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Acute respiratory failure (ARF) is a common problem in medicine that utilizes significant

healthcare resources and is associated with high morbidity and mortality. Classification

of acute respiratory failure is complicated, and it is often determined by the level of

mechanical support that is required, or the discrepancy between oxygen supply and

uptake. These phenotypes make acute respiratory failure a continuum of syndromes,

rather than one homogenous disease process. Early recognition of the risk factors for

new or worsening acute respiratory failure may prevent that process from occurring.

Predictive analytical methods using machine learning leverage clinical data to provide

an early warning for impending acute respiratory failure or its sequelae. The aims of this

review are to summarize the current literature on ARF prediction, to describe accepted

procedures and common machine learning tools for predictive tasks through the lens

of ARF prediction, and to demonstrate the challenges and potential solutions for ARF

prediction that can improve patient outcomes.

Keywords: acute respiratory failure, acute respiratory distress syndrome, machine learning, prediction, intubation

INTRODUCTION

Acute respiratory failure (ARF) is the inability to maintain sufficient oxygen or adequately
remove carbon dioxide in the blood. It is an increasingly common and serious complication
in hospitalized patients, with almost 1.9 million admissions for ARF in 2009, increased from
about 1.0 million in 2001 (Stefan et al., 2013). ARF is the most frequent reason for intensive
care unit (ICU) admission (Vincent et al., 2003; Cartin-Ceba et al., 2011). Once the severity
of illness necessitates invasive mechanical ventilation (IMV), ARF has a mortality of 34–37%
(Needham et al., 2004; Carson et al., 2006). Acute respiratory distress syndrome (ARDS), one
subcategory of severe ARF defined by diffuse inflammatory lung injury, affects about 120,000
hospitalized patients per year and has an associated mortality of 40–55% (Cochi et al., 2016;
Villar et al., 2016; Eworuke et al., 2018). The current treatment paradigm in acute respiratory
failure is reactive; a condition or disease triggers events that lead to respiratory failure, and
clinicians use devices to support the lung’s normal functions until the cause of ARF is adequately
treated. Early warning systems that alert providers to impending or worsened ARF may
mitigate its development. But before this paradigm shift from reactive to proactive care can
exist, clinicians need tools that use available data to help risk stratify new and evolving ARF.
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Early interventions in the development of ARF improve
outcomes and survival by delivering timely care. For example,
early recognition and resuscitation during septic shock reduces
ARF requiring IMV (Rivers et al., 2001; Rivers, 2006). In contrast,
a medical emergency team’s delayed response has been shown
to increase mortality by 47% (Boniatti et al., 2014). Critically
ill patients often show indications hinting at their downward
trajectory prior to the time of decompensation. One three-
hospital study showed that among patients on general wards who
later required ICU admission, 73% had signs on chart review
of clinical deterioration 0–8 h prior to transfer, and 43% had
signs 8–48 h prior to transfer to the intensive care unit (ICU)
(Hillman et al., 2002). Therefore, identifying patients at risk for
ARF, before clinicians can recognize it or the cause, is critical to
preventing ARF.

Though ARF is a physiologic process that indicates critical
illness, it is often recognized in research and clinical practice as
a continuum of many clinical phenotypes with varying degrees of
severity. In most cases, it is recognized by the type of mechanical
support device used (e.g., MV). Should ARF and ARDS be severe
enough to require prolonged IMV for over 10 days, clinicians
may offer to place a tracheostomy (Young et al., 2013), Although
the presence of a tracheostomy itself does not indicate ARDS
(Young et al., 2013), it can be used as a surrogate marker of the
severity and trajectory of ARF that is indicative of ARDS.

Identifying who is most at risk for ARF and its sequelae
is a challenging task because of the complexity and spectrum
of disease, but the development of machine learning (ML)
algorithms has allowed for a novel way to identify patients at
risk of developing or worsening ARF or ARDS. Traditionally,
risk prediction has been approached with prediction scores that
leverage conceptually simple metrics to present a tool that can be
easily computed by humans in the hospital to predict an outcome.
The principles and methods of ML allow the use of an expansive
number of physiologic, laboratory, and demographic variables to
create efficient, automated prediction of ARF and ARDS. Prior
researchers have successfully developed many models to predict
the onset of other states of critical illness, including cardiac arrest,
ICU transfer, acute kidney injury (AKI), or sepsis (Kang et al.,
2016; Mohamadlou et al., 2018; Nemati et al., 2018).

The objectives of this literature review are to (1) highlight
the current state of ARF and ARDS prediction through ML; (2)
describe core requirements of prediction modeling, with specific
focus on ARF; (3) discuss common machine learning-based
techniques that have been and could be used to predict ARF; (4)
emphasize key clinical and data science concepts and challenges;
(5) focus on fundamental research gaps in ARF prediction; and
(6) assess the suitability of implementation of ML algorithms in
predicting ARF and ARDS for clinical use.

METHODS

In May and June 2020, we conducted a literature review using
MEDLINE and Google Scholar databases to search for English
language papers using the following terms: ML and prediction
(“machine learning,” “data science,” “prediction,” and “deep

learning”), “ARF,” “ARDS,” respiratory failure support level (e.g.,
“mechanical ventilation,” “intubation”), or failure thereof (e.g.,
“NIV failure”). The purpose of this search was to identify studies
that demonstrated new or progressively worsening ARF. We
compared studies by predicted outcome of interest, number of
healthcare systems/hospitals, number of patients, and prevalence
of the outcome. We compared predictions by prediction metrics
if possible: sensitivity, specificity, positive predictive value (PPV),
area under the receiver operating curve (AUROC), area under the
precision-recall curve (AUPRC), and number needed to examine
(NNE= 1/PPV, also known as workup detection ratio [WDR]).

ALH, AIW, and PCC designed study methodology. PCC
and AIW devised search terms, reviewed papers, and compiled
data. All authors contributed to paper writing, revision, and
final approval.

Definition of Machine Learning
As definitions formachine learning and its applicationsmay vary,
we defined predictive ML for ARF as any possible regression
and classification technique learned from data of any modality
(e.g., EMR vitals, laboratory data) that also automatically applied
on said data for predicting ARF. As a result, we did not
examine semi-supervised clustering of ARF phenotypes from
clinical notes (Sharma et al., 2019) or diagnosis of a condition
(Reamaroon et al., 2019).

Organization by Support Level
In clinical practice and in research, ARF is often identified and
categorized by the mechanical devices used to support oxygen
or carbon dioxide management: non-invasive ventilation (NIV),
heated humidified high flow nasal cannula (HHHF), invasive
mechanical ventilation (IMV), or extracorporeal membrane
oxygenation (ECMO). ARF respiratory support levels have a
number of different endpoints, so we clustered prediction tasks
by respiratory support level as a surrogate for severity. The degree
of oxygen support required for ARF can vary from nasal cannula
and simple masks (often not seen as severe respiratory failure)
to non-rebreather masks, NIV and HHHF, and IMV. IMV can be
further delineated into IMV of any duration, prolonged IMV, and
tracheostomy. The definition of prolonged IMV can range from
48 h through 7 days (Gong et al., 2016; Parreco et al., 2018).

In contrast to general ARF, ARDS is operationally defined as a
subcategory of ARF. ARDS is recognized as a syndrome based on
clinical criteria that have changed in the past few years (Bernard
et al., 1994; ARDSDefinition Task Force et al., 2012). More recent
studies have moved toward the Berlin definition: (1) A clear
etiology within 1 week of a clinical insult or decompensation; (2)
chest x-ray with bilateral opacities not fully explained by other
causes; and (3) ARF not fully explained by heart failure with
a PaO2/FiO2 (blood oxygen concentration-to-delivery) ratio <

300 (ARDS Definition Task Force et al., 2012; Ferguson et al.,
2012). This review sought to capture studies that predicted new
or worsening ARF as indicated by a need for higher levels of
oxygen support (Figure 1). Composite outcomes that included
prediction of some level of respiratory support or ARDS were
also included.
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FIGURE 1 | Oxygen support level hierarchy. ARF often incorporates the top four rungs of support. In this diagram, non-rebreather masks often are temporizing

measures that lead to escalation to HHHF, NIV, and above. Extracorporeal membrane oxygenation ECMO, invasive mechanical ventilation IMV, heated humidified high

flow nasal cannula HHHF, non-invasive ventilation NIV, fraction of inspired oxygen FiO2; acute respiratory distress syndrome ARDS, liters per minute LPM.

Exclusions
As the focus of this review is on ARF prediction, we excluded
studies that focused on predicting cessation of respiratory
support (e.g., extubation) unless used to increase the level of
respiratory support (e.g., NIV failure leading to intubation).
Furthermore, this review focused on automated methods, so we
excluded studies validating predictive scores applied by people,
unless the study described the automated implementation of
a predictive score. We also excluded manuscripts for solely
detection or diagnosis of ARDS. Finally, although cardiac
arrest can result in ARF, because cardiac arrest can be varied
and not driven purely by respiratory physiology, we excluded
manuscripts focusing on cardiac arrest.

Any manuscripts published on non-peer-reviewed platforms
were excluded.

RESULTS: THE CURRENT STATE OF ARF
AND ARDS PREDICTION

After applying our selection criteria, six studies were included
in our review (Table 1). Patients in the derivation datasets
included those admitted to general wards and ICUs, with

reported incidences of ARF and their sequelae ranging
from about 2–30%. Study cohort sizes ranged from about
300 to 71,000. The proportion of patients assigned to
derivation and validation sets was not always specified. All
studies derived models on retrospective data, and only one
included a prospective validation (Dziadzko et al., 2018).
All data sources were captured from archived electronic
medical records; most use structured data such as laboratory
results or vital signs, with one using a severity of illness
score calculated on the first day of ICU admission (Parreco
et al., 2018). A number of ML classification models were
used, including logistic regression, neural networks, and
ensemble models such as random forest and decision trees.
One study (Martín-González et al., 2016) used ML for
feature selection.

Various metrics of model performance were reported
(Table 2). Most studies provided AUROC as a discriminatory
measure. AUROCs generally ranged from 0.8 to 0.91, with
one exception that reported an AUROC of 0.66–0.83 (Martín-
González et al., 2016). Other performance metrics were not
consistently reported but ranged as follows: sensitivity (26.8–
80%), specificity (13–95%), PPV (9–82%), NPV (62–99%). Based
on the reported PPVs, the range of NNE ranged from 2 to 11.
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TABLE 1 | Study characteristics stratified by respiratory failure level.

Retrospective Prospective

Study name Outcome

predicted

Year Event

horizon

Machine

learning

method

Input data # of patients Patient

locations:

External

physical

validation

Temporal

validation

Prospective

validation

% Incidence

of outcome

Prediction of ARF requiring NIV, HHHF, or IMV

(None)

Prediction of NIV

(None)

Prediction of IMV/NIV Failure

Success/failure prediction of

non-invasive mechanical ventilation in

intensive care units. using

multiclassifiers and feature selection

methods (Martín-González et al.,

2016)

NIV

success

2016 at NIV

initiation

- Feature

selection

(CFSS, IG)

- classification

(DT, kNN, RF)

- NIV hours

- Demographics

- Vitals

- Labs

- Oxygen therapy

- Blood gases

389 - Single-center

- ICU admissions

- - - 0.51

Temporal convolutional networks

allow early prediction of events in

critical care (Catling and Wolff, 2020)

- Intubation

- Extubation

- Death

- pressors

2020 1–6 h TCN-FFNN - Demographics

- Vitals

- Lab values

- Oxygen therapy

- Patient

evaluations

- Nursing

evaluations

4,713 - Single-center

- ICU admissions

- Yes - 0.16

Prediction of prolonged IMV and/or tracheostomy

Multicenter derivation and validation

of an early warning score for acute

respiratory failure or death in the

hospital (Dziadzko et al., 2018)

- Prolonged

IMV > 48 h

- Death

2018 48 h RF - EMR labs

- Vitals

- Oxygen therapy

Training and

internal

validation:

68,775

external

validation:

2,258

- Two academic

medical centers,

five hospitals

- All admissions

Yes Yes Yes

NCT2488174

0.03

Using artificial intelligence to predict

prolonged mechanical ventilation and

tracheostomy placement (Parreco

et al., 2018)

- Ventilation

>7 d

- Trach

placement

2018 At

intubation

Gradient-

boosted

DT

- Severity-of-illness

scores calculated

on the first day of

ICU admission -

Component values

Elixhauser

comorbidities

20,262 - Single-center

- ICU admissions

- - - PMV: 0.14

trach: 0.07

Predicting ARDS

Machine learning for patient risk

stratification for acute respiratory

distress syndrome (Zeiberg et al.,

2019)

ARDS 2019 6 h - LR

- XGBoost

- Demographics

- Vitals

- Laboratory

values

- Medication

administration records

2,473 - Single-center

- All admissions

- Yes - 0.02–0.03

(Continued)
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There was significant heterogeneity in the outcomes that
characterize ARF within the existing literature. Some studies
included ARF as a composite outcome, other outcomes such as
mortality (Catling andWolff, 2020), and others includedmultiple
ARF phenotypes as a composite outcome. There were also
differences in the metrics used to assess model performance and
inconsistencies with reporting of input data and ARF incidence.
We therefore provided a more detailed, narrative summary of the
results of our literature search by grouping studies based on the
ARF phenotypes that models were asked to predict.

Prediction of NIV, HHHF, or IMV
In the United States, the modalities of NIV, HHHF, and IMV
generally necessitate ICU admission. No studies predicted a
composite endpoint of NIV, HHHF, or IMV.

Prediction of NIV
No studies predicted the initiation of NIV.

Prediction of IMV
No studies exclusively predicted the initiation of IMV, but
composite outcomes exist in the literature that include IMV.
Catling andWolff (2020) used a temporal convolutional network
in conjunction with a feed-forward neural network to predict a
composite outcome of death and clinical events (e.g., intubation,
extubation, etc.) with a 1–6 h event horizon, using demographics,
vitals, labs, oxygen therapy, and nursing evaluations from 4,713
ICU patients and evaluating predictions on these various clinical
event endpoints. Of note, with a 15.7% intubation rate, their
algorithm’s ability to predict intubation 1–6 h prior to actual
intubation had an AUROC of 0.896 with a PPV of 0.139 (Catling
and Wolff, 2020).

Others have predicted progression of ARF, particularly those
who failed NIV and required IMV. Martín-González et al. used
multiple ML methods to predict NIV success or failure (Martín-
González et al., 2016). They examined 410 NIV episodes in 389
ICU patients at one hospital in Spain, primarily for hypoxemic
ARF, post-extubation ARF, and COPD exacerbation, without a
clear prediction of when the event will occur. This manuscript
first used two forms of feature selection (correlation-based
feature subset selection, information gain) to refine 93 variables
of demographics, vitals, labs, and ARF etiologies (into 17 and
44 variables, respectively) for their classifier models given the
relatively high dimensionality for low number of patients. All
variables and selected variables were then fed into a number of
ML algorithms, including decision trees (J48, REPTree), Bayesian
networks, k-nearest neighbors, and random forest. Irrespective of
feature selection or model performance improvement techniques
such as boosting and bagging, predictions of NIV failure
requiring intubation were fairly robust (AUROCs 0.70–0.83,
PPVs 0.63–0.82, and sensitivities of 0.65–0.80).

Prediction of ARDS
Ding et al. (2019) conducted a secondary analysis of data
from 296 patients in six ICUs in Beijing, China, to predict
ARDS using the Berlin definition. The authors used a random
forest approach to predict development of ARDS using baseline

Frontiers in Big Data | www.frontiersin.org 5 November 2020 | Volume 3 | Article 579774

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


W
o
n
g
e
t
a
l.

A
c
u
te

R
e
sp

ira
to
ry

F
a
ilu
re

P
re
d
ic
tio

n

TABLE 2 | Study prediction characteristics stratified by respiratory failure level.

# Patients % Incidence

of outcome

Sensitivity Specificity PPV NPV NNE (1/PPV) AUROC

Prediction of ARF requiring NIV, HHHF, or IMV

(None)

Prediction of NIV

(None)

Prediction of IMV/NIV Failure

Success/failure prediction of non-invasive mechanical ventilation in

intensive care units. Using multiclassifiers and feature selection methods

(Martín-González et al., 2016)

389 0.51 0.60–0.80 0.13–0.40 0.63–0.82 0.62–0.78 1.22–1.59 0.66–0.83

Temporal convolutional networks allow early prediction of events in critical

care (Catling and Wolff, 2020)

4713 0.16 – – 0.14

(0.12–0.16)

– 7.19 0.90

(0.89–0.91)

Prediction of prolonged IMV and/or tracheostomy

Multicenter derivation and validation of an early warning score for acute

respiratory failure or death in the hospital (Dziadzko et al., 2018)

71033 0.03 0.63 – 0.21 0.99 4.76 0.87–0.90

Using artificial intelligence to predict prolonged mechanical ventilation and

tracheostomy placement (Parreco et al., 2018)

20262 PMV: 0.14

trach: 0.07

PMV: 0.48

trach: 0.27

PMV: 0.89

trach: 0.96

PMV: 0.41

trach: 0.32

PMV: 0.92

trach: 0.95

PMV: 2.44

trach: 3.70

PMV: 0.82

trach: 0.83

Predicting ARDS

Machine learning for patient risk stratification for acute respiratory distress

syndrome (Zeiberg et al., 2019)

2743 0.02–0.03 0.56 0.86 0.09 – 11.1 0.81

Predictive model for acute respiratory distress syndrome events in ICU

patients in china using machine learning algorithms: a secondary analysis

of a cohort study (Ding et al., 2019)

296 0.31 – – – – – 0.82

Prediction of ECMO

(None)

As outcome prevalence affects performance, outcome prevalence is noted here for ease of comparison. Other study characteristics that may affect prevalence (e.g., prevalence of ARDS is higher in all ICU admissions than in all hospital

admissions) are found in Table 1.

PPV, Positive predictive value; NPV, negative predictive value; AUROC, area under the receiver operating curve.
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characteristics, clinical variables, and predisposing conditions
collected at admission. They reported an AUROC of 0.82 and
a predictive accuracy of 0.87. However, because the study was
a secondary analysis, the study employed lengthy exclusion
criteria, omitting patients with chronic lung disease and left
ventricular ejection fraction <35%. Because some patients with
severe underlying illness and higher ARDS risk were omitted,
generalizability of this ML algorithm to a wider population may
be somewhat limited.

Zeiberg et al. (2019) trained a regularized logistic regression
model using demographic, laboratory values, vital signs, and
medication administration records from 1,621 patients admitted
to a large tertiary care center in 2016 to predict ARDS diagnosis.
The authors tested the model on a 2017 cohort of 1,122 patients
and reported an AUROC of 0.81. Unlike the study by Ding et al.
this study was conducted among patients admitted to the hospital
who developed hypoxia rather than patients admitted to the
ICU. Consequently, the lower ARDS incidence (2–3%) resulted
in a positive predictive value of 9%. Many of the identified top
risk factors, including low PaO2/FiO2; high minimum, median,
and mean heart rate; and low O2 saturation, are well-recognized
risks for ARDS and have been directly or indirectly included
in the previously published lung injury prediction score (Gajic
et al., 2011). However, other predictors identified in the Zeiberg
et al. study, including normal albumin, platelet, and hemoglobin
levels, differed from the lung injury prediction score.

Prediction of Prolonged IMV and/or
Tracheostomy
ARF severity, once receiving IMV, can be further stratified into
short or prolonged IMV. “Prolonged” IMV, often defined as
IMV for more than 48–168 h, is sometimes a preferred outcome
to predict risk of “true” ARF, to omit learning patterns that
predict short-term IMV needed for procedures or surgeries.
Tracheostomy serves as a marker for further prolongation of
IMV beyond 10–12 days (Young et al., 2013). The goal is to
predict a clinically meaningful outcome that predicts those at risk
for significant morbidity and mortality.

Dziadzko et al. (2018) predicted IMV > 48 h or death 48 h
into the future using their retrospectively derived Accurate
Prediction of Prolonged Ventilation (APPROVE) algorithm, a
random forest ML technique. Their prospective cohort study
demonstrated AUROCs of 0.77–0.80, false positive rates (FPR)
of 0.08–0.17, and positive predictive values (PPV) of 0.13–0.21.
However, this model observed a late endpoint of prolonged IMV
in an attempt to reduce the effect of practice variation. Further,
the authors included a composite endpoint of prolonged IMV
and all-cause mortality, which muddled the interpretability of
the findings.

Parreco et al. (2018) described a predictive model for
prolonged IMV (> 168 h) or tracheostomy among patients
receiving IMV in the ICU using gradient boosted trees. They
examined 20,262 intubated patients from MIMIC, a publicly
available single-center ICU database from 2001 to 2012, and
examined classifiers for prolonged IMV and tracheostomy
separately. Of their cohort, 13.6% received prolonged IMV, with

AUROC of 0.82, a PPV of 41.1%, and sensitivity of 47.8%. Seven
percent of their study population received tracheostomies, which
their model predicted with an AUROC of 0.83, a PPV of 31.7%,
and a sensitivity of 26.8%. Their results improved further in the
surgical ICU subgroup, with prolonged IMV and tracheostomy
AUROCs of 0.852 and 0.869, respectively. When they analyzed
their trees, the most important variables were not only aligned
in the general ICU population between prolonged IMV and
tracheostomy, but also aligned with models for both outcomes
trained in the surgical ICU subset.

Prediction of ECMO
No manuscripts predicted the initiation of ECMO.

DISCUSSION

In this review, we identified six studies that used ML algorithms
to predict development of ARF and its sequelae. Predictive
models generally exhibited good performance, but there was a
relative paucity of validated studies that used ML algorithms
to predict ARF, in contrast to predictions designed for
other outcomes such as sepsis (Nemati et al., 2018) or AKI
(Mohamadlou et al., 2018). One manuscript demonstrated good
performance of ARF in prospective clinical evaluation. To our
knowledge, no studies were published that predicted NIV or a
composite endpoint of NIV, HHHF, and IMV using ML.

Despite the lack of significant research in the area of ARF
prediction using ML, existing studies highlight the potential in
this research domain and identify many questions and issues
that must be overcome to further its development. There are
many ML approaches to choose from; each type of algorithm
has advantages and disadvantages depending on the intended
goal. Even once a specific approach is chosen, there can be other
barriers to implementing ML methods to predict ARF. Informed
by a recently published guideline for Development and Reporting
of Prediction Models (Leisman et al., 2020) and the Transparent
Reporting of a Multivariable Prediction Model for Individual
Prognosis or Diagnosis (TRIPOD) guidelines (Moons et al.,
2015), we discuss the required conditions to predict ARF, provide
strengths and weaknesses of ML algorithms that could be used,
and discuss barriers at each stage of ML algorithm development:
data and algorithmic development, model performance and
generalizability to external cohorts, and implementation of ML
algorithms in real-world settings.

Requirements for Prediction Modeling
There are several considerations that have been designed for the
development and reporting of prediction models by Leisman
et al. (2020), which referenced TRIPOD guidelines (Moons et al.,
2015) as a foundation for guidelines by 31 respiratory, sleep,
and critical care journal editors. Leisman et al. reinforced the
concept of prediction and highlighted three key criteria for
useful prediction models (Leisman et al., 2020). Some prediction
variables may include causal factors, but not all variables must be
causal.We have reframed key concepts from Leisman’s guidelines
in the context of ARF and ARDS predicted from EMR data:
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1. A useful prediction model must use known variables
(predictors) to estimate the “value” of the event of interest. In
the case of a binary outcome, that model must have a classifier
function. In other words, there must be a method to accurately
and consistently label the data.

a. In the context of ARF, the binary outcome can be the
presence or absence of a respiratory support level (e.g., IMV
or no IMV). ARF labels may suffer from documentation
problems (as respiratory support may be developed first
and then retroactively charted). This may lead to delayed
labeling of ARF.

b. In the context of ARDS, this binary outcome can be the
presence or absence of ARDS. However, the presence of
ARDS can suffer from poor interrater reliability, which
subsequently affects the data upon which the model is
trained, and therefore the model itself.

2. The predictors must be known prior to the outcome state:

a. In the context of ARF, the presence or absence of data from
the ventilator (e.g., tidal volume, plateau pressure) cannot
be used to predict the need for IMV. If the data is present,
IMV has already been started.

b. In the context of ARDS, the presence or absence of
paralytics or proning cannot be used to predict ARDS,
as moderate-severe ARDS would cause the initiation of
such techniques.

3. The model should retain accuracy when applied to new
observations (generalizability).

a. When tested on patients the model has not been trained on,
does it still produce accurate predictions for ARF or ARDS?

b. These concepts and many other nuances involved in
prediction beyond the scope of this text are explored
further by Leisman et al. (2020).

Principles of Machine Learning in
Predictive Modeling
The machine learning methods used by manuscripts captured
in this review covered a broad range of topics, including
decision trees (e.g., random forest, XGBoost), deep learning, and
regression. There are other methods that may be well-suited to
the ARF classification problem such as support vector machines
and anomaly detection. Each machine learning approach has
advantages and disadvantages in the context of ARF prediction.

Machine Learning Method Organization
At its core, the concept of machine learning encompasses the
study of algorithms that improve through experience. For the
purpose of this review, machine learning refers to methods that
use training data to provide experience from which models are
developed before being applied directly to data without human
intervention (as opposed to the creation of a scoring system for
a human to apply). Classically, there are independent variables
from which dependent variables (often called outcomes or labels)
can be learned. These variables can be continuous, ordinal,
or categorical.

We will examine fundamental principles behind the classes
of techniques used in the manuscripts summarized in Table 1.
(A full examination of the landscape of machine learning
in healthcare prediction applications is beyond the scope of
this manuscript.) We will review common supervised machine
learning techniques used to learn a task like ARF prediction:
regression, decision trees, k nearest neighbor, and deep learning
(Supervision refers to the use of data in which outcome labels—
e.g., presence or absence of ARF or ARDS—are known). Each of
these approaches have different input requirements and output
modalities, as well as strengths and weaknesses. At times, the
data themselves may lend themselves to certain techniques
over others.

Regression Methods
Regression encompasses a group of techniques that estimate
the relationship between independent variables (predictors) and
dependent variables (outcomes) based on various models of
the association. Many forms of regression require meaningful
numeric input (both continuous and ordinal) and either
a continuous outcome (e.g., linear regression) or output a
continuous probability from 0 to 1 of a binary outcome (e.g.,
logistic regression). Logistic regression, used by Zeiberg et al.
(2019) to predict ARDS, is a common type of regression
method. These data are then used to generate coefficients that
define the mathematical relationships between independent and
dependent variables.

Given the clear expression of coefficients, logistic regression
is often seen to be easy to interpret. Coefficients with greater
weights are seen to be of greater influence on the dependent
variable. Consequently, it also gives some insight into how the
dependent variable may change as independent variables vary,
potentially giving insight into how a probability can be averted.
Both the understanding behind the prediction and the insight
into how to affect the prediction can be very attractive when
implementing models.

Logistic regression is often seen to have a limited capability
in representing more complex models. For example, the basic
implementation of logistic regression does not handle interaction
terms. One can use a priori hypotheses about what interaction
terms to test and include those in the model, but this process
can be quite laborious. Furthermore, the models may not fit
well if the input variables are not linearly associated. It may
be possible that a non-linear quadratic function may be better
suited to predicting a complex outcome like ARF. Additionally,
the independent variable generally needs to be known prior
to learning the model. Finally, logistic regression may not be
able to handle separate models that lead to the same endpoint.
For example, both decompensated heart failure and pneumonia
can contribute to ARF and use different variables to predict
the endpoint.

Decision Trees
Decision trees use tree-based models to stratify populations by
various levels of decision nodes based on different independent
variable values, then once grouped to a more homogenous
population, to reflect the distribution of the dependent variable.
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For the purposes of this manuscript, decision trees also include
ensemble-based decision tree methods such as random forests
and eXtreme Gradient Boosting.

In general, decision trees and their ensemble variants split
populations based on various decision points and thus can handle
categorical, ordinal, and continuous data. They take the overall
population at the top, or root, node and segment them into
smaller and smaller partitions until the leaf node is reached. In
many cases, the majority class—or the proportion of the majority
class in the leaf—is used to generate the predicted value. To
counter the trivial solution that splits the data into every possible
combination of independent variable values, complexity is often
penalized by techniques like “information gain” or “minimum
descriptor length.”

The classic decision tree is easy to understand—we follow
the path of decisions that lead us from the root node to
the leaf node. Through sequential variables, it is possible for
decision trees to represent interacting terms. However, the forced
dichotomization to achieve decision node splits leads to a limited
range of expression. Furthermore, compromises secondary to
discretization as opposed to continuous variable handling can
result in aberrant behavior. For example, a respiratory rate of 29
is more similar to 31 than a rate of 18. However, if respiratory rate
is discretized to > 30 or <= 30, the respiratory rate of 29 would
be handledmore similarly to a respiratory rate of 18, which would
be clearly different.

Ensemble methods take a collection of trees together to
better predict the dependent variable. Conceptually, this reflects
that a variety of conditions can result in a similar label or
outcome. For example, both decompensated heart failure and
pneumonia can lead to respiratory failure requiring intubation.
What may be accounted for in a single complex tree may
be more appropriately accounted with two simpler trees, each
describing the component process that leads to the common
outcome. Consequently, each component tree of the ensemble
may have different variables. In theory, this may result in better
performance by ensuring model stability. For instance, random
forests, as in Dziadzko et al. to predict prolonged IMV and
death and Ding et al. to predict ARDS, construct many trees
simultaneously in the concept that “weak predictors,” if properly
weighted, combine to form a single strong predictor. Gradient
boosted tree techniques, including eXtreme Gradient Boosting
(XGBoost), as in Parreco et al. (2018) to predict prolonged IMV
or tracheostomy and Zeiberg et al. (2019) to predict ARDS,
successively construct new models to improve predictions of the
dependent variable.

In contrast to the classic decision tree methods, ensemble
methods like these are harder to interpret. Following a path of
decisions grows significantly more complicated as the number
of component trees increases. Furthermore, although they can
naturally handle categorical data well, they still suffer from
requiring discretization for continuous variables, potentially
losing useful information.

Clustering
Conceptually, clustering takes the concept of using similarities
between different points in training data to create a space
where similar data tends to be grouped together. Zheng

et al. (Martín-González et al., 2016) use k-nearest neighbor,
a clustering technique that predicts based on the majority
label of similar “neighbors,” or observations. It bypasses the
complexity of modeling the underlying problem by only judging
similar examples.

By knowing how similar new data is to existing data, it is
possible to determine if a new data point differs significantly
from the underlying data. On one hand, it gives a level of
confidence at how well the current model can offer insight
into the new data. On the other hand, if a new cluster
develops that is distinct from current data, it may be possible
to discover new phenotypes. Furthermore, it may be possible,
if similar previous patients are found, to use the course of
previous patients to provide insight into the progression of the
disease course.

One difficulty is that clustering requires the development
of a “distance metric” to judge datum similarity. For example,
how different is terminal cancer from a history of well-
controlled diabetes? How do we compare that difference from
a difference in laboratory values? Interpretability can also be
difficult. Distances and distance components from multiple
neighbors doesn’t offer insight into how a model predicts, nor
does it offer suggestions as to how to change goals to alter
patient trajectory.

Deep Learning
Representation learning permits machine learning to be
fed with raw data and discover representations needed for
detection or classification. Deep learning chains several layers
of representation learning to form layers of non-linear modules
(sometimes known as neurons) that capture progressively more
abstract concepts in networks, hence the original name of “neural
networks.” Most importantly, these layers are themselves learned
from data by a general purpose learning machine (LeCun et al.,
2015).

One of the more recent evolutions of neural networks,
convolutional neural networks, achieved practical success
and widespread adoption with easier training and broader
generalization by leveraging key ideas inherent to natural
signals (local connections, shared weights, pooling, and many
layers). By exploiting the property that many natural signals are
compositional hierarchies—and combining convolution layers
of previous layers with pooling layers that merge semantically
similar features—deep learning can create robust representation
generalizations even with widely varying data. Catling and
Wolff (2020) use another method called temporal convolutional
networks (TCN) introduced by Lea et al. (2017) to capture
temporal variation in conjunction with a neural network to
predict “significant” events like intubation, extubation, and
death. These complex representations merge known knowledge
(e.g., demographics) with evolving data (e.g., vitals) to create
their predictions.

There have been many advances in the field of computer
science attributable to deep learning—especially in terms
of computer vision—promises that power interest in these
methods today. With such complexity, they can model complex
interactions that can be incredibly robust. For example, methods
have been developed to recognize when a video may contain a
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TABLE 3 | Landscape of manuscripts examined in the context of ARF prediction outcomes by ML method.

Probabilistic

methods

Deep learning SVM Regression Decision trees Collaborative

filtering

Clustering Reinforced

learning

Outlier

detection

Disease classification

or prediction

ARF (IMV):

- Catling and

Wolff (2020)

ARDS:

- Zeiberg

et al. (2019)

ARF (prolonged IMV): -

Dziadzko et al. (2018)

ARDS:

- Zeiberg et al. (2019)

- Ding et al. (2019)

Disease progression ARF (prolonged IMV):

- Parreco et al. (2018)

Early hospital

readmission

Mortality prediction ARF (IMV):

- Catling and

Wolff (2020)

ARF (prolonged IMV):

- Dziadzko et al. (2018)

Treatment response

prediction

ARF (NIV failure):

-Martín-González et al.

(2016)

ARF (NIV failure):

- Martín-González

et al. (2016)

cat, despite wide variation in the kind of cat, lighting, and camera
angles (Le et al., 2011).

Its complexity also drives one of the largest disadvantages: its
lack of transparency, where the reason for a model arrives at a
conclusion from input data is unclear (Samek et al., 2017). As
such, without sufficient understanding—and if deep learning is
applied in a “black box” method—deep learning methods can fail
in unexpected ways with seemingly minor perturbations to the
input, like predicting an entirely different result by varying only
one pixel in an image (Su et al., 2019). Such catastrophic failures
can lead to significant harm if in high stakes decision making like
ARF prediction.

Outcomes for Predictive Modeling
Beyond inherent characteristics of various machine learning
methods, thought must be given to the outcomes to predict.
To organize this, we rely on Levy-Fix et al.’s (2019) prediction
outcome landscape, reformulated for ARF and ARDS (Table 3).
This spectrum of prediction targets, from disease classification
to intervention prediction, has different context and nuances.
We focus on the formulation into specific tasks for the machine
learning methods to learn.

• Disease classification and prediction tasks focus on either the
automatic detection of the presence of a disease (e.g., “Does
my patient have ARDS?”) or the prediction of whether the
disease will develop (e.g., “Will my patient develop ARF?”).
Such tasks can assist in either preventing the development
of the disease (e.g., “giving diuretics in my patient with
ARF secondary to decompensated heart failure can prevent
worsening respiratory status and need for IMV”) or identify
when a patient should be placed on low tidal volume
ventilation if ARDS is detected (Acute Respiratory Distress
Syndrome Network et al., 2000). Dziadzko et al. (2018),
Zeiberg et al. (2019), Catling and Wolff (2020), and Ding
et al. (2019) focus on predicting the development of ARF
and ARDS.

• Once detected, disease progression tasks focus on whether a
disease may worsen (e.g., “Will my patient with mild ARDS
develop severe ARDS?”). This endpoint may assist clinicians
in determining which patients may need to be considered
for early hospital transfer for ECMO. Conversely, Parreco
et al. (2018) predict whether a patient in ARF would require
prolonged therapy, allowing clinicians to identify patients
who may benefit from further attention to improve their
status or consider earlier transfer to another facility for
ventilator weaning.

• If the disease will improve and the patient is discharged,
early hospital readmission tasks focus on whether the patient
will experience early readmission (e.g., “Will my patient who
developed ARDS and is now being discharged get readmitted
to the hospital within 30 days?”). This endpoint is commonly
considered in surgical specialties or cardiac interventions and
can assist in identifying which patients may need either a
postponed discharge or more attention and closer follow up
after discharge.

• If the disease will worsen, mortality prediction tasks focus
on whether the patient will die. This task can be especially
insightful if the death results from the disease. As not all
patients with worsening disease will die, this is a different
evolution of the disease progression endpoint. Inmass casualty
scenarios, this method may assist in triage. Catling and Wolff
(2020) and Dziadzko et al. (2018) use composite endpoints
including death as surrogate markers for decompensated
respiratory failure that didn’t survive until intervention.
Unfortunately, mortality prediction tasks suffer from a
number of confounding factors, including death from other
processes (e.g., “my patient who died from a gastrointestinal
bleed didn’t have ARF butmay be labeled as a positive outcome
due to death.”).

Though not specific to predicting ARF, other ML tasks that
could complement an ARF or ARDS prediction model include
treatment response prediction, treatment recommendation,
optimal treatment identification, and intervention prediction.
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To date, no studies examine these methods in relation
to ARF.

Algorithm Development Barriers: Input
Data and Outcomes
Leisman et al. reinforces the need for known predictor variables
to predict a clear outcome of interest. However, some input
data used by ML algorithms may not be meaningful, and it is
important to distinguish between input data that is impacted by
physiology from provider practice. For example, an algorithm
trained on electronic medical record (EMR) data may learn
that a patient is more likely to decompensate when vitals
are checked more frequently. However, vitals may be checked
more frequently because a staff member has perceived a patient
to be at high risk for decompensation and initiated more
frequent vitals measurements. Consequently, this algorithm can
be seen as detecting provider practice more than predicting
decompensation. Through effective experimental design, it is
possible to reduce the contribution of provider practice to more
effectively highlight the prediction of physiology.

Predictions must be achieved with known data, but significant
amounts of data are captured with clinician gestalt via patient
interaction and assessments that may not be captured adequately
in the medical record. More clearly defined data exists using
structured (often numeric or categorical) data in the EMR.
Although data does exist in other sources, such as clinical
notes, the state of natural language processing and understanding
makes it difficult to extract information. One recent example
highlighting the potential of combining EMR and non-EMR
data comes from a study by Zhang et al. (2020). These
researchers employed a deep learning algorithm using Deepnetv3
that processed chest computed tomography (CT) images to
identify lesions characteristic of COVID-19. The Deepnetv3-
based algorithm generated features that were then combined
with structured EMR data using a temporal convolutional
network linked with a feed forward neural network to predict
a composite outcome of death, ICU admission, and intubation
with an AUROC of 0.91 and PPV of 0.14. This paper lends
insight into future directions of combining radiologic data with
EMR data, but it was not included in this review because it
did not provide clear information regarding the physiology
prediction component.

In supervised and semi-supervised learning, ML predictions
require an accurate method of defining an outcome for
training so that models can be applied to future patients.
Non-specific labeling leads to incorrect model training and
inaccurate predictions. Though ARF has physiologically based
definitions, researchers mirror the tendency of clinical providers
to operationally categorize ARF by phenotypes of respiratory
support that represent the spectrum of its severity (Figure 1).

In all prediction models, predictor values must occur prior
to the outcome, but ARF as a physiologic process doesn’t
always have a temporal relationship with predictors that is
clearly identified. Diagnosis by billing codes at hospital discharge
does not provide sufficient training data for an algorithm
to understand the exact onset of ARF. Use of phenotypes

of respiratory support methods as our ARF outcomes of
interest offer clear initiation and discontinuation endpoints for
patients on the ARF spectrum. Consequently, ARF and ARDS
phenotyping helps us consider the context of outcomes in terms
of both overall diagnosis at the encounter level (e.g., Did the
patient have ARDS during this admission?) and at the temporal
level (e.g., If the patient had ARDS, when did they develop it?).

Difficulties With Predicting ARF
Because ARF phenotypes are often defined by an action
(intubation for placement on IMV) rather than the physiology,
there is considerable heterogeneity in the population of interest.
Decisions surrounding intubation and tracheostomies can vary
widely because not all clinicians treat ARF the same way. The
underlying cause of ARFmay further contribute to heterogeneity.
Some patients with a need for respiratory support—such as those
with COPD or heart failure exacerbations—may be treated with
NIV, HHHF, or IMV. During the in COVID-19 pandemic, there
are varying levels of acceptance of NIV because of the potential
infectious risk. Patients who would normally have received NIV
for a short period of time instead received IMV. Although
ARF diagnoses have increased, the number of intubations has
grown at a much slower pace, with the difference made up by
NIV. Of the studies reviewed, only those testing one algorithm
was designed to deduce physiologic outcomes and minimize
variations induced by provider preference by using prolonged
IMV as a filter, presuming that only patients who would have
received a provider with a low threshold for intubation would
have extubated a patient by 48 h (Dziadzko et al., 2018). Another
(Parreco et al., 2018) approached this by examining all ICU
patients and then a subgroup of surgical ICU patients to better
convey uniformity to provider practice.

Tracheostomy as an ARF outcome also suffers from label
heterogeneity. Physicians have different thresholds for duration
of IMV before performing a tracheostomy (Durbin, 2010;
Bittner and Schmidt, 2012; Cheung and Napolitano, 2014).
Practices in neurologic ICUs may vary further, depending
on the level of neurological devastation (Ahmed and Kuo,
2007). Furthermore, given concerns of aerosolization, COVID-
19 has changed standard practices at many hospitals, delaying
tracheostomy until negative viral studies (Heyd et al., 2020).

Difficulties With Predicting ARDS
As with ARF, the case definition for ARDS is also unclear at
both the encounter level and at the temporal level. The Berlin
criteria (Definition Task Force et al., 2012) replaced the prior
American-European Consensus Conference (AECC) (Bernard
et al., 1994) for defining ARDS with some notable differences.
Specifically, the new definition requires a time-window of 7
days for acute onset, removes the wedge pressure requirement,
adds a minimum PEEP requirement, and redesignates acute lung
injury as a mild form of ARDS. While these efforts improve the
quantified definition from the AECC definition, there remains
some areas of ambiguity. First, the definition of “acute onset”
varies, which can alter the time of ARDS onset. Second, there
exists concern around the concept of an ARDS onset itself,
with the reliance on the influence of potential error in clinical
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variables which underpin the definition. Third, the nature of
collecting and entering information is directly associated with
heterogeneity in clinical workflow and clinical decision making.
The result of these permutations therefore complicate efforts that
rely on quantitative methods to classify or predict the onset of
ARDS. The lack of such clarity further complicates comparisons
and benchmarking of various efforts that have been made in
identifying ARDS earlier.

Even among users of the Berlin criteria, there is only moderate
interobserver reliability in ARDS diagnosis. Sjoding et al. (2019)
reported the kappa for interrater reliability of ARDS diagnosis
among three critical-care trained clinicians to be 0.5, with
variation attributed to the subjectiveness of chest radiograph
interpretation. ARDS requires chest imaging (either a radiograph
or computed tomography) with “bilateral opacities consistent
with pulmonary edema.” The clinical judgment of “consistent
with pulmonary edema” is subject to provider perspective.
Because of the variability in the case definition across individuals,
the reliability of machine learning algorithms is likely negatively
impacted when applied across internal and external validation
cohorts. Creating an automated definition using radiography
likely will require either some method to parse radiology reports
or direct image processing.

Model Performance Barriers
Despite their power to monitor patients automatically without
human intervention, MLmethods bring unique new problems in
implementation. For example, ML methods can offer alerts on
all patients within a hospital or healthcare system, and they can
easily overwhelm care teams. NNE offers insight to the number of
patients that must be examined before an intervention is made—
lower is better. Additionally, ML methods can only extrapolate
from current practice. Prediction algorithms cannot predict the
need for ECMO if ECMO is not available in training data.

Additional studies are needed to determine the specific
circumstances ML provides additional benefits beyond
traditional predictive models. Gong et al. (2016) and Dziadzko
et al. (2018) compared a model to previously developed scores
(i.e., the National Early Warning Score [NEWS] and the
Modified Early Warning Score [MEWS]). They reported more
robust AUROCs when using APPROVE (AUROC: 0.87; 95%
CI: 0.85–0.88) compared with NEWS (AUROC: 0.74; 95% CI:
0.72–0.76) and MEWS (AUROC: 0.68; 95% CI: 0.66–0.71). The
sensitivity of APPROVE was at least 35% higher than NEWS
and MEWS for the selected cutpoints in the derivation set
from 2013, with variable PPVs. By contrast, the sensitivities
of APPROVE, MEWS, and NEWS were more comparable in
the 2017 prospectively tested external hospital cohort, and the
corresponding PPVs for APPROVE when the sensitivities were
closest (i.e., around 65%) were higher (16% vs. 7% [MEWS] and
4% [NEWS]). While changes in the ARF causes and management
over time may account for these differences in performance,
other unaccounted factors may have contributed. Parreco et al.
(2018) reported the most important variables included in their
ML model for prolonged ventilation, which included prior
illness severity scores (e.g., Logistic Organ Dysfunction Score,
Sequential Organ Failure Assessment, Oxford Acute Severity of

Illness Score, etc.) and other well-known risk factors of critical
illness (e.g., arrhythmias, etc.). Perhaps the role of ML in certain
circumstances is to use the best combination of simpler scoring
systems to better predict ARF.

Despite the numerous data mining techniques available, to
our knowledge no studies have directly compared the ability of
different types of ML methods to predict ARF and its sequelae.
Across the included studies, various data techniques were used,
including gradient-boosted decision trees (Parreco et al., 2018;
Zeiberg et al., 2019), random forest models (Gong et al., 2016;
Dziadzko et al., 2018; Ding et al., 2019), neural networks (Wise
et al., 2017; Catling and Wolff, 2020), and others. Additional
studies are needed to identify the ideal algorithms or combination
of techniques for predicting ARF and its sequelae.

Models that train on retrospective data may suffer from
changes in data organization and collection over time. For
example, Parreco et al. (2018) used MIMIC III, a commonly
referenced open ICU database, to predict prolonged mechanical
ventilation and tracheostomy placement. However, the EMR
system in the MIMIC III dataset changed during data collection
(Johnson et al., 2016). This shift in EMR systems resulted in
variations in the way some variables were coded and necessitated
variations in data entry practice. Consequently, algorithms
developed prior to the EMR system change may perform
differently from algorithms developed after the EMR change.

Model Generalizability Barriers
As with any other predictive algorithms, overfitting can limit
external validity of models. Overfitting is the process by which
a model performs well on training data and not in a separate
untrained dataset. Consequently, the model learned is not
useful in clinical practice because it will not effectively predict
future cases. Though a common approach is to use a simple
validation split to combat overfitting, a better and more common
method is for models to be trained and tested on data with
crossfold validation, where data is commonly split into 5 or 10
folds (iterations) (Bischl et al., 2012). Models are made more
generalizable by randomizing assigning which proportion of
the data is used to train models in different folds. Figure 2
presents an example of how data may be split into training
and testing sets using cross-validation. Figure 3 demonstrates a
situation where class imbalance—where the prevalence of one
class significantly outweighs the prevalence of the other—can be
effectively managed during training, yet still yield accurate results
for algorithm evaluation. Three articles we reviewed used cross-
validation (Martín-González et al., 2016; Parreco et al., 2018;
Zeiberg et al., 2019), all conventional cross-validation without
balanced training, as per Figure 2. This is an effective tool
to adjust hyperparameters, allowing for more robust model fit
across sites, e.g., number of trees and node size in random forest
(Bischl et al., 2012; Probst et al., 2018; Seibold et al., 2018).

Models still need to be tested once hyperparameters have
been appropriately adjusted to optimize performance. For all
prediction models, we must elucidate the ability of a model
developed at one institution or population to accurately predict
outcomes in different institutions and populations (testing or
external validation). Of the papers reviewed, only one was
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FIGURE 2 | Cross-validation example. 5-fold cross validation data is exemplified here (A). Data is segmented into 5 component sections, which are then split 80–20

into training (orange) and test (green) sets. Training sets consist of all segments that do not include the test data. Two of five folds are provided here (B).

prospectively designed and validated in a separate cohort from
that of derivation and validation (AUROC 0.90, 95% CI: 0.85–
0.95) (Dziadzko et al., 2018). However, the test hospital cohort
came from the same healthcare system as the hospitals used
in the internal cohort. The testing cohort differed slightly in
event rate and oxygen device use from the validation cohort,
but was largely similar otherwise. There may have been overlap
in patient populations and providers. More studies need to
externally validate ARF predictionmodels at separate institutions
and at remote sites to assure model effectiveness in a variety
of settings.

One of the limitations of externalizingML algorithms between
institutions is that input variables at different institutions are not
identically coded, which can potentially impact implementation
of ML algorithms in new hospital systems. Despite the
development of international standards in data mapping such
as Health Level 7 (HL7) to improve interoperability, there
is inconsistent data mapping and labeling across healthcare
systems. Furthermore, data–and clinical practice–are organized
differently at various institutions, even with the same medical
record system. “Oxygen flow rate” at one hospital may be
equivalent to “Liters per minute” in another institution. One

hospital may explicitly document a spontaneous breathing
trial (SBT), the “test” clinicians use to determine whether
IMV can be successfully weaned and removed; others may
document just an FiO2 of 21% and imply that a SBT is
underway. Such differences in input variable coding negatively
impact reliability of ML algorithms, and variability in input
variables across institutions limit the external validity of
the algorithm.

Similarly, differences in patient populations limit
generalizability of ML models. Performance varies significantly
based upon population (e.g., ED vs. wards vs. ICU), which
influences endpoints and prevalence (population of intubated
patients is much higher in the ICU than in the ED). Zeiberg
et al. (2019) and Ding et al. (2019) both predicted ARDS, but the
study by Zeiberg et al. was conducted among patients admitted
to the hospital who developed hypoxia rather than patients
admitted to the ICU. Thus, the ARDS incidence was much
lower in the study by Zeiberg et al. (2–3%) compared with the
study by Ding et al. (31%). Additionally, patient populations
vary by both location and hospital. These differences may
impact performance and must be accounted for in training
and testing.

Frontiers in Big Data | www.frontiersin.org 13 November 2020 | Volume 3 | Article 579774

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Wong et al. Acute Respiratory Failure Prediction

FIGURE 3 | Imbalanced data in cross validation, with balanced training sets. Given the same initial set of data as in Figure 2 (A), here in (B) cases are labeled in bold,

with controls shaded light gray. The proportion of controls outnumbers the proportion of cases in both training and testing sets. When training data is balanced (C),

controls are sampled to provide an even split between training cases and training controls.
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Our review includes authors who have restricted models
to specific populations, such as ICU patients. On one hand,
this impacts generalizability across multiple clinical practice
areas. However, this may be appropriate since different
locations require very different practice styles, acuity of illness
(disease prevalence), and data collection frequencies. As an
extension, if the training population and the testing population
differ in their underlying characteristics, the model may not
generalize as expected. A model that is trained to expect a
certain incidence of ARF in an ICU population may be too
sensitive for the medical wards, which tends to have much
lower acuity patients. This model may also underperform on
the wards since the sampling frequency is lower than in
the ICU.

Generalizability may also vary significantly based upon other
factors, such as the providers caring for the patient when the
data is collected. A patient in ARF in an arguably tenuous
status may proceed from the ED to the ICU before intubation,
even though the physiology driving ARF already occurred.
The model may be “predicting” a process that is already
underway but affected by non-physiologic factors, resulting
in collider bias. For instance, a patient may already be in
severe respiratory distress, and the clinicians in the ED placed
the patient on BIPAP before transfer to the ICU with the
assumption that the ICU clinicians will provide treatments
that may prevent intubation and need for invasive mechanical
ventilation. The process driving physiology has already occurred,
but the action taken may be delayed. The assumption for a
model predicting invasive mechanical ventilation is that the
event hasn’t occurred though the physiologic changes have
happened. One method to mitigate this involves selecting

training data that specifically excludes patients who developed
an outcome of interest within some interval immediately

following the first data point. Researchers would need to
make the interval long enough to exclude those patients and

avoid collider bias, but not so long that it would exclude
a significant portion of cases. Where to strike that balance
would still be challenging and depends on many factors,
including the exact definition of ARF, the settings, and
patient population.

One frequent cause of collider bias can be treatment

limitations pertaining to end-of-life care. For example, a patient
in ARF who would otherwise be intubated but has a do-not-

intubate (DNI) code status still suffers from the same physiologic

process leading to ARF but does not receive a particular outcome
of interest (e.g., receive NIV instead of IMV). If not considered,
a model would learn to perceive this patient as “not likely to
develop the outcome of interest,” when the physiology dictates
otherwise. Of the six studies examined, only one explicitly
excluded a DNI code status (Ding et al., 2019), one excluded
terminal extubation but not other treatment limitations (Catling
and Wolff, 2020), and the last recorded treatment limitations
without explicitly stating exclusion criteria based on treatment
limitations (Martín-González et al., 2016). All other methods did
not explicitly specify whether patients with treatment limitations
were excluded.

Future Directions: Moving to Real-World
Implementation
The development of more interpretable and actionable models
is needed to maximize model impact for those at risk for ARF
and its sequelae. This could be accomplished by using a more
transparent model like logistic regression (Zeiberg et al., 2019),
but at the likely cost of lower discriminatory performance.
Another attractive option is to make complex models such
as deep learning algorithms and random forest models more
transparent. The majority of available studies in ARF prediction
use “black-box”models (Gong et al., 2016;Martín-González et al.,
2016; Dziadzko et al., 2018; Ding et al., 2019; Zeiberg et al.,
2019; Catling and Wolff, 2020), which require complex methods
to understand their inner workings. However, clarity and
transparency in prediction can increase trust of clinicians. There
must be a connection between unnoticed yet understandable
physiologic changes to give credibility to the “logic” of the
algorithm. For instance, cliniciansmaymore likely believe in, and
act on, alerts from a model that shows an increasing respiratory
rate and white blood cell count (“physiologic changes”) that
portends ARF, vs. a model that obscures those changes or, worse,
one that links respiratory failure to unrelated changes in serum
calcium or fibrinogen. It is far more likely that black box models
will lead to spurious explanations of model classification (Rudin,
2019). Providers should also be able to tie predictions to an action
(e.g., need for fluids, early renal replacement therapy) that would
not have otherwise been considered without assistance from the
algorithm. Interpretable algorithms have been successfully tested
for other tasks. Nemati et al. (2018) designed a model that used
the coefficients from a Weibull Cox proportional hazards model
to create a list of features that were most predictive of sepsis
within the subsequent 12 h of the alert timestamp. None of the
studies we reviewed have directly addressed interpretability. One
trial assessing the clinical applicability of random forest (a “black-
box” model) recently completed enrollment (Gong et al., 2016).
Prospectively testing interpretable models are also needed so we
can understand the implications to clinical adaptation of ML
prediction of ARF.

More prospective clinical trials are needed to assess the
full impact of ML algorithms on implementation and clinical
outcomes. The results of trials testing the use of ML to predict
other disease states seem promising. For example, Shimabukuro
et al. (2017) conducted a single-center randomized controlled
trial of 142 adult patients to assess the efficacy of an ML-
based predictive algorithm for sepsis. Compared to a local sepsis
detection system (the control arm), the sepsis prediction model
decreased hospital stay by 2.7 days and mortality by 12.4%.
Because randomization occurred at the patient level, potential
crossover between control and experimental patients may have
occurred between patients of the same provider, but this would
bias toward the null hypothesis (Weinstein and Levin, 1989).
Similar studies are needed in ARF prediction, but methods
such as block randomization or negative controls for allocation
concealment (Schulz and Grimes, 2002; Sargeant et al., 2014; Lin
et al., 2015) should be considered to mitigate crossover and assess
the true impact of ARF prediction.
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Additional studies are needed to assess the ability of different
hospitals to perform rapid data processing. Some retrospective
clinical data warehouses may transform data for more efficient
analysis, which may not be easily conducted using real-time data.
Predictive algorithms leveraging EMR data will either require
methods to automatically adapt to new systems or significant
investment to ensure that all data variables are ready for analysis
by prediction models in a timely manner.

One unresolved issue is the ideal timing and threshold to
notify providers. Typically, a patient whose predictive score
exceeds a detection threshold should send an alarm to a provider.
If an alert is sent but not acted upon, should it be sent again? If
so, what duration of time is appropriate to wait? Alarms that fire
too frequently could trigger alarm fatigue and may be ignored.
It is for this reason that the investigators responsible for clinical
trial design testing APPROVE limited alerts to one per day for
2 days if a score is above the prespecified threshold (Gong et al.,
2016; Dziadzko et al., 2018). However, if alarms are silenced or
muted for too long, then clinicians may miss an opportunity
to intervene if there is an intermittent deterioration in clinical
status. In the context of ARF prediction, the ideal frequency of
alarms must also consider the different reasons for mechanical
support. For instance, if falling peripherally measured blood
oxygen percent (SpO2) triggered an alert for impending ARF
that was muted because hypoxemia was manageable or because
work of breathing was acceptable, it should not silence all ARF
alerts because rising CO2 would be highly relevant separate from
hypoxemia. Consequently, an adaptive approach is likely the
best strategy: silencing an alert needs to refine the system and
perhaps create an “alert-free” period specific to what triggered
that alert, but not prohibiting all alerts especially if triggered by
different criteria.

Once an alarm is generated, the ideal recipient of the
notification remains unknown. For example, the clinical trial of
APPROVE did not clearly specify how clinicians were alerted
in the 2017 cohort (Dziadzko et al., 2018) but that choice
may have implications to algorithm effectiveness in practice.
Clinicians such as doctors may be most appropriate to make
triage decisions, but bedside nurses would be most familiar
with patients since nurses are more present and can respond
to emergencies quicker than doctors. Medical emergency teams
may offer an even better target for alerts about new or worsening
ARF. These teams are often multidisciplinary (including doctors,
nurses, and others), and they specialize in early management of
patient decompensation. Furthermore, they are often empowered
to efficiently evaluate and triage patients based on concern of
staff or alerts from score-based detection like MEWS (Patel et al.,
2015). The specific use of a medical emergency team should be
studied in future prospective studies of ARF prediction since it
might fit into an existing workflow.

Finally, information flow does not have to remain solely from
a system toward a human. Charted data capturesmerely a portion
of the knowledge and information about a patient’s course. For
example, a serum creatinine level of 5 could be alarming in an

otherwise healthy person but be expected in a patient in renal
failure. Further work can explore concepts like provider concern
and how these concepts can be merged with such systems.
As Dr. Friedman postulates in his 2009 fundamental theorem
of biomedical informatics (Friedman, 2009), we develop these
methods to create a system where the combination of a human
and the system together are greater than the human unassisted.
As we develop these systems, we must ask ourselves: How do we
achieve this goal? One answer could be by introducing clinician
intuition as another moderator of model risk prediction. The
information a clinician uses may involve more than just the
data captured in an EMR. For instance, is the patient taking
more shallow breaths? Does the patient simply “look sick” in the
clinician’s opinion? Such subjective uncaptured information may
prove very useful in adjusting risk output from the model and
improving performance.

CONCLUSION

Prediction of ARF using ML algorithms is feasible, though
prediction of certain phenotypes of ARF have not been studied
(e.g., HHHF, ECMO). The studies summarized in this review
highlight challenges in predicting ARF, including issues with
data and the heterogeneity of operationalizing ARF as an
outcome label, model development issues, generalizability, and
challenges for real-time implementation. Though the study of
ARF prediction is not yet mature enough to have solutions for
these issues, many have been addressed in the study of other
ML prediction literature such as sepsis. Further work needs to
be done in ARF prediction to identify the effect on meaningful
clinical outcomes for those at risk of new or worsening ARF and
all related sequelae.
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