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A B S T R A C T

Objective: Temporomandibular joint (TMJ) osteoarthritis (OA) is a type of TMJ disorders with clinical symptoms
of pain, movement limitation, cartilage degeneration and joint dysfunction. This review article is aiming to
summarize recent findings on signaling pathways involved in TMJ OA development and progression.
Methods: Most recent findings in TMJ OA studies have been reviewed and cited.
Results: TMJ OA is caused by inflammation, abnormal mechanical loading and genetic abnormalities. The mo-
lecular mechanisms related to TMJ OA have been determined using different genetic mouse models. Recent
studies demonstrated that several signaling pathways are involved in TMJ OA pathology, including Wnt/β-cat-
enin, TGF-β and BMP, Indian Hedgehog, FGF, NF-κB, and Notch pathways, which are summarized in this review
article. Alterations of these signaling pathways lead to the pathological changes in TMJ tissues, affecting cartilage
matrix degradation, catabolic metabolism and chondrocyte apoptosis.
Conclusion: Multiple signaling pathways were involved in the pathological process of TMJ OA. New therapeutic
strategies, such as stem cell application, gene editing and other techniques may be utilized for TMJ OA treatment.
The translational potential of this article: TMJ OA is a most important subtype of TMJ disorders and may lead to
substantial joint pain, dysfunction, dental malocclusion, and reduced health-related quality of life. This review
article summarized current findings of signaling pathways involved in TMJ OA, including Wnt/β-catenin, TGF-β
and BMP, Indian Hedgehog, FGF, NF-κB, and Notch pathways, to better understand the pathological mechanisms
of TMJ OA and define the molecular targets for TMJ OA treatment.
1. Temporomandibular joint osteoarthritis: definition and
prevalence

Osteoarthritis (OA) is the most common degenerative disease in the
temporomandibular joint (TMJ) causing severe pain and dysfunction [1].
TMJ is composed of the mandibular condyle, articular disc, and the
glenoid fossa of the temporal bone, which is responsible for the most
complicatedmovement in the body. As a synovial joint, TMJ is developed
from three separate mesenchymal condensations representing the gle-
noid fossa of the temporal bone, the condylar process of the mandibular
ramus, and the articular disc [2]. Compared with other synovial joints,
TMJ showed better healing potential and interstitial growth of cartilage,
because the articular surface of the TMJ mandibular condyle is fibro-
cartilage, which contains both type I and type II collagen, compared to
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articular hyaline cartilage, which only contains type II collagen [3].
Another unique feature of TMJ is that the cartilage of the mandible
condyle is a secondary cartilage compared to the articular cartilage in
other joints, which is a primary cartilage [4]. More specifically, cartilage
of TMJ is developed in association with specific bones formed by
intra-membranous ossification beginning with undifferentiated cells
comprising mesenchymal tissue covering the prenatal or postnatal
condyle. While the primary cartilage is associated with endochondral
ossification, where the cartilage precedes the bone formation beginning
in the cartilage cells within the central layer of an epiphyseal plate [5].
TMJ has rotational and translational movement. Mandibular motions
lead to the static and dynamic loading to the TMJ [6]. Pain and
dysfunction are the main symptoms of TMJ OA. Radiographic changes of
the condyle and articular eminence, such as erosive resorption, sclerosis,
021
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attrition, osteophyte formation, and cyst-like changes, are the key clinical
feature for the diagnosis of TMJ OA [1,7,8]. At least one sign of TMJ
disorders, including pain, limited mandibular motion, or TMJ sounds,
has been reported in 40–75% adults in US [9]. It was reported 67% of
patients with hand OA had cone-beam computed tomography (CBCT)
-defined TMJ OA [10]. A population-based study from a German cohort,
in which patients were analyzed by the magnetic resonance imaging
(MRI) technique, showed TMJ OA is common in older people (about
70%) [11]. The frequency of TMJ disorders also increased with age. The
occurrence of TMJ OA below 30 years of age was 14.56%. In contrast,
patients from 30 to 80 years of age the TMJ OA occurrence was 28–32%
[7,8]. Additionally, TMJ OA has marked sexual dimorphism. Several
retrospective studies showed that the frequency of TMJ OA was almost
twofold higher in women than in men [8].

2. TMJ OA: pathogenesis

The pathogenesis of TMJ OA is different from OA in the knee or hip
and is highly complicated, including inflammation, mechanical overload,
and cartilage degradation and etc.

2.1. Inflammation

Although TMJ OA has been described as non-inflammatory arthritic
condition resulting from degenerative changes of the joint, multiple in-
flammatory cytokines could play an important role in TMJ OA patho-
genesis. It has been well established that inflammation dysregulates the
catabolism of the cartilage matrix leading to the deterioration of chon-
drocyte function [12]. CBCT images clearly showed osseous changes
which often occur in response to TMJ inflammation [13]. It has been
reported that mRNA levels of IL-1β, IL-2, IL-12, IL-17, IL-18, TNF-α,
TNF-β, and IFN-γ were significantly higher in the TMJ synovial fluid from
patients with TMJ OA than that of normal subjects [14]. Among them,
IL-12 was the predominant cytokine expressed in TMJ tissues in patients
with TMJ OA [14]. Expression of IL-1β and TNF-α has been reported to be
associated with cartilage degradation and suppression of the synthesis of
cartilage matrix in TMJ OA [15]. IL-17, IL-1β and TNF-α expressed by
synovial cells induce the RANKL expression in synovial fibroblasts and
osteoblasts, promoting osteoclast formation and bone resorption [16].
Toll-like receptor 4 (TLR4), which mediates the innate immune reaction,
aggravates the damage of cartilage and subchondral bone in
discectomy-induced TMJ OA through activation of MyD88/NF-κB
pathway in mice [17]. In addition, inflammatory cytokines are also in
close correlation with pain in TMJ OA. It was reported that TNF-α is
related to sensory neuron hyperexcitability and can directly stimulate
nociceptors [18].

2.2. Mechanical loading

Single most important etiological factor for degenerative TMJ disease
is the alteration of mechanical loading that surpasses the adaptive ca-
pacity of the joint. Multiple animal models suggest adverse joint loading
without any surgical manipulation of the joint tissues can induce joint
inflammation in vivo [19]. The TMJ, which is a bi-condylar joint, is
formed by the articulation of the mandible and the temporal bone of the
cranium. Between the condyle and the articular fossa there is a disc
which is made of fibrocartilage that acts as a cushion to absorb stress and
allows the condyle to move easily when the mouth opens and closes [20].
Although the relationship between disc displacement and TMJ OA re-
mains to be further elucidated, it has been reported that disc displace-
ment causes OA [21]. In contrast, a recent study also suggested that there
is no significant relationship with osseous changes between disc
displacement and TMJ OA [22].

Many studies focus on mechanical sensing during pathological pro-
cesses of TMJ OA and knockdown of high mobility group protein B2
(HMGB2) attenuated the sensitivity of chondrocytes in response to
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pressure loading, suggesting an important role of HMGB2 in the TMJ
pathogenesis [23]. The connexin (Cx) 43 hemichannel located in the
primary cilium is responsible for mediating exchanges of small mole-
cules, such as ATP, Ca2þ, and prostaglandin E2 (PGE2) between TMJ
chondrocytes and matrix under mechanical stimulation [24]. PGE2 acts
as a hormone in mediating cartilage metabolism and OA associated pain.

Abnormal subchondral bone remodeling also affects mechanical
balance of TMJ. It has been reported during the early stages of TMJ OA,
biglycan and fibromodulin double KO (bgn�/�; fmod�/�) mice showed
increased bone resorption and decrease type I collagen expression in
subchondral bone of TMJ [25]. An in vivo longitudinal studies demon-
strated that new bone, measured by micro-CT, was formed after pre-
dominantly resorptive activity in the subchondral bone of TMJ condyles
in the initial phases of experimental disordered occlusion [26].

2.3. Cartilage degradation

As resident cell of cartilage, chondrocytes are the key mediators for
maintaining the cartilage matrix homeostasis. Compromising of chon-
drocyte function and survival would disturb the cartilage homeostasis
and accelerate OA proceeding. Recent study showed that a novel
circRNA, namely circGCN1L1, increases chondrocyte apoptosis by tar-
geting miR-330–3p and TNF-α in TMJ OA [27]. Inhibition of the
expression of circGCN1L1 in a rat TMJ OA model could ameliorate TMJ
OA [27]. Programmed cell death protein 4 (PDCD4) was initially iden-
tified in apoptosis-inducing mice and regarded as a tumor suppressor and
was reported to suppress autophagy and enhance apoptosis in the carti-
lage of sodium mono iodoacetate (MIA)-induced TMJ OA and in IL-1β--
treated chondrocytes in rats [28]. The interaction between subchondral
bone and cartilage is like shoe and feet, which is important for the
maintenance of articular integrity and physiology. It was reported that
endoplasmic reticulum stress is significantly activated by mechanical
stress-induced mandibular cartilage thinning induced by mechanical
stress and may be a novel mechanism of chondrocyte apoptosis induced
by mechanical stimulation [29]. Extracorporeal shockwave therapy
improved structure and bone quality of subchondral bone and alleviation
of inflammation and chondrocyte apoptosis in the MIA-induced TMJ OA
[30].

About two-thirds of the dry weight of adult articular cartilage is
collagen. It was well established that fibrochondrocytes participate in the
inflammation induced matrix degradation by production and activation
of matrix metalloproteinases (MMPs) [31,32]. Fibrochondrocytes
expressed mRNAs for MMP2, 3, 7, 8, 9, 11, 13, 14, 16, 17, and 19 as well
as TIMP1, 2, and 3. Among them, MMP3, 7, 8, 9, 13, 16, 17, and 19 were
significantly upregulated after IL-β stimulation in rat primary fibro-
cartilage which was harvested from TMJ discs [32]. The catabolic genes
MMP3, MMP13, and a disintegrin and metalloproteinase with throm-
bospondin motifs 5 (ADAMTS5) were elevated in the condylar head of
MIA-induced TMJ OA in rats [31]. Inhibition of SDF-1-CXCR4 signaling
alleviates the severity of TMJ OA by decreasing MMP3, MMP9, and
p-ERK expression [33]. Treatment with simvastatin could decrease
MMP3 and MMP13 expression in TMJ OA mice induced by high fat diet
and excessive compressive mechanical loading [34]. The suppression of
expression of estrogen-related receptor γ (ERR-γ) by ERR-γ siRNAs de-
creases the levels of the MMP-3/9/13 expression and reduces the extent
of cartilage destruction [35].

3. Molecular signaling during TMJ OA development

3.1. Wnt/β-catenin signaling

Wnt/β-catenin signaling pathway is a conserved cellular communi-
cation system that has been studied for decades in stem cell self-renewal
and cell proliferation and differentiation during embryonic development
and adult tissue homeostasis. It regulates the pathogenesis of OA and
other types of arthritis [36,37]. Wnt/β-catenin pathway triggers the
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signaling at the cell surface where Wnt glycoprotein interacting with
receptors Frizzled and low-density lipoprotein receptor-related proteins
5 or 6 (LRP5/6) to form a complex which stabilizes intracellular β-catenin
and makes it translocate to the nucleus. Wnt targeted proteins can then
be expressed when β-catenin protein binds to transcription factors in the
nucleus [38].

It has been reported that progressive TMJ defects, joint space nar-
rowing and OA-like defects in TMJ can be found in β-catenin conditional
activation mice, β-catenin(ex3)Agc1ER [39]. Specifically, expression of
enzymes such as MMP13, Adamts4, and Adamts5, which caused cartilage
degradation, was significantly increased; while the expression of chon-
drocyte hypertrophy-related protein, Col-X, was also upregulated in
β-catenin(ex3)Agc1ER mice [39]. Moreover, decreased cell proliferation
and increased cell apoptosis were observed in the condylar cartilage of
these mice [40]. All this information implicates that β-catenin plays a
critical role in TMJ pathogenesis and Wnt/β-catenin signaling can be a
potential therapeutic target for the treatment of TMJ OA [41]. Another
study showed that Wnt5a/Ror2 signaling in bone marrow stromal cells
(BMSCs) of TMJ subchondral bone was enhanced in unilateral anterior
crossbites (UAC)-treated rats, which promoted the osteoclast formation
and the TMJ subchondral bone loss [42]. Inhibitors of Wnt signaling
pathway, such as StAx-35 R and SAH-Bcl9, were used in the treatment of
OA by inhibition of β-catenin transcriptional activity [43,44].

3.2. TGF-β and BMP signaling

Transforming growth factor β (TGF-β)/bone morphogenic protein
(BMP) signaling has been extensively studied in the bone formation and
plays versatile roles throughout life [45]. TGF-β superfamily includes
over forty members, such as TGF-βs, bone morphogenetic proteins
(BMPs), and activin. They are embedded in the bone matrix and regulate
bone remodeling, or modulate bone or cartilage formation [46]. TGF-β
signal pathway first transmits signals through the formation and suc-
cessive activation of a heteromeric complex of type II and type I ser-
ine/threonine kinase receptors followed by the phosphorylation of
specific Smad proteins, R-Smads, and then intracellular signaling is
initiated [47]. The phosphorylated R-Smads could heterodimerize with
co-Smad, Smad4, thereby translocate to nucleus and activate the tran-
scription of target genes [48].

One ex vivo study showed the decreased TGF-β3 and Smad3 when
transfected with miR-140–5p mimics in the primary mandibular
condylar chondrocytes (MCCs) treated with IL-1β, which induced OA-
like changes in TMJ tissues [49]. Indeed, Smad3 plays an important
role in the transmission of signals from TGF-β receptor. For instance, OA
was induced when Smad3 was specifically deleted in chondrocytes and
progressive cartilage degradation of subchondral bone of mandibular
condylar was observed in Smad3�/� mice [50]. It has been shown that in
the TGF-β/Smad3 signaling pathway, a bioactive lipid, sphingosine
1-phosphate (S1P) is generated to serve as an intracellular mediator or an
extracellular ligand for distinct receptors, resulting in inflammation, cell
migration, and angiogenesis. The crosstalk between TGF-β/Smad3 and
S1P/S1P3 and Smad3/S1P3 signaling in chondrocytes may be respon-
sible for the development of TMJ OA [50,51]. Furthermore, it has also
been reported that overexpression of TGF-β1 induced abnormal sub-
chondral bone remodeling leading to degradation of mandibular
condylar cartilage and TMJ OA progression in mice [52]. Meanwhile,
TGF-β2 deletionmay also alleviate trend of TMJ OA.When tissue-specific
TGFβR2 deletion in mature chondrocytes was achieved by generating
Agc1-CreER;Tgfbr2fl/fl mice, cartilage degradation observed in mechani-
cal stress-induced TMJ OA (caused by partial discectomy) was delayed
[53]. The conflict findings observed in Smad3 and Tgfbr2 KO mice may
reflect the stage-specific or cell type-specific effects of these molecules.
Other studies showed that BMP-2 aggrevated the TMJ OA in Bgn�/�;
Fmod�/� double KO mice compared with the WT mice [54]. Moreover,
BMP-2 was demonstrated to be involved in the pathogenesis or the repair
process in the patients with TMJ internal derangement [55].
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3.3. Indian Hedgehog signaling

Indian hedgehog (Ihh) is a signaling molecule in Hh family and plays
a critical role in regulation of skeletal development [56]. It is mainly
expressed in pre-hypertrophic and hypertrophic chondrocytes during
endochondral ossification. It regulates many processes during cartilage
development, including expression of parathyroid hormone-related
protein (PTHrP) in periarticular tissue [57]. Ihh signaling starts from
the binding of Ihh to Patched 1 (Ptch1) which causes the displacement of
Ptch1 from primary cilium. Then Smoothened (Smo) is phosphorylated
and the glioma-associated oncogene (Gli) proteins, including Gli1, Gli2,
and Gli3, are activated. Without Hh ligands binding to Ptch1, Ptch1
localized at the base of the primary cilia and the activation of Smo is
prevented [58]. Under this condition, Hh target genes can be repressed
by C-terminal truncated Gli2 and Gli3 formed through proteolytic
cleavage, while Gli1 is not phosphorylated and cleaved and functions as
an activator in the Hh signaling [59].

Ihh may promote TMJ OA development which was implicated in the
study that enhanced Ihh signaling promotes the terminal differentiation
of deep zone chondrocytes in TMJ osteoarthritic cartilage stimulated by
unilateral anterior cross-bite (UAC); while the OA-like lesions and UAC-
promoted chondrocytes terminal differentiation were rescued by the
deletion of Smo in mice [60]. Another study showed that Ihh promoted
OA development by regulating the genes related to cartilage degenera-
tion, while OA can be attenuated via the inhibition of Ihh [61]. Ihh, Smo,
and Gli1 were activated in the TMJ OA induced by bite-raising, indi-
cating that Ihh signaling may promote TMJ OA by stimulating the
chondrocyte hypertrophy, and activation of Ihh signaling was observed
in adjuvant-induced TMJ OA in rats [62]. In the cultured glenoid fossa
cells, chondrocyte differentiation and maturation can be prevented by
the hedgehog inhibitor [63]. The chondrocyte terminal differentiation in
TMJ OA can be prevented by the inhibition of Ihh signaling in Col2-C-
reER; Pth1rfl/fl; Smofl/fl mice [60].

3.4. FGF signaling

Fibroblast growth factor (FGF) signaling pathway is essential in the
regulation of skeletal development, especially in the maintenance of
articular cartilage. There are 22 ligands of FGF family members which
exert various functions mainly through binding to 4 distinct FGF re-
ceptors (FGFRs) [64]. The typical FGF/FGFRs signaling initiated from the
binding of FGFs to the extracellular domain of FGFRs, the target proteins
are then recruited and phosphorylated at the cytoplasmic tail of FGFRs
followed by the activation of various downstream signaling events. Many
signaling pathways, such as phosphoinositide 3-kinase/Akt, phospholi-
pase C, mitogen-activated protein kinase (MAPK), and signal transducers
and activators of transcription (STAT) 1/p21 pathway, are involved in
the FGF downstream signaling activities [65]. In addition, MEK/ERK, as
an important downstream signaling molecule of FGFR1, connects FGF
signaling pathway with the progression of OA [66].

Studies showed that FGF signaling may be enhanced in TMJ OA and
this was revealed by the report that deletion of Fgfr1 in TMJ chondrocytes
delayed TMJ OA progression in specific OA models [67]. Indeed, results
of immunohistochemical staining showed that the expression of several
protein markers, such as MMP13, ADAMTS5, and Col-X, decreased while
the aggrecan expression level increased in the Fgfr1 deficiency mice.
Furthermore, deletion of Fgfr1 in TMJ chondrocytes ameliorated the TMJ
OA progression partially by promoting autophagic activity [67]. FGFR3
is also critical in skeletal development, especially in the cartilage tissues
[68]. When Fgfr3 was conditionally deleted in chondrocytes at the adult
stage, the TMJ OA-like changes were observed in these KO mice. More-
over, the expression of Ihh and Runx2 was increased in TMJ tissues of
Fgfr3 cKO mice and the inhibition of Ihh significantly decreased the
expression of Runx2, Col10, Mmp13 and Adamts5, alleviating OA-like
defects in the TMJ of Fgfr3 cKO mice, indicating that FGFR3/Ihh
signaling is essential in maintenance of the TMJ articular cartilage intact



Figure 1. Schematic diagram of multiple signaling pathways in TMJ OA chondrocytes. Alterations of Wnt/β-catenin, TGF-β, Ihh, FGF, NF-κB, and Notch
signaling pathways lead to increased expression of matrix degrading proteases, including MMPs and Adamts4/5, promoting cartilage degradation. The activation of
Wnt/β-catenin signaling also affect subchondral bone of TMJ. The activation of Ihh pathway affects chondrocyte differentiation and maturation through PTHrP. The
activation of NF-κB, and Notch pathways induces inflammation and accelerates TMJ OA development.
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at the adult stage [69]. When a FGFR1 inhibitor, G141, was used to treat
primary chondrocytes derived from the condylar cartilage and stimulated
by IL-1β, expression of TMJ OA markers, such as Runx2, Mmp13, and
Adamts5, was decreased [67].
3.5. NF-κB signaling

NF-κB is considered as an important mediator in immunity, inflam-
matory process, stress responses, cell proliferation and cell death. NF-κB
family comprises five proteins, RelA, RelB, c-Rel, NF-κB1, and NF-κB2,
24
which are responsible for the formation of active complexes, interaction
with NF-κB inhibitors, nuclear translocation and DNA binding to regulate
the expression of NF-κB-target genes [70]. Classical NF-κB signaling
pathway is mediated by tumor necrosis factor receptor (TNF-R), Toll-like
receptor (TL-R) or T-cell receptor (TC-R) with activation of
IKK-α/IKK-β/IKK-γ-NEMO complex. NF-κB dimers bound to inhibitory
NF-κB (I-κB) proteins in the cytoplasm as an inactive form.When cells are
stimulated by mechanical and chemical signals, I-κBs are phosphorylated
by I-κB kinases and degradated by ubiquitin-proteasome system, NF-κB
heterodimers are then free to translocate into the nucleus to activate
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expression of target genes [71].
It has been reported that NF-κB signaling pathway is essential in the

pathogenesis of TMJ OA. NF-κB signaling can be induced by periostin, a
matricellular protein, then the MMPs and inflammatory cytokines can be
upregulated NF-κB signaling activation to accelerate the OA pathogenesis
[72]. Genistein played a protective role in condylar cartilage of OA by
downregulating expression of NF-κB in rats [73]; while inflammation of
TMJ chondrocytes can be ameliorated by Yohimbine through suppres-
sion of NF-κB signaling pathway [74]. Celecoxib may protect excessive
mechanical stress-induced TMJ OA partially through inhibition of NF-κB
signaling and suppression of MMP production [75]. NF-κB can also be
suppressed in experimental TMJ OA model when the mice were treated
with rebamipide [75]. The ADAMTS5 expression is induced by activation
of the NF-κB pathway by periostin, leading to proteoglycan and collagen
degradation and aggravation of TMJ OA [76]. It has been shown that
expression of TLR4 and NF-κB was elevated in the synovium in TMJ OA
patients and in discectomy-induced TMJ OA in mice. TLR4 was also
elevated in the damaged cartilage and subchondral bone through acti-
vation of MyD88/NF-κB [17]. It has been shown that the cartilage
degeneration of TMJ OA can be inhibited by blocking the peri-
ostin–NF–κB-ADAMTS5 pathway [76].

3.6. Notch signaling

The Notch receptor is a single-pass transmembrane receptor located
at the cell surface and is critical in cell differentiation and apoptosis. The
Notch signaling pathway is highly conserved and is composed of several
molecules such as Notch ligands, Notch receptors, transcriptional effector
and target genes [77]. It is initiated by Notch ligands binding to the
Notch receptors, and then Notch receptors are cleaved, the intracellular
domain of Notch receptors then translocate to the nucleus and down-
stream target genes are activated [78]. Notch signaling pathway plays a
dual role in the cartilage maintenance, which regulates the molecules
involved in the cartilage formation and degradation [79]. Recent studies
showed that altering Notch signaling may lead to TMJ OA and it is known
that Notch signaling is important in angiogenesis of condylar cartilage
and disc which is essential in the development of TMJ OA [80].

Several studies implicated that Notch signaling may be activated in
TMJ OA. For instance, high Notch1 activity was found in osteoarthritis
cartilage, especially in the most damaged areas of the OA, compared with
healthy cartilage [81]. Degradative proteinases and inflammatory cyto-
kines, such as MMP13, IL-1β, and IL-6, are induced by Notch activation in
OA which contribute to the cartilage loss [82]. Notch ligands and re-
ceptors are also upregulated in the mouse model of TMJ OA. Notch was
highly expressed in the TMJ OA with OA-like lesions in mandibular
condyles in rats [83]. When Notch signaling was blocked by DAPT, an
inhibitor of Notch, the progression of cartilage damage was delayed,
implicating that the inhibition of Notch signaling pathway can partially
delay the progression of TMJ OA [84] (see Fig. 1).

4. Perspective

Because it was difficult to acquire TMJ tissue samples from patients,
many animal models were developed for TMJ OA studies. Partial per-
forations of the discs, in which one-third of the disc in the anterior and
lateral regions of the joint was resected, were performed on rabbits for
inducing TMJ OA [85]. It has been reported that TMJ OA model can be
successfully generated in mice and rats using an elastic rubber band to
create disordered occlusion, which causes OA-like lesions in the
mandibular condyle [29]. Compressive loading of mechanical stress onto
the TMJ can be applied to mice and rats to induce TMJ OA [26,52].
Additionally, injection of MIA, a chondrocyte metabolism inhibitor, into
TMJ can also induce TMJ OA phenotype in rats and rabbits [28,29].
Despite these success, the current animal models of TMJ OA are still
insufficient in mimicking complex clinical conditions. Novel or improved
animal models of TMJ OA may be developed in future studies. Primary
25
TMJ cells have been used for in vitro studies [86], but it is difficult to
obtain fibrocatilage samples from patients’ TMJ tissues. Generation of a
human immortalized cell line of fibrocatilage chondrocyte may benefit
future TMJ OA studies. Besides, application of new techniques, such as
organoid, single cell sequencing, 3D printing, could accelerate TMJ OA
research.

5. Conclusion

Multiple signaling pathways were involved in the pathological pro-
cess of TMJ OA mainly by directly or indirectly affecting cartilage matrix
degradation, chondrocyte metabolism and chondrocyte apoptosis.New
therapeutic strategies of TMJ OA such as engineered cartilage, stem cell
applicaton, gene editing and regenerative techniques may be applied in
TMJ OA studies.
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