 
model-fitting process. This approach might be suboptimal 
because, rather than test performance in new individu-
als (as is done with the out-of-bag bootstrap approach), 
the test performance (MAE in this case) is multiplied by 
an adjustment factor to cater for optimism.23 Mention is 
made of bagged trees that performed exceedingly well in 
the development cohort (an MAE of 2.3 mg/week, unbi-
ased MAPE of 5.6%, 97.3% patients with ideal dose, and 
99.9% patients at low risk of suboptimal anticoagulation). 
Although not the best in the validation cohort, the bagged 
trees’ performance was not far off (e.g., this technique had 
an MAE of 14.7 mg/week, whereas the best model had an 
MAE of 12.1 mg/week, and although it would put 33% of 
patients at risk of suboptimal dosing, the best technique for 
this metric would still put 29% patients at risk of subopti-
mal anticoagulation). Bagged trees are a subset of random 
forest regression (which performed well in both devel-
opment and validation cohorts)—for bagged trees, the 
choice of predictor subset is set to the maximum number 
of predictors, whereas random forest regression can take 
up any number of predictors, including the maximum.5

Our second objective involved externally validating 
our previous clinical dose–initiation algorithm.10 Except 
for patients at high risk of suboptimal dosing, fixed-dose 
initiation performed slightly better than the clinical algo-
rithm, although these differences were not statistically 
significant. The similar performance between the clinical 
algorithm and current practice (fixed-dose initiation) may 
question the importance of implementing a clinical algo-
rithm. However, algorithm-based dosing is meant to ben-
efit the minority populations at risk of suboptimal dosing 
(and who are more likely to suffer from thrombotic/hem-
orrhagic events) with fixed-dose initiation, without com-
promising those not at risk. This implies that the benefits 
of algorithm-based dosing can best be realized in popula-
tions with a high proportion of at-risk individuals. Indeed, 
as we previously reported,10 the clinical dose–initiation al-
gorithm significantly decreased the percentage of patients 
at risk of suboptimal dosing by 8% (95% CI, 2%–14%) and 
12% (95% CI, 7%–17%) in the War-PATH development and 
the International Warfarin Pharmacogenetics Consortium 
(IWPC) validation cohorts because the baseline propor-
tions of patients at risk were high (35% and 38%, respec-
tively), with the benefits being more pronounced in the 
IWPC cohort with more at-risk individuals. In the exter-
nal validation cohort, only 31% of patients were at risk 
of suboptimal anticoagulation with fixed-dose initiation, 
which made it harder to detect any benefits associated 

with clinical dosing. In addition, because unstable pa-
tients do not have an outcome variable and are therefore 
not included during the model development/retrospective 
validation, the number of at-risk patients is likely to be 
underestimated in these studies. With this in mind, the 
War-PATH clinical dose–initiation algorithm remains 
justified for it performs similarly to fixed-dose initiation 
even in populations in which fewer patients are in need 
of algorithm-based dosing; that is, it does not negatively 
impact the majority of the population not at risk while it 
can still benefit those few patients who need it.

In Tables  S3  and  S4, our previous War-PATH clinical 
dose–initiation algorithm and fixed-dose initiation are 
presented together with other machine-learning tech-
niques. Although it was not our aim to compare these two 
approaches with the machine-learning techniques, the key 
differences (specifically between the War-PATH algorithm 
and the nonlinear least squares regression technique, 
which was also used to build the War-PATH algorithm) 
are worth mentioning. The differences in performance can 
be attributed to the aim of the modeling process. Whereas 
we previously considered model simplicity (fewer predic-
tors) for easier implementation and therefore intention-
ally performed predictor-selection during modeling, the 
current study was not primarily targeted toward imple-
mentation, so all candidate predictors (based on clinical 
expertise and literature review) were considered. This is 
not to say that the techniques presented here are not im-
plementable. Rather, the majority of the machine-learning 
techniques require high computing power and/or online-
based systems, which are not available in many parts of 
sub-Saharan Africa. Fortunately, simpler techniques, 
which can even be translated to paper-based charts, per-
formed similarly to the more complex techniques. In ad-
dition, doses for the War-PATH algorithm were rounded 
off to the nearest 2.5 mg tablet to reflect practical use in 
the respective populations,10 which was not done during 
this machine-learning exercise. As Tables S3 and S4 show, 
these differences in approaches nevertheless had minimal 
impacts on performance.

Our study had several limitations. For example, despite 
basing on our recent systematic review,3 we may have 
missed some machine-learning techniques that may be 
important in the field of warfarin dosing. We also did not 
consider combined models (ensembles) that include a di-
verse set of algorithms (e.g., an artificial neural network 
combined with a decision tree and/or k-nearest neigbors). 
Other limitations relate to our eligibility criteria that we 
previously described10 and that include exclusion of unsta-
ble patients, nonconsideration of the dose-revision phase 
(which made pharmacokinetic-pharmacodynamic model-
ing unfeasible in this study), and the exclusion of children. 
This study also relied on the seven predictor variables that 
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were previously identified, which missed key predictors 
such as body mass index, adherence, and vitamin K sta-
tus. In addition, we have not considered genetic predictors 
in this study, which we will, however, include in future 
work. The strength of some techniques such as artificial 
neural networks lie in unmasking complex/unknown re-
lationships between predictor variables and the outcome, 
so limiting the study variables to those that are established 
could have limited their advantages. Lastly, our sample 
size calculations were based on multiple linear regression 
techniques. Whereas the sample size requirements may be 
less for some techniques such as least absolute shrinkage 
and selection operator,24 some techniques such as artificial 
neural networks, support vector regression, and random 
forest regression may require a participant-per-candidate 
predictor parameter in excess of 200,25 which means that 
for eight candidate predictor parameters, the minimum 
sample size should have been more than 1600.

In conclusion, the simpler and more widely known 
multiple linear regression techniques such as ordinary 
least squares performed similarly to more complex su-
pervised machine-learning techniques in the War-PATH 
cohorts. These simpler techniques were previously used 
to develop a War-PATH clinical dose–initiation algorithm, 
which we have externally validated in this study (and is 
being prospectively tested for clinical utility). Given that 
simple techniques can get the job done, we will be using 
them in achieving our long-term aim of evaluating the im-
portance of clinical and genetic predictors in improving 
warfarin dosing in Ugandan and South African patients.
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