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Alzheimer’s disease (AD) is an increasing concern in human health. Despite significant
research, highly effective drugs to treat AD are lacking. The present study describes
the text mining process to identify drug candidates from a traditional Chinese medicine
(TCM) database, along with associated protein target mechanisms. We carried out
text mining to identify literatures that referenced both AD and TCM and focused on
identifying compounds and protein targets of interest. After targeting one potential TCM
candidate, corresponding protein-protein interaction (PPI) networks were assembled in
STRING to decipher the most possible mechanism of action. This was followed by
validation using Western blot and co-immunoprecipitation in an AD cell model. The text
mining strategy using a vast amount of AD-related literature and the TCM database
identified curcumin, whose major component was ferulic acid (FA). This was used as a
key candidate compound for further study. Using the top calculated interaction score
in STRING, BACE1 and MMP2 were implicated in the activity of FA in AD. Exposure
of SHSY5Y-APP cells to FA resulted in the decrease in expression levels of BACE-1
and APP, while the expression of MMP-2 and MMP-9 increased in a dose-dependent
manner. This suggests that FA induced BACE1 and MMP2 pathways maybe novel
potential mechanisms involved in AD. The text mining of literature and TCM database
related to AD suggested FA as a promising TCM ingredient for the treatment of AD.
Potential mechanisms interconnected and integrated with Aβ aggregation inhibition and
extracellular matrix remodeling underlying the activity of FA were identified using in vitro
studies.
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INTRODUCTION

Alzheimer’s disease (AD) is a chronic neurodegenerative disease that usually progresses from short
memory loss to dementia, and accounts for 50%–70% of dementia cases (Burns and Iliffe, 2009).
According to the World Alzheimer Report (Prince, 2015), 46.8 million people worldwide are living
with dementia, and this number is estimated to reach 131.5 million by 2050, which will result in an
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increasing burden on society and families. In addition, the cost of
long-term care, home services, and non-professional caregivers
is greater than the cost of direct medical care (Bullock, 2004;
Winblad et al., 2016; Yokoyama et al., 2016).

Despite enormous financial and research investments,
appropriate interventions to prevent the progress of AD are
lacking (Iqbal and Grundke-Iqbal, 2011; Selkoe, 2013). Based
on the failure of a number of novel AD drugs, investigators
are increasingly convinced that AD is not a single but rather
a multifactorial disease (Iqbal et al., 2013), and hence, drugs
that target one node on the classical pathway have little effect
on the AD disease network. Since AD is a multifactorial
disease, drugs that modulate systemic or multiple targets are of
interest.

Traditional Chinese medicine (TCM) compositions usually
exert systemic impact and can be a source of drug repositioning
efforts (Wang et al., 2011). TCM treatments are natural herbs
discovered by the ancient Chinese and evolved through at
least 3000 years of clinical practice. TCM is gaining increasing
attention with the emergence of integrative and personalized
medicine, characterized by pattern differentiation on individual
variance and treatments based on natural herbal synergism
(Wang and Wei, 2009). With the growing popularity and
promising approach of TCM applicability, the ever-increasing
demand for understanding the pharmacological mechanisms and
potential drug efficacy are the major issues that need to be
addressed.

In this study, we sought to shed light on TCM for AD.
What typical TCM treatments could be effective for AD, and
what are the underlying target-based mechanisms? How can we

integrate systemic and target-based understandings of the disease
and treatments (Cho et al., 2006)? With the overwhelming
amount of biomedical knowledge recorded in texts, text mining
is essential for identifying, extracting, managing, integrating
and exploiting this information to discover new, hidden,
or unsuspected information. Text mining is a computer-
based discovery of new, previously unknown information,
which automatically extracts information from different written
resources (Ding et al., 2013), drawing on information retrieval,
statistics, and computational linguistics. It has considerable
potential for drug target discovery and re-labeling of existing
drugs. Some typical proven drug repositioning cases are available
for text mining, such as the beneficial effect of estrogen on
human memory discovered by Smalheiser and Swanson (1996),
thalidomide for treating acute pancreatitis extracted by Weeber
et al. (2003), and the association of migraine with AMPA
receptors identified using Litlinker (Yetisgen-Yildiz and Pratt,
2006).

Herein, we report an approach for finding an appropriate
TCM for AD through the utilization of text-mining from
literature database, exploring the underlying therapeutic
mechanisms followed by searching for protein-protein
interactions (PPI) using the STRING platform, and finally
using the SHSY5Y-APP AD cell line model for validation.

MATERIALS AND METHODS

Our first aim was to select a TCM candidate from the extensive
literature collection. The study workflow is shown in Figure 1.

FIGURE 1 | Flowchart for selecting TCM candidates for validation. AD, Alzheimer’s disease; TCM, traditional Chinese medicine; TCMID.v2.01, a TCM database;
HMDB, human metabolomics database; STRING, a platform of protein-protein interaction (PPI).
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Data Collection and Extraction to Find a
TCM Candidate for AD
First, we assembled an AD literature dataset by retrieving
articles from PubMed using AD-related keywords: ‘‘Alzheimer or
Mild cognitive impairment or Dementia or Significant memory
concern or Subjective memory complaint,’’ a resource for
extracting and defining TCM candidates. The TCM database,
TCMID.v2.01 (Chen et al., 2006), was then utilized, which
included names, stitch_id, PubChem_id, synonyms, formula,
SMILES strings, and the source of the involved chemicals.
The TCM terminologies, mentioned in the abstracts of
the retrieved articles were then extracted using dictionary-
based named entity recognition (i.e., simple word matching)
provided by LingPipe1. Using this method, the selection
of the TCM for AD was retrieved in a relatively short
duration.

Furthermore, we matched the PubChem ID of TCM and the
origin ontology in the human metabolome database (HMDB;
Southan et al., 2013) to determine the optimal TCM candidates.
After focusing on a possible lead TCM candidate, we retrieved
articles in the AD dataset, and extracted protein names that
co-occurred with the candidate TCM using the dictionary-
based entity recognition from NCBI protein list2. This gave
us with a list of possible proteins affected by the TCM
candidate.

Inferring Possible PPI (Li et al., 2017)
Networks of the TCM Candidate Using
STRING
STRING presents a specific and productive functional
relationship between two proteins into a combined interaction
confidence score, which is derived from the co-expression
score, experimentally determined interaction score, and the
automated text mining score. In this system, the automated
text mining score is higher than or approximately equal to the
experimentally determined interaction score since it is integrated
from these scores. However, if the text mining score was lower
than the experimentally determined interaction, there were two
possibilities: (1) the experimentally determined interaction score
was a false positive; (2) only a few studies are available related to
these two proteins; however, experimental validation could be
conducted.

We deposited the protein list mentioned above in the multiple
protein column in the search webpage of STRING3 and acquired
the PPI network after deleting results with co-expression
scores >0 (already validated PPI), or experimentally determined
interaction score × automated text mining score = 0 (little
relevance). In the next step, we rearranged the PPI network
according to text mining scores and obtained the top proteins
in the network, which were most likely related to candidate
mechanisms in AD.

1http://alias-i.com/lingpipe/index.html
2https://www.ncbi.nlm.nih.gov/protein/
3https://string-db.org/

Validation of Protein Expression and PPI in
an AD Cell Line Model
In order to generate strong evidence not only in the data level, we
validated the possible mechanisms mined from STRING using
AD cell lines.

Cell Culture and Treatment With TCM
Candidate for AD
SHSY5Y-APP cells, a classic cell line for AD research, were a
kind gift from Shanghai Jiao Tong University. The cells were
cultured in MEM supplemented with 10% heat-inactivated fetal
bovine serum (FBS), 100 units/mL penicillin, and 100 µg/mL
streptomycin (Invitrogen, Carlsbad, CA, USA) at 95% humidity,
37◦C, and 5% CO2 in an incubator. The cells were passaged
by trypsinization every 2–3 days. The SHSY5Y-APP cells were
treated with different doses of the TCM candidate for 24 h. In the
existing researches, the effective ferulic acid (FA) concentrations
vary from 10 nM to 1 mM without toxic reactions in a variety of
cell lines, in accordance with the point that FA is highly safe for
daily and long-term consumption (Thakkar et al., 2015; Sompong
et al., 2017; Zhang et al., 2017). In line with a previous study using
the same cell line (Cui et al., 2013), micromolar (µM) was chosen
as the unit for FA concentration and upgraded in steps of 0 µM,
15 µM, 30 µM and 60 µM.

Co-immunoprecipitation Assays (co-IP)
Cell lysates were centrifuged (10,000× g) at 4◦C for 15 min.
Proteins were then immunoprecipitated with the relevant
antibodies to determine interactions. The precleared Protein A/G
Plus-Agarose beads (Merck KGaA, Darmstadt, Germany) were
incubated with the immunocomplexes for 2 h and washed four
times with phosphate-buffered saline. The immunoprecipitates
were subjected to sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE; Merck KGaA, Darmstadt,
Germany), followed by transfer to polyvinylidene difluoride
(PVDF) membrane (Amresco, OH, USA). The antibody-antigen
complexes were visualized using the UPV software according
to the manufacturer’s instructions. The immunoreactive bands
were quantified to confirm the appropriate levels of proteins.

Western Blot
Preparation of Protein Samples
After TCM candidate exposure for 24 h, SHSY5Y-APP cells were
washed with pre-cooled 4◦C PBS, and then the wash solution was
discarded. The above procedure was repeated twice. PMSF was
added to lyse the cells on ice with frequent shaking for 30 min.
After lysis, the cells were scraped with a clean scraper, and then
the cell debris and lysate were transferred and centrifuged at
12,000 rpm for 5min at 4◦C. The supernatant after centrifugation
was stored at −20◦C.

Determination of Protein Concentration
The standard BCA assay procedure was done as previously
described (Huang et al., 2010). After blocking, the membranes
were probed with the following primary antibodies (Cell
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Signaling, Beverly, MA, USA) using different dilutions:
rabbit anti-MMP2 (92 kDa, Abcam ab92539, 1:2000),
rabbit anti-MMP9 (92 kDa, Abcam ab38898, 1:2000), rabbit
anti-BACE1 (68 kDa, Abcam ab183612, 1:1000), rabbit anti-APP
(87 kDa, Abcam ab15272, 1:600), and mouse anti-beta-
actin (42 kDa, Boster, BM0627, 1:200). All experiments were
performed at least three times.

Electrophoresis
We prepared the 12% separation gel, 10% separation gel and 5%
concentration gel. The prepared protein sample and the maker
were added to 40 µg. After the sample was added, constant
80 V electrophoresis was performed until the bromophenol blue
indicator was linear at the junction of the concentrated gel and
the separation gel, and the pressure was changed to constant
120 V. This process took about 1.5 h. Next, we removed the
gel and the target band according to the Marker. The PVDF
membrane was soaked in methanol for several seconds and
soaked in the electroporation buffer together with the filter
paper. The transfer membrane conditions were as below: β-actin
200 mA 90 min, BACE1 200 mA 120 min, APP, MMP2 and
MMP9 250 mA 120 min.

Immunoblotting and Analysis
The PVDF membrane was soaked in TBST containing 5%
skimmed milk powder and shaken at room temperature for
2 h. We mixed the ECL reagent with the stable peroxidase
solution in a ratio of 1:1, added the solution onto the PVDF
membrane. X-ray film was placed in the solution, flushed, dried,
scanned, and finally analyzed grayscale value with BandScan
5.0 software (NIH, USA). Statistical analysis was performed using
SPSS 20.0 software (SPSS, Chicago, IL, USA). Quantitative data
are presented as mean ± standard deviation (SD) of triplicates
in an independent experiment that was repeated three times.
Data were compared using Student’s unpaired t-test for direct

comparison between two-groups and the Tukey-Kramer test
after a significant one-way analysis of variance (ANOVA), and
F-test for multiple-group comparisons. P < 0.05 was considered
as statistically significant.

RESULTS

Text Mining Using AD Literature and the
TCM Database
We retrieved 195,882 articles from PubMed using AD-related
keywords and assembled an AD article dataset.

After matching TCMID.v2.01 ingredients to the AD article
database, we extracted a list of AD-related TCM ingredients with
PubChem IDs, which was checked for origin ontology in HMDB.

We ranked the TCM ingredients by the number of mentions
and focused on the top 20 frequent terms after deleting common
words, such as ‘‘protein,’’ ‘‘glucose,’’ ‘‘amino acid,’’ and others
(Table 1).

Next, we checked the origin ontology of all the
20 components. In Table 1, a total of 12 endogenous
ingredients, including Tau, Acetylcholine, Dopamine,
Melatonin, Glutathione, Aspartate, Serotonin, Tyrosine,
Serine, Levodopa, Estradiol and Creatine were selected. These
endogenous ingredients could not only be absorbed from
the environment but also produced and synthesized within the
organism or system. Cholinesterase does not have an origin result
in HMDB, and hence, our list was narrowed down to Glutamate,
Choline, Nicotine, Scopolamine, Curcumin, Methionine and
Physostigmine, of which Glutamate, Choline, Methionine and
Physostigmine could be extracted from a broad list of drug
and food options, in which includes Nicotine, Scopolamine
and Curcumin. Literature suggested that Scopolamine induced
retrograde amnesia, or an inability to recall events prior to
its administration (Colettis et al., 2014), and hence, it was

TABLE 1 | TCM ingredients’ AD-matched list in PubMed.

No. Frequency TCM ingredients PubChem ID Origin ontology in HMDB

1 41288 Tau 156615 Endogenous
2 5431 Glutamate 5128032 Bacteria and beans
3 3609 Cholinesterase 4460501 Not available
4 3557 Acetylcholine 5315629 Endogenous
5 3453 Dopamine 681 Endogenous
6 2824 Choline 305 Many plants and animal organs
7 1999 Nicotine 89594 Tobacco
8 1973 Melatonin 896 Endogenous
9 1898 Glutathione 124886 Drug metabolite and Endogenous
10 1722 Aspartate 5460541 Endogenous
11 1718 Serotonin 5202 Endogenous
12 1593 Tyrosine 6057 Endogenous
13 1534 Scopolamine 5184 Solanaceae
14 1432 Serine 5951 Endogenous
15 1372 Curcumin 969516 Curcuma longa
16 1089 Levodopa 6047 Endogenous
17 939 Estradiol 5757 Drug, Endogenous, Food
18 931 Methionine 6137 Drug metabolite and Food
19 788 Creatine 586 Endogenous
20 785 Physostigmine 5983 Drug

TCM, traditional Chinese medicine; HMDB, human metabolome database.
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deleted from our list. Compared to the double-edged function
of Nicotine, Curcumin has not been shown to cause any
toxicity despite its daily consumption for centuries in Asian
countries (Maheshwari et al., 2006). Thus, we first focused on
Curcumin in the candidate list, an obvious TCM component
that is extracted from Curcuma longa, a common plant in
China.

In order to confirm its effect, we extracted all the sentences
that contained ‘‘curcumin’’ from the AD article database. From
the 107 retrieved sentences, one sentence inferred that Curcumin
was suitable for treating AD; whereas, FA appeared in the
same sentence with Curcumin at a high frequency. Three
representative sentences are shown in Table 2.

Curcumin and FA share some similarities, and as a major
metabolite of curcumin, FA has better bioavailability and
metabolic stability than curcumin, thus rendering it as a better
candidate (Badavath et al., 2016). Thus, we re-assigned our TCM
target from curcumin to FA. FA also denoted as 3-(4-hydroxy-
3-methoxyphenyl)-2-propenoic acid, has the following chemical
structure:

5	  

Text Mining Using AD Literature and the TCM Database 191	  
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article dataset. 193	  
 194	  
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one of the natural polyphenolic antioxidants which is widely 
found in different fruits, vegetables, etc. [38]. 

CHEMISTRY OF FERULIC ACID 
 Polyphenols are known as natural antioxidants, which 
have hydroxyl groups in the aromatic ring(s) of their 
chemical skeleton [39, 40]. They are widely found in plants 
(mainly as glycoside forms) in nature and classified into 
several groups, including flavonoids, phenolic acids, 
phenolic alcohols, stilbenes and lignans [41-43]. Ferulic acid 
(also named: 3-(4-hydroxy- 3-methoxyphenyl)-2-propenoic 
acid; 3-methoxy-4-hydroxycinnamic acid; caffeic acid 3-
methyl ether; and coniferic acid) (Fig. 1) is one of the 
phenolic acid members [44]. It is produced during the 
biosynthesis of lignin from phenylalanine or tyrosine and 
found as both cis and trans forms in plants [45]. The 
monomer and dimer forms of FA have been observed in the 
cell walls of plants, which are conjugated through ester-
linkage with monosaccharides, disaccharides, polysaccharides, 
glycoproteins, polyamines, lignin and some hydroxy fatty 
acids [46]. For example, in the cell walls of cereals, FA is 
present as 5-O-feruloyl-L-arabinofuranose and 5-O-feruloyl-
arabinoxylane [47]. In plants, FA is also found as isoferulic 
acid and/or 3-hydroxy-4-methoxycinnamic acid [48]. 
 

MeO
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Fig. (1). Chemical structure of ferulic acid. 
 

SOURCES OF FERULIC ACID 
 FA is widely found in brans, peels, roots, stems and leaf 
of different plants [49, 50]. The various sources of FA have 
been outlined in Table 1. The genus Ferula is known as a 
source of FA in nature [51]. It has also been reported that 
different types of berries, oat, pineapple and peanut contain 
FA [45, 46, 52-54]. In some plants FA is usually found in 
conjugated form [45, 55]. For example, in coffee, carrots, 
cabbage and in different species of citrus genus, FA is found 
conjugated to hydroxyl acids like quinic acid, or to glucaric 
and galactaric acids [45]. In grain bran, FA is found in 
esterified form with sterols as ferulic acid-oryzanol [45, 56]. 
In addition, FA is conjugated to tartaric acid in grape and to 
malic acid in radish [45, 57]. FA is bonded to glucose in 
some fruits such as apple and to digalactose in some of the 
leafy vegetable such as spinach [45, 57-60]. In broccoli, it is 
bonded to gentiobiose [45, 61, 62]. Apart from these sources, 
free FA is mainly found in some vegetables, such as Arctium 
lappa, Solanum melongena, Oenanthe crocata [63-66]. 

BIOAVAILABILITY OF FERULIC ACID 
 The bioavailability of free FA as addressed by various 
studies, ranges from low to high, partly depending upon the 
food source [67, 68]. The conjugated form of FA (with 
arabinose and/or arabinoxylan) in corn bran has very low 

bioavailability, even lower than free FA [69]; whereas FA 
conjugated with heteroxylans (wheat bran) has more 
bioavailability [68, 69]. The urinary excretion rates for FA in 
rats showed that absorption of free FA was higher than 
feruloyl monosaccharides and feruloyl disaccharides, and 
that the absorption of these (feruloyl monosaccharides, and 
feruloyl disaccharides) are higher than feruloyl polysaccharides 
[70, 71]. It can be suggested that simple sugars which are 
bonded to FA-esters are rapidly hydrolyzed by the activity of 
esterases and/or intestinal microflora [72]. Also, it can be 
concluded that the complexity of conjugation is an important 
factor in bioavailability and absorption of the FA [55, 67, 
68, 73].  

CLINICAL IMPACTS OF FERULIC ACID 
 Despite to the high beneficial and low adverse effects of 
FA, there are only few clinical trials related to this compound. A 
search in the clinical trials web (http://clinicaltrial.gov) as on 
30th May (2014) showed that there are only four clinical trials 
in relation to FA. The first clinical trial (NCT00777543) by 
Aalt Bast from the University of Maastricht is aimed in 
increasing the bioavailability of FA in the brain.  The status 
of trial is unknown in the clinical trials web. Another clinical 
trial (NCT02150356) by Gabriele Riccardi from the 
University of Naples aimed to study the beneficial role of 8 
weeks supplementation of Aleurone-enriched products 
(containing FA) on the risk factors of cardiovascular 
diseases. In this clinical trial, glucose and lipid metabolism, 
levels of incretin hormones, satiety, endothelial functions, 
inflammation and oxidative stress are used as biochemical 
markers for examination of the beneficial role of Aleurone-
enriched products on the risk factors of cardiovascular in 
obese patients. A third clinical trial (NCT01293175) by 
Paola Vitaglione and Vincenzo Fogliano also from the 
University of Naples showed the beneficial role of grain 
polyphenol on inflammation, oxidative stress and hormonal 
levels in overweight patients. The last clinical trial 
(NCT01619020) by Johanna Lampe from the Fred Hutchinson 
Cancer Research Center aimed to examine the beneficial role 
of the FA on the colon cancer through regulation of colon 
cell-signaling pathways.  

FERULIC ACID AND ALZHEIMER’S DISEASE 
 The most devastating neurodegenerative disorder, AD is 
one of the common forms of dementia, which causes abnormal 
changes in the brain [74]. According to epidemiological 
reports, there will be a drastic increase (106.8 million) in the 
incidence of AD by 2050 [75]. Several biochemical, 
molecular and proteolytic processes have been involved in 
the pathogenesis of this disease [76]. Hence AD being a 
multifactorial disease, the therapeutic targets aimed against it 
must be efficient enough to cross the blood-brain barrier, 
modulate the biochemical pathways and bring back the 
normal homeostatic machinery in the brain.  

Ferulic Acid (FA) and Cholinesterase Inhibition  
 According to the cholinergic hypothesis, the pathogenesis 
of AD is linked with the decrease in the level of the 
neurotransmitter Acetylcholine (ACh). Acetylcholinesterase 

After selecting FA as our TCM target, the next step
was to understand the possible mechanism of FA in AD.
Given the apparent complexity of the FA mechanism
network, understanding its involvement in the underlying
AD pathological pathways was a challenge.

We retrieved 178,725 articles using FA-related keywords
‘‘Curcumin, or FA, or Sodium Ferulate’’ in PubMed. From these
articles, we extracted a list of proteins that was co-mentioned
with FA, using the dictionary-based entity recognition. This
resulted in 178 proteins that were ranked by the number of
times mentioned with links to sentence sources in PubMed.
After deleting a large number of false positives using the auto
stop list (Fenner, 2008) of drug abbreviations, experimental test
abbreviations, cell lines, synonyms of other genes, and common
serum proteins, we reduced the list of proteins to 20, which are
listed below:

APOB, BACE1, BCL2, CCNB1, CCND1, ERBB2, GAPDH,
GSR, HMOX1, MMP2, MYB, NOS1, PCNA, PEA15, PIK3CA,
PPARA, PTGS2, RAF1, TXN and VEGFA.

Potential PPI Network in STRING
Next, we entered these proteins into STRING in order to obtain
direct as well as indirect protein associations (Figure 2).

The PPI scores were also exported into Table 3. The
BACE1 and MMP2 combined score ranked on top among the
interactions, however it had a lower automated text mining score
than in the experimentally determined interaction score. We
selected BACE1-MMP2 interaction as the target PPI. The edges
connecting BACE1 and MMP2 (Figure 1) are
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,
which indicates that BACE1 and MMP2 may interact with each
other. However, when we searched for in-silico evidence, the two
words occurred in the full-text of some experimental articles,
albeit without any direct correlation, such that the experimentally
determined interaction was a false positive with a high validation
possibility.

Novel Hypothesis for the FA Related
Mechanism in AD
Based on the above results, we hypothesized that BACE1 and
MMP2 were closely linked to the mechanism of FA. The two
possibilities are as follows: these two proteins interacted directly,
which could be validated by co-IP; in addition to proteolytic
cleaving of the amyloid precursor protein (APP), the extracellular
matrix proteins may also have a role in the AD pathological
pathways, and these two pathways were always concurrent in AD.

FIGURE 2 | PP1 map generated by STRING showing the interactions of the
selected 20 proteins Edges represent protein-protein associations,
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TABLE 2 | Sentences retrieved from the literature based on the entities’ biomedical researches.

PMID Sentences retrieved from literature

16387689 Because it can modulate the expression of these targets, curcumin is now being used to treat cancer, arthritis, diabetes, Crohn’s
disease, cardiovascular diseases, osteoporosis, Alzheimer’s disease, psoriasis and other pathologies.

17127365 Food supplementation with curcumin and ferulic acid is considered a nutritional approach to reduce oxidative damage and amyloid
pathology in Alzheimer’s disease.

26592858 Ferulic acid has structural similarity with curcumin, which is known for its monoamine oxidase (MAO) inhibitory activity.
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TABLE 3 | Ranking scores of protein interactions in STRING.

Node 1 Node 2 Co-expression Experimentally determined interaction Automated text mining Combined score

BACE1 MMP2 0 0.534 0.149 0.586
PPARA APOB 0.053 0 0.578 0.583
CCND1 MMP2 0 0 0.575 0.575
NOS1 BCL2 0.048 0 0.566 0.569
APOB GAPDH 0 0.179 0.491 0.564
BCL2 PPARA 0 0.377 0.304 0.548
MYB GAPDH 0.061 0 0.517 0.527
RAF1 GAPDH 0.059 0 0.503 0.512
TXN BCL2 0 0 0.507 0.507
PCNA PTGS2 0 0 0.507 0.507
PCNA TXN 0.2 0.102 0.367 0.506
PCNA MMP2 0 0 0.506 0.506
PPARA GAPDH 0 0.042 0.501 0.501
NOS1 GAPDH 0.084 0 0.476 0.5
ERBB2 RAF1 0 0.292 0.76 0.487
BACE1 GAPDH 0.053 0 0.465 0.472
ERBB2 CCNB1 0 0 0.454 0.454
BCL2 GSR 0.048 0 0.446 0.45
NOS1 MMP2 0.055 0 0.442 0.45
TXN VEGFA 0 0 0.442 0.442
PCNA MYB 0.058 0 0.426 0.436
VEGFA CCNB1 0 0 0.432 0.432
TXN APOB 0 0 0.417 0.416
MYB PIK3CA 0.055 0.104 0.349 0.401

FIGURE 3 | Protein expression of BACE-1 and MMP-2 after exposure to 0, 15, 30 and 60 µM ferulic acid (FA). (A,B) are the expression analysis results of (C,D).
Statistical significance is denoted by ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 (one-way ANOVA; N = NC).

The SHSY5Y-APP cell lines were passaged every
2–3 days by trypsinization, and treated with 0, 15, 30 and
60 µM FA (Yuanmu Tech, China) for 24 h. After FA

exposure for 24 h, the BACE-1 expression decreased and
MMP-2 expression increased in a dose-dependent manner
(Figure 3).
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We next tested the expression of APP, another dominant
protein in the Aβ aggregation pathway, which is positively
correlated with BACE1. After exposure to FA, the proteolytic
cleavage of APP and APP enzymolysis is decreased, thereby
improving the ADprocess. In addition, we testedMMP9, another
protein in the extracellular matrix pathway. We observed that
extracellular matrix protein expression was increased after FA
exposure and contributes to the pathological process of AD
(Figure 4).

DISCUSSION

TCM Candidate Selection for AD Using
Data Mining
In this study, we used text mining to select a TCM
candidate for subsequent validation. FA was selected and
in vitro validation was performed to understand the potential
mechanisms involved in AD. Furthermore, the current study
used the information-medicine integrated system to map TCM
for AD research. In addition, text mining was coupled to the
experimental validation to assess the drug selection outcomes.
This offset the information gap and maximized the utilization
of existing knowledge to select the optimal TCM candidate to
study.

Drug discovery for AD is no longer a game of chance
or just limited to the availability of new technology. Societal
expectations about drug efficacy are rising; thus, early-stage

drug discovery necessitates accessible, standardized data sets
to generate a complete scenario of the physiological function
and disease relevance. Some pioneering studies have focused on
drug repurposing, such as systematic ‘‘omics’’ data mining of
genome-wide association studies (GWAS), HMDB, epigenomics
and proteomics data (Zhang et al., 2016; Pimplikar, 2017).
These studies suggested drugs that were applicable for other
diseases having novel anti-AD indications. These attempts were
very logical however these studies did not consider TCM as
a source of information for AD research. TCM is a good
source for drug discovery. The uniqueness of the TCM system
is based on the philosophical logic underlying daily practices
(Ho et al., 2011), which was accumulated over thousands of
years of empirical studies and provides a unique view of the
relationships between the human body and the universe (Gu
and Chen, 2014). Therefore, a better understanding of TCM
and key learning from the past with appropriate strategies for
the future is essential to make a significant difference. These
theories render the proposed approach useful in identifying
novel relationships between diseases and drugs that have a
high probability of being physiologically effective. On the other
hand, existing TCM drug mining primarily focuses on the
assessment of ancient classic literature, with less analysis of
herbal components (May et al., 2014; Pae et al., 2016), and
thus may affect knowledge dissemination. Our study is the
first to combine well-known TCM database with text mining
approaches. This led us to select FA as a lead candidate for
experimental validation for AD.

FIGURE 4 | Protein expression of APP and MMP9 after exposure to 0, 15, 30 and 60 µM FA. (A,B) are the expression analysis results of (C,D). Statistical
significance is denoted by ∗p < 0.05, ∗∗∗p < 0.001 (one-way ANOVA; N = NC).
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MMP2-BACE1 Mechanisms of FA in AD
Our findings suggested that FA might be a promising multi-
targeted TCM with a therapeutic potential for AD (Jung et al.,
2016). We evaluated the APP and BACE1 inhibitory activities,
which inhibit Ab aggregation; in addition, the matrix clearance
properties of MMP-2 and MMP-9 implicated FA was actively
involved in the alteration of matrix proteins and that it played a
major role in in vitro extracellular matrix remodeling. As shown
in a previous in situ proximity ligation assay (in situ PLA),
which is a new technique to monitor PPI with high specificity
and sensitivity, it was found that APP, MMP2 and MMP9
all interacted with TGFB1, and the interaction of MMP2 and
BACE1 was also positive (Chen et al., 2014). Furthermore, from
the Human Protein Reference Database (HPRD) in the STRING
platform (Higashi and Miyazaki, 2003), the COOH-terminal
parts of APP were found to interact with the extracellular matrix
and highly selectively inhibit MMP2, in which the decapeptide
region of APP was likely an active site-directed inhibitor toward
MMP2.

The pathways of PPI at the molecular level include cellular
transduction and biological function. Hence, the two pathways
of Aβ aggregation inhibition and extracellular matrix remodeling
were interconnected and integrated to the biological function-
signaling map for AD. The results of these analyses might
have potential application in exploring FA mechanism because
they can be used as rational targets to inhibit the function
of pathways essential to AD. In the multi-targeted AD model,
APP cleavage, inhibition of Aβ deposition, and extracellular
matrix remodeling are co-operative interactions involved in AD
pathology, which could be attractive therapeutics with respect
to pharmacokinetics and pharmacodynamics when compared to
a specific highly specific single target molecule. These results
highlight the prospective beneficial effects of FA as a therapeutic
agent against AD pathology.

One limitation of this study was that no animal model
was validated, and the experimental validation in the AD
cell model was not sufficient to make a conclusive statement
regarding the potential efficacy and benefit of FA. However,
we found evidence in previous study of FA’s protective effects
on different animal models of intra-cerebroventricular (i.c.v.)
injection of Aß1–42 in mice and APP/PS1 mutant transgenic

mice (Jung et al., 2016), which shows potent anti-oxidant and
anti-inflammatory activities. Future studies should discuss the
in-depth mechanisms of FA together with the physiological data
to evaluate FA efficacy and involvement in an AD animal model.
These include: What are the safety implications of the different
doses of FA for AD? What biomarkers exist for FA metabolites?
In addition, understanding the role of FA within the system, the
pathways and networks of the different protein interactions are
invaluable.

CONCLUSION

In summary, we demonstrate that the combination of textmining
and professional medical knowledge is an effective approach
for finding new mechanisms underlying the clinical therapeutics
for AD. Equipped with this data, the clinical scientist can
obtain information in a short period of time without searching
large volumes of articles. Moreover, using in vitro studies for
validation, the data-driven results were based on not only a
hypothesis but also true novel findings of potential mechanisms
interconnected and integrated by Aβ aggregation inhibition
and extracellular matrix remodeling underlying the activity of
FA. The present study strongly supported text mining of the
ever-increasing volume of literature and TCM database as a drug
repositioning approach for elucidating FA as a promising TCM
ingredient for treating AD.
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