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GABAergic inhibition is an important regulator of excitability in neuronal networks. In addition, inhibitory synaptic signals
contribute crucially to the organization of spatiotemporal patterns of network activity, especially during coherent oscillations.
In order to maintain stable network states, the release of GABA by interneurons must be plastic in timing and amount. This
homeostatic regulation is achieved by several pre- and postsynaptic mechanisms and is triggered by various activity-dependent
local signals such as excitatory input or ambient levels of neurotransmitters. Here, we review findings on the availability of GABA
for release at presynaptic terminals of interneurons. Presynaptic GABA content seems to be an important determinant of inhibitory
efficacy and can be differentially regulated by changing synthesis, transport, and degradation of GABA or related molecules. We
will discuss the functional impact of such regulations on neuronal network patterns and, finally, point towards pharmacological
approaches targeting these processes.

1. Introduction

Activity within neuronal networks is contained between the
extremes of complete silence and exceeding neuronal dis-
charges. This general statement may seem intuitively right
but has severe and nontrivial consequences for the function
of neuronal networks. Several theoretical arguments and
experimental findings support the notion that specific
mechanisms secure a limited mean level of activity. In-
formation content within neuronal networks is maximal
under conditions of sparse coding, which means that only
a minority of all local neurons is activated above threshold
[1]. Furthermore, neurons are severely damaged by both
extremes, that is, prolonged inactivity [2–5] or severe
hyperactivity during epileptic seizures [6].

Many different mechanisms contribute to regulation of
overall neuronal activity, including intrinsic neuronal prop-
erties [7, 8] and energy metabolism [9, 10]. At the core
of homeostasis, however, is the interplay between synaptic
excitation and inhibition (Figure 1). All neuronal circuits of
higher animals contain excitatory and inhibitory transmitter
systems forming intense feed-forward and feedback connec-
tions [11, 12]. The functional architecture of such networks

can already explain homeostatic regulation of activity to
a certain degree, and excitatory feedback loops tend to
build up activity, which is counterbalanced by damp-
ening actions of inhibitory feedback connections. A further
element of cortical and subcortical microcircuits is inhibition
of inhibitory neurons, resulting in a net excitation of
downstream target cells. This mechanism may serve further
functions in synchronizing neuronal activity and can be
mediated by specialized interneurons [13]. In contrast, inter-
actions between inhibitory neurons may also desynchronize
neurons as, for example, Renshaw cells in the spinal cord
[14, 15]. This mechanism may serve to reduce fatigue of
muscle fibers.

It should be noted that inhibitory neurons are not only
important for balancing excitation. In several circuits, in-
hibitory neurons function as projection cells, rather than
interneurons. For example, major projections within the
basal ganglia and reticular nucleus of the thalamus and of the
cerebellum are formed by GABAergic neurons [16–18]. In
such networks, activity-dependent modulation of inhibition
may have specific effects beyond balancing excitation, for
example, the generation of specific physiological or patho-
logical oscillation pattern [19].
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Figure 1: Local inhibitory connections of cortical networks. Note
the efferent and afferent connections indicated by arrows. In red,
connections indicate glutamatergic excitation and blue connections
GABAergic inhibition. Brown soma indicates an excitatory pyra-
midal cell (P), and blue-grey somata show inhibitory interneurons
(INs). The left interneuron is integrated into a feedback inhibition
loop, (FB) while the right interneuron shows feed-forward inhibi-
tion (FF). Differential targeting by the interneurons to the soma or
dendrite points towards possible layer-specific actions of inhibition.
Note that GABA released at the right synapse may, eventually,
spill over to the neighbouring glutamatergic synapse. The global
light blue staining indicates background GABA concentration that
mediates tonic inhibition depending on local synaptic activity.

Homeostasis between excitation and inhibition cannot
be reduced to a simple rule of network wiring. Recent
evidence shows that inhibition has multiple specific func-
tions within neuronal networks, far beyond a simple “break”
[20, 21]. Moreover, inhibitory strength is not constant but
must adapt to dynamically changing patterns and degrees of
network activity. It does therefore not come as a surprise that
recent work has elucidated multiple mechanisms of plasticity
at inhibitory synapses [4, 22–24]. An important subset of
these mechanisms mediates homeostatic plasticity, that is,
adaptation of inhibitory efficacy to the overall activity within
a local network. Indeed, several lines of evidence suggest that
GABAergic efficacy is upregulated in hyperactive networks
[25–29] and downregulated under conditions of reduced
activity [5, 30, 31].

Such homeostatic reactions can, in principle, be medi-
ated by multiple pre- and postsynaptic mechanisms. A par-
ticularly important regulatory system, however, is the con-
centration of the main mammalian inhibitory transmitter
GABA (γ-aminobutyric acid). This paper shall summarize
the molecular elements and functional mechanisms involved
in regulation of GABA concentration within vesicles, cells,
and in the extracellular space. We will quote experimental
evidence indicating that GABA is homeostatically regulated
during physiological and pathological changes of network
activity. Finally, we will consider how molecular determi-
nants of GABA concentration can be targeted by drugs

for pharmacological therapy of neurological or psychiatric
diseases.

2. Organization of GABAergic Synapses

In the mammalian CNS, inhibition is mediated by the amino
acids GABA and glycine. The GABAergic system has been
intensely explored during recent years and will therefore
be the main focus of this paper. As a starting point, we
will briefly summarize the main functional and structural
elements of GABAergic synapses.

GABA binds to two different types of receptors-ion chan-
nels and metabotropic receptors. GABA-gated ion channels
are selectively permeable for chloride and bicarbonate and
have reversal potentials close to Cl− equilibrium (ECl). These
channels are mostly termed GABAA receptors, but a molecu-
larly and pharmacologically distinguishable subset has also
been termed GABAC receptors until recently, as discussed
by Olsen and Seighart [32]. In most cases, the increase
in chloride (and bicarbonate) conductance resulting from
activation of ionotropic GABA receptors causes inhibition of
the respective neuron, that is, decreased probability of action
potential generation. This is easy to understand in cases
where ECl is more negative than the membrane potential,
such that opening of GABAA receptors causes hyperpolarisa-
tion and enhances the distance between membrane potential
and action potential threshold. However, inhibition can also
be mediated by more complex biophysical mechanisms, for
example, shunting of the local membrane resistance, which
can also counteract excitatory inputs. Even depolarizing
actions of GABA can, in certain cases, be inhibitory [33–
35]. Conversely, excitatory actions of GABA may occur in
specific situations, including early developmental stages [36–
39] and maladaptive processes, for example, in chronic
epilepsy [40, 41]. The occurrence of depolarizing GABA
responses under physiological conditions is presently subject
to some controversy [39, 42]. GABAB receptors, in contrast,
are members of the family of G-protein-coupled proteins
[43] and react to GABA binding by dimerisation [44] and
activation of downstream signal cascades. These include
decreased probability of transmitter release and increase in
pre- and postsynaptic K+ conductance [45, 46].

A complete survey of GABAergic mechanisms at the
molecular, cellular, and network level is far beyond the scope
of this paper. Rather, we will highlight three principles of
organization of GABA-mediated inhibition that are partic-
ularly important for understanding how GABA regulates
network activity. The molecular constituents involved in
regulation of inhibitory strength are detailed below.

(i) GABA regulates excitability on different temporal
and spatial scales. One important mechanism is tonic
inhibition, which results from diffusely distributed
GABA within the extracellular space of networks,
thereby reducing excitability of all local neurons
(Figure 1). Recent evidence has shown that tonic
inhibition is of major importance for reducing
firing probability of defined types of neurons within
cortical networks [24, 47–49]. In some cells, this
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mechanism accounts for more than 50% of GABA-
induced chloride conductance [50]. Background lev-
els of GABA in neuronal tissue have been esti-
mated to reach high-nanomolar to low-micromolar
concentrations [51, 52]. In good accordance with
this relatively low concentration, extrasynaptic GABA
receptors have particularly high agonist affinity [47,
53, 54]. At the other extreme, phasic inhibition is
mediated by locally and temporally restricted release
of GABA from synaptic terminals. This action causes
a short, exponentially rising and falling of the post-
synaptic chloride conductance which can last from
few to tens of milliseconds [50, 55]. Most GABAergic
neurons seem to form such specific synaptic sites
for phasic inhibition, but recent evidence indicates
that there are also specialized interneurons which
release GABA for tonic inhibition [56–60]. Tonic
inhibition depends on special GABA receptors, which
can be selectively modulated by drugs, for example,
neurosteroids. These specific receptor isoforms may
be important in the pathophysiology of depression
[61] and withdrawal symptoms [62]. Such examples
of receptor heterogeneity may well open new thera-
peutic chances.

(ii) GABAergic interneurons are diverse. Work on dif-
ferent networks has revealed an unprecedented mul-
titude of different GABAergic neurons which are
classified by their somatic location, dendritic branch-
ing, axonal projection, afferent synaptic integration,
intrinsic membrane properties, and expression of
molecular markers, especially neuromodulatory pep-
tides and calcium-binding proteins. Extensive clas-
sification systems have been established for differ-
ent circuits, for example, for the rodent neocortex
[63, 64] and the hippocampus [13, 65]. Moreover,
introducing the juxtacellular recording technique has
enabled recordings from individual interneurons in
behaving animals and subsequent in-depth structural
analysis [66]. These data have shown that different
types of interneurons are specialized to organize
different patterns of network activity [67].

(iii) In accordance with the heterogeneity and functional
specialization of different cell types, experiments
and computer modelling have revealed important
functions of “inhibitory” interneurons in networks
beyond merely dampening excitation. Interneurons
turned out to play a key role in organizing the spa-
tiotemporal activity of local networks, especially dur-
ing synchronous network oscillations [68–73]. Com-
plementary neuroanatomical work has highlighted
the structural basis for this function: interneurons
have highly divergent axonal projections, cell type-
specific afferent and efferent connectivity, and syn-
chronizing mutual connections. All these properties
favour synchronous rhythmic inhibition of large
populations of principal cells [13, 69, 71, 74–76]. It
should be noted that the connections between exci-
tatory projection cells and inhibitory interneurons

provide an automatic homeostatic mechanisms at the
network level. Feed forward or feedback inhibition is
driven by excitatory inputs or outputs, respectively,
from remote or local excitatory neurons. This mech-
anism does automatically recruit inhibitory neurons
in an activity-dependent manner and, hence, balance
local activity (Figure 1).

3. Key Molecules for GABAergic Signalling

The molecular organization of synapses is highly complex,
and a complete review would be beyond the scope of this
paper. We will restrict our remarks to some families of mol-
ecules that are crucial for understanding homeostatic regula-
tion of GABA concentration (Figure 2).

Like many other neurotransmitters, GABA acts on ion-
otropic as well as metabotropic ion channels. GABAA re-
ceptors are pentameric ion channels composed out of a
large variety of 19 homologous subunits [32, 77, 78]. Work
during the past decades has elucidated numerous func-
tional differences between molecular subtypes of GABAAR,
including different expression patterns, differential modula-
tion by benzodiazepines, neurosteroids and Zn2+, different
compartmentalization within neurons, and different agonist
affinity [32, 54, 79]. The latter properties are of special
interest with respect to GABA concentration. GABAARs with
low agonist affinity appear to be clustered at postsynaptic
sites, whereas receptors with high affinity are mostly found
extrasynaptically [47, 48]. The underlying sorting mecha-
nisms are partially known and involve specific subsynaptic
sorting signals within the gamma subunit and interactions
with postsynaptic scaffolding proteins like gephyrin and
collybistin [80–83]. Extrasynaptic receptors, in contrast, are
formed by subunits mediating high agonist affinity including
α4, α6, and δ subunits [32, 47]. This distinction reflects
the different concentrations of GABA at both sites: whereas
synaptically released GABA may reach transient concentra-
tions of ∼1.5–3 mM [84, 85], extrasynaptic transmitter con-
centration has been estimated to lie in the low micromolar
range of about 0.2–2.5 μM [47, 51, 52, 86]. As mentioned
above, these apparently low “background” concentrations of
GABA may be very efficient in regulating excitability [47–
50]. An additional distinct location of GABAA receptors
is the presynaptic terminal itself. GABAergic auto- or
heteroreceptors have been described at the axon terminals
of various neurons, including spinal cord afferents [87],
hippocampal mossy fibres [88], Schaffer collaterals [89],
cerebellar interneurons [90], and pituitary terminals [91].
The effects of such receptors are diverse. Depending on
the GABA-induced change in membrane potential and local
membrane resistance, presynaptic GABAA receptors may in-
crease or decrease transmitter release [92].

GABAB receptors, on the other hand, are G-protein-
coupled transmembrane molecules which are activated by
low concentrations of GABA and form dimers which then
trigger secondary signalling cascades [43–45]. At presynaptic
terminals, activation of GABABRs reduces GABA release,
forming the typical negative feedback loop of autoreceptor-
mediated synaptic gain control. GABAB receptors are also
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Figure 2: Schematic drawing of transmitter release, transport, and synthesis at a GABAergic synaptic terminal. The axonal ending of an
inhibitory interneuron (PRE) is drawn on the left, a glial cell (GLIA) on the right. Bottom structure indicates postsynaptic membrane of a
target cell (POST), for example, a pyramidal neuron. Transporters are marked by flanking arrows, and synthesizing or degrading enzymes
are marked by a centred arrow. Transporters are colour matched to substrates: GABA is shown as blue particles, glutamate in red, and
glutamine in green. GS: glutamine synthetase, Mit: mitochondrion, PAG: phosphate-activated glutaminase, SV: synaptic vesicle, and V-
ATPase: vacuolar-type H+-ATPase. For other abbreviations, see the main text.

present at glutamatergic terminals, pointing towards regular
spillover of GABA from inhibitory to excitatory synapses
(Figure 1, [47, 93–95]). Postsynaptically, GABABRs hyperpo-
larize and inhibit neurons by activating inwardly rectifying
KIR channels, giving rise to the “slow” or “late” phase of inhi-
bition that follows fast, GABAAR-mediated effects and lasts
several hundred milliseconds [96]. Furthermore, GABAB

receptors can also mediate tonic inhibition, exerting negative
control on overall network activity [97].

4. GABA Transport and Synthesis

While GABA receptors act as “detectors” of local GABA
concentration, the regulation of GABA itself is achieved by
several specialized molecular mechanisms mediating trans-
port, sequestration, synthesis, and the degradation of GABA.
We will briefly address each class of molecules involved in
these processes.

Membrane-bound GABA transporters move GABA
across the cell membrane (Figure 2). The direction and effi-
cacy of this Na+-coupled transport results from the driving
electrochemical gradient and is directed inwardly in most
situations [98, 99]. However, upon strong depolarization or
altered ion homeostasis, GABA transporters can also reverse

direction. This mechanism leads to nonvesicular release of
GABA which may be of special importance in pathophysio-
logical situations [60, 100, 101]. GABA transporters appear
in four different isoforms with affinities around 7 μM for
rat GAT-1, 8 μM for rat GAT-2, 12 μM for rat GAT-3, and
93 μM for rat BGT-1 [102–106]. Terminology of GABA
transporters is not fully compatible between rats and mice
[107]. In the following, we use the abbreviations for rat
GABA transporters where ratGAT-1 = mouseGAT1; ratGAT-
2 = mouse GAT3; ratGAT-3 = mouseGAT4; ratBGT-1 =
mouse GAT2. GABA transporters are differentially expressed
in the CNS. As a global rule, GAT-1 is the prevailing neuronal
isoform in the rodent brain, and GAT-3 is strongly expressed
in glial cells [108–110]. Expression of different GAT isoforms
is, however, overlapping, so that selective modulation of one
isoform will always affect more than one cell type. It might
therefore turn out impossible to achieve a strictly selective
block of glial or neuronal GABA uptake with conventional
pharmacological tools.

An alternative pathway for enriching GABA in presy-
naptic terminals is transmitter synthesis from glutamate.
Similar to GAT-1/3, there are membrane-bound gluta-
mate transporter molecules at presynaptic terminals of in-
hibitory interneurons, namely EAAC1 (also called EAAT3)
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[111–113]. Moreover, neurons can synthesize glutamate
from glutamine which can also be taken up by specialized
transporters (see below) [114, 115]. GABAergic neurons
express both mature isoforms of glutamate decarboxylase,
GAD65 and GAD67 [116, 117], that convert the excitatory
amino acid into GABA. The smaller isoform GAD65 is
directly associated to presynaptic vesicles, indicating that
glutamate, once present in the presynaptic cytosol, can be
rapidly used for vesicular enrichment of GABA. Indeed,
there are direct protein interactions between GAD65 and
the vesicular GABA transporter VGAT (= VIAAT, vesicular
inhibitory amino acid transporter), suggesting that con-
version of glutamate into GABA and subsequent vesicular
uptake of the transmitter may be strongly coupled processes
[118].

More recently, glutamine has gained interest as an alter-
native source of GABA. The amino acid glutamine has long
been known as the immediate precursor for glutamate. In
the extracellular space, glutamine may reach concentrations
of hundreds of μM [119, 120]. Enrichment of glutamate
in excitatory central neurons involves uptake through spe-
cific glutamate transporters by glia cells, conversion into
glutamine, export via “system N” glutamine transporters,
uptake into neurons by “system A” glutamine transporters,
and conversion into glutamate [121, 122]. There is increasing
evidence for a similar role of this glutamate/glutamine cycle
in GABA synthesis. Indeed, inhibitory interneurons in the
hippocampus express the system A transporter SNAT1 [115],
but not SNAT2 [123]. Recordings of epileptiform activity in
rodent brain slices in vitro have revealed functional evidence
for boosting of inhibition by glutamine via this mechanism
[124–127]. Using high-resolution recordings of miniature
IPSCs in conjunction with pharmacological manipulation
of glutamine levels and glutamine transport, these studies
showed that glutamine can serve as a source for GABA,
especially under conditions of increased synaptic activity.
More recent evidence from rat hippocampal slices showed
that the contribution of glutamine to vesicular GABA
content is more pronounced in immature tissue, and that
glutamine forms a constitutive source of vesicular GABA in
immature hippocampal synapses on CA1 pyramidal cells. At
later stages, the functional importance seems to be restricted
to periods of enhanced synaptic activity [128]. This loss
of function for constitutive GABA release under resting
conditions goes along with an age-dependent decline in
expression of SNAT1, both absolutely and in relation to the
GABA-synthesizing enzyme GAD65.

5. Sequestration and Degradation of GABA

Within presynaptic terminals of GABAergic neurons, GABA
is enriched in vesicles by the vesicular inhibitory amino acid
transporter (VGAT = VIAAT). This protein is embedded
in the vesicular membrane and uses the electrochemical
gradient for H+ to shuffle GABA into small synaptic vesicles
[129–133]. Additionally, chloride gradients between vesicle
lumen and presynaptic cytosol may contribute to the ve-
sicular loading of GABA [129, 131]. Interestingly, VGAT
processes both major mammalian inhibitory transmitters,

GABA and glycine. This is a prerequisite for the observed
GABAergic/glycinergic cotransmission by single vesicles in
the spinal cord [134]. Modelling studies and biochemical
data suggest that vesicular GABA uptake may achieve an∼
1000-fold increase of the transmitter in vesicles as compared
to the presynaptic cytosol [135]. On the other side, recent
evidence suggests that GABAergic synaptic vesicles are leaky,
implying generation of a dynamic equilibrium between
accumulation and loss of GABA, given that there is enough
time to reach such a steady state [132, 136]. Taking this
bidirectional transport into account, the “leaky bathtub”
model of synaptic vesicles comes to rather low estimates
of concentration gradients between cytosol and the inner
vesicle space [132, 135, 137].

Finally, GABA and α-ketoglutarate can be transaminated,
producing succinic semialdehyde and glutamate. The reac-
tion is catalysed by GABA transaminase (GABA-T) which
is present in mitochondria of glial cells and neurons [138–
140]. It is estimated that more than 90% of all GABA in the
mammalian CNS is degraded in this way and contributes to
energy metabolism in the tricarbonic acid cycle.

In summary, there are several different molecular path-
ways and compartments for enrichment, synthesis, and deg-
radation of GABA (Figure 2). The resulting concentration
of GABA in synaptic vesicles and in the extracellular space
depends on the equilibrium between these mechanisms. It
should be clearly stated that the absolute concentrations of
GABA in the presynaptic cytosol, in vesicles, and in the
extrasynaptic space are not known. The affinity constants of
extrasynaptic GABA receptors may serve as a rough estimate
of background concentrations (0.2–2.5 μM) [86]. Direct
measurements from rat cerebrospinal fluid yielded similar or
slightly higher values which may be lower in humans [141].

The highly dynamic time course of transmitter concen-
tration in the synaptic cleft, on the other hand, has been
estimated based on experimental and theoretical work in
different types of neurons. Peak concentrations may be as
high as 0.3 to 3 mM [85, 142–147]. The cytosolic GABA
concentration is most difficult to estimate or measure,
especially since most of the neuronal GABA pool is used for
energy metabolism rather than for synaptic inhibition.

It should be explicitly stated that none of the above-given
numbers has been directly measured. Indeed, our knowledge
on local GABA concentrations in different compartments is
far from sufficient. This is even more concerning when we
take into account the enormous heterogeneity of neurons
[20, 63, 65], the different microarchitecture of different
local circuits, and activity-dependent changes in GABA
release and ionic homeostasis. A major challenge is the lack
of quantitative data about key molecules and structures:
How many GABA-uptake molecules are present at a given
inhibitory synapse? What is their distribution with respect
to the site of release? What is the precise extracellular
volume at the synaptic cleft? How much GABA does go
into glia cells and neurons, respectively? An important
example for progress in this quantitative molecular approach
to subcellular structure and function is the recent work
on the vesicular proteasome by Takamori and colleagues
[136].
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6. Regulation of (GABA) in Physiology
and Pathophysiology

Different lines of evidence support the view that the cel-
lular and molecular mechanisms mentioned above make
important contributions to homeostatic synaptic plasticity.
This term covers changes of intrinsic and synaptic neuronal
properties, which maintain the mean network activity within
a determined range [4, 28]. Taking into consideration that
network states change rapidly with changes in vigilance and
behavioural state [148, 149], this is a nontrivial task. Individ-
ual neurons can change their activity at least by a factor of
∼6 in different network patterns [150]. Nevertheless, under
normal conditions, networks do neither fall into complete
silence, nor into pathological hyperactivity.

Inhibition plays a critical role in network homeostasis.
Most circuits contain specialized inhibitory cells which are
activated by external afferent excitatory inputs (feedforward
inhibition) or by collaterals from efferent excitatory axons
(feedback inhibition) as illustrated in Figure 1 [11]. These
inhibitory control loops ensure that excitatory neurons are
inhibited in an activity-dependent manner. It should be
noted, however, that inhibitory interneurons are much more
than a “brake” or “gain control.” Recent evidence has
revealed many other functions for these heterogeneous neu-
rons: they are critical for organizing the complex spatial and
temporal patterns of network oscillations [70, 71], selective
gating of defined inputs or outputs [20], suppression of
background activity [151], and precise timing of action
potentials [67]. Corresponding with these specific functions,
we are gaining increasing insight into the complexity of
GABAergic signalling, diversity of interneurons, and plastic-
ity of inhibitory synapses.

Notwithstanding these recent findings, however, inhibi-
tion does still have its traditional function, that is, limitation
of neuronal activity. With respect to network homeostasis,
this control function must adapt to changing degrees of
activity in the local network. Several lines of evidence
indicate that modulating GABA content of inhibitory in-
terneurons is a key mechanism in this regulation process.
For example, repetitive hyperactivity in the hippocampus
of chronically epileptic rats causes upregulation of GADs,
the key enzymes for production of GABA [29]. Conversely,
the partial deafferentation of somatosensory cortex resulting
from partial limb amputations leads to a downregulation of
GABA, but not of GADs [30, 152]. These findings indicate
that GABA levels are increased or decreased, respectively, in
response to increasing or decreasing network activity. The
underlying mechanisms are diverse with respect to time
course and source of GABA.

Long-term changes in excitability, such as described
above, require regulation of protein expression. Multiple
studies from excitatory synapses show that changes in
synaptic activity do indeed include lasting effects on pro-
tein synthesis and synaptic protein content [153, 154].
The underlying mechanisms involve calcium signalling in
dendrites and nuclei [30, 155]. Much less is known about
similar mechanisms in inhibitory interneurons. It would be
of special importance to understand the activity-dependent

regulation of key proteins such as GAD, VGAT, and others.
Interestingly, BDNF (brain-derived neurotrophic factor)
increases expression of GAD, indicating that neurotrophins
are involved in inhibitory homeostatic plasticity. This would
be well compatible with the general role of these molecules
in activity-dependent plasticity [156]. Surprisingly, genes for
inhibitory transmission can also be upregulated in excitatory,
glutamatergic neurons following periods of enhanced activ-
ity. This intriguing finding suggests that excitatory neurons
can adopt an active role in synaptic inhibition in certain
situations. Such a “dual phenotype” has been clearly demon-
strated in dentate granule cells, a major excitatory input cell
type in the rodent hippocampus [157–159]. The axons of
granule cells, called mossy fibres, form strong glutamatergic
synapses on proximal dendrites of CA3 pyramidal cells and
do also contact inhibitory interneurons in this region (an
example of feedforward inhibition). Upon strong repetitive
stimulation or following epileptic seizures, mossy fibres start
expressing proteins needed for the production and vesic-
ular storage of GABA. Electrophysiological measurements
show that this GABAergic phenotype is indeed functional,
giving rise to mixed excitatory and inhibitory potentials
in CA3 pyramids. The GABAergic phenotype of mossy
fibres seems to be more pronounced in the juvenile brain
[157], consistent with the general principle of enhanced
plasticity in immature neurons. While the dual phenotype
of granule cells may be an extreme example, several obser-
vations indicate that similar activity-dependent changes
in expression of GABAergic molecules affect the vesicular
pool of GABA in typical inhibitory interneurons. For
example, expression of VGAT is altered following ischemia
or excitotoxic stimulation [160–162]. These changes go
along with altered composition of the vesicular proteome,
indicative of altered supply or release of GABAergic vesicles
[163].

At a shorter time scale, GABA levels might be regu-
lated by activity-dependent uptake of transmitter molecules.
Experimental evidence for such changes came from direct
injection of glutamate [164] or glutamine [124, 125] into
hippocampal slices. Both approaches increased the ampli-
tudes of miniature inhibitory postsynaptic currents (mIP-
SCs), indicating that the precursors had indeed been used
to fuel the vesicular transmitter pool. Consistent with these
findings, blocking membrane-bound transporters for glu-
tamine, GABA, or glutamate can reduce the size of IPSCs
[128, 162, 165, 166]. The relative contribution of GABA,
glutamate, or glutamine uptake to the vesicular GABA pool
remains, however, unknown. It can be expected that the
contribution of different transmitter transporters differs
among neuronal subtypes, brain regions, and developmental
stages [128, 167]. However, due to the fast action of uptake
molecules, it is well possible that homeostatic adaptations
of intravesicular GABA concentration occur at time scales
of few seconds. Strong activation of axons in the CA1 area
of mouse hippocampal slices results in a rapid increase of
mIPSC amplitudes, with onset time below 20 s. This increase
is dependent on uptake of glutamate and GABA, indicating
that increased extracellular transmitter concentrations in
active neuronal networks automatically provide more “fuel”
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to the pool of releasable GABA, thereby constituting a nega-
tive feedback loop [165].

We have already discussed that tonic activation of GABA
receptors by ambient transmitter concentrations provides a
major mechanism for regulation of excitability [47, 48, 50].
It may, therefore, well be that changes in GABA uptake,
production, and release cause altered tonic inhibition,
possibly mediated by specialized subtypes of interneurons
[56]. Quantitative knowledge about the contribution of
these mechanisms is still lacking. It is also unclear how
much nonvesicular release of GABA by reverse transport
contributes to ambient GABA concentration. Situations of
hyperactivity may favour such release mechanisms by sus-
tained depolarization and altered local ion homeostasis [59,
60, 100, 168].

7. Pharmacological Use

Enhancing GABAergic inhibition is useful for the treatment
of several pathological situations, including chronic pain,
sleep disorders, anxiety, and—most importantly—epilepsy.
In accordance with the principles outlined above, several
drugs have been developed which alter presynaptic GABA
content. One approach is blocking GABA degradation by
GABA transaminase (GABA-T), using the suicide inhibitor
γ-vinyl-GABA (GVG). Indeed, this drug does increase GABA
levels in the brain [169, 170] and has anticonvulsant effi-
cacy [171, 172]. Studies at the single cell level show that
GVG increases miniature IPSC amplitude, consistent with a
dynamic regulation of vesicular GABA concentration by the
equilibrium between synthesis and degradation [173, 174].
Clinical use of GVG is, however, limited due to pathological
changes of retinal cells and resulting scotoma [175].

An alternative approach suited to enhance synaptic
GABA levels is the redirection of GABA uptake from glia to
neurons. In glial cells, most GABA is degraded and fed into
energy metabolism [176]. In contrast, neuronal GABA up-
take can recycle the amino acid for use as a transmitter. It
would therefore be ideal to have glia-specific GABA uptake
inhibitors. Unfortunately, the molecular distinction between
glial and neuronal GABA uptake is not strict, although there
is some bias for GAT-1 in neurons and GAT-3 in glia [108–
110].

In summary, there is no doubt that changes in GABA
concentration contribute significantly to network homeosta-
sis in health and disease. More quantitative information
about sources, compartmentalization, and local concentra-
tion of GABA is urgently needed, not at least in order to
develop more specific drugs for reconstituting excitation-
inhibition balance in pathological situations.
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Lüscher, “Postsynaptic clustering of major GABAA receptor
subtypes requires the γ2 subunit and gephyrin,” Nature
Neuroscience, vol. 1, no. 7, pp. 563–571, 1998.

[81] J. T. Kittler, K. McAinsh, and S. J. Moss, “Mechanisms of
GABAA receptor assembly and trafficking: implications for
the modulation of inhibitory neurotransmission,” Molecular
Neurobiology, vol. 26, no. 2-3, pp. 251–268, 2002.

[82] M. Giustetto, J. Kirsch, J. M. Fritschy, D. Cantino, and
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[122] S. Bröer and N. Brookes, “Transfer of glutamine between
astrocytes and neurons,” Journal of Neurochemistry, vol. 77,
no. 3, pp. 705–719, 2001.
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