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Two articles published in this issue of

PLoS Genetics present novel data concern-

ing the members of a key regulator of

genetic crossing-over. Working with the

plant Arabidopsis thaliana, the authors of the

two reports provide exciting new data and

further understanding of the meiotic anti–

crossing-over function of the Topoisomer-

ase 3alpha (Top3a) and Blap75/Rmi1

proteins, and thus presumably that of the

protein complex that contains these pro-

teins and the RecQ-like helicase BLM.

The highly conserved RecQ-like heli-

case BLM, which is mutated in patients

with Bloom syndrome, acts in a protein

complex that can disassociate homologous

recombination intermediates in vitro and

in vivo (reviewed in [1–3]). The impor-

tance of this anti-recombination role is

clearly shown by the elevated levels of

genetic instability, mitotic recombination,

and sister-chromatid exchanges in the

somatic tissues of the cancer-prone Bloom

syndrome patients. This complex, known

as BTB in mammals and RTR in yeast,

involves BLM and at least two other

proteins: Top3a and Blap75/Rmi1.

BLAP75/RMI1 is a highly conserved

protein in eukaryotes originally identified

through its interactions with the BLM

[4,5] and independently as Rmi1/Nce4 in

yeast through its genetic interactions with

BLM homolog Sgs1 [1,6]. A fourth

protein component of this complex,

Rmi2, has recently been identified [7,8],

and it is likely that others will follow

(discussed by [9]). It is proposed that the

principal anti-recombinational role of this

complex involves BLM helicase-driven

migration of double Holliday junctions

(dHJs) to form a hemi-catenane interme-

diate. The resolution of this structure by

the action of a topoisomerase (Top3a)

does not lead to the exchange of flanking

DNA sequences, and thus BLM acts to

avoid crossing-over [3,10–12]. BLM also

has affinity for DNA structures other than

dHJ and clearly also plays other anti-

recombination roles [13–15]. To add to

these, a very recent report shows a pro-

recombination role for Sgs1/BLM in

resection of 59-ended strands at DNA

double-strand breaks [16].

What about A. thaliana, the subject of

the two reports discussed here? Arabidopsis

has a total of seven identified RecQ-like

proteins, with RecQ4a being the strongest

candidate for the Arabidopsis BLM/Sgs1

ortholog [17–19]. The accompanying

papers report the identification of the

Arabidopsis othologs of BLAP75/Rmi1

[20,21] and Topo3a [21], as well as the

characterization of the mitotic and meiotic

phenotypes of the corresponding mutant

plants. top3a mutant plants have severe

developmental defects, are methyl meth-

anesulfonate (MMS)–sensitive, and show

elevated levels of mitotic recombination

and mitotic chromosome abnormalities.

Similar mitotic phenotypes are observed in

recQ4a and blap75/rmi1 mutant plants,

suggesting a functional interaction be-

tween RecQ4a and Top3a. This is further

supported by the partial suppression of

top3a developmental defects in double

recQ4a/top3a mutants.

In most (studied) eukaryotes, homolo-

gous recombination that occurs during the

first meiotic prophase ensures the proper

segregation of homologous chromosomes

(homologs) at the first meiotic division.

These events are initiated by programmed

double-strand breaks that generate broken

DNA ends that invade homologous se-

quences on the homolog, a subset of which

are processed to form dHJs. These must be

resolved to permit the separation of

homologs at the first meiotic anaphase,

and the mode of this resolution determines

whether or not the recombination is

accompanied by physical exchange of

chromosome arms of the homologs (cross-

ing-over). The potential of crossing-over to

cause genome reorganization (insertions,

deletions, inversions, translocations) has

led to the evolution of multiple controls of

recombination.

It has long been recognized that the

numbers and distribution of meiotic cross-

overs are strictly regulated. In the last

decade, the existence of cross-over and

non–cross-over recombination pathways

has been established, and many details of

molecular mechanisms elucidated [22–

28]. In this context lies the importance of

the characterization of the essential mei-

otic anti–crossing-over role of the BTB/

RTR complex in Arabidopsis by the Grelon

and Puchta groups, reported in this issue

of PLoS Genetics [20,21].

These reports show that Arabidopsis

blap75/rmi1 and top3a mutants are capable

of full chromosome synapsis, resulting in

normal pachytene figures. The structure of

the synaptonemal complex at pachytene

was verified by staining of blap75 mutant

meioses with antisera against Asy1 and

Zyp1, two synaptonemal complex pro-

teins, and proper chromosome pairing was

shown by fluorescence in situ hybridiza-

tion (FISH) [20]. Staining with antiserum

against Dmc1, a marker for early meiotic

recombination intermediates, also shows

normal numbers and timing of foci.

Although these immunological and FISH

analyses haven’t been carried out for top3a
mutants, the DAPI-stained pachytene

figures of top3a present the same (normal)

aspect as those of the blap75 mutants.

Epistasis analyses confirm that Blap75/

Rmi1 acts downstream of Spo11 (DNA

cleavage/recombination initiation), Rad51,

and Mnd1 (homolog invasion). It thus

appears that early steps of meiosis, up to

homolog pairing and synaptonemal com-

plex formation, occur normally in the

absence of Blap75/Rmi1 and Top3a in

Arabidopsis. However, aberrant diakinesis

and interlocked metaphase I figures follow,

and chromosomes fragment at snaphase I.

The interlocked bivalents observed at
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diakinesis and metaphase I may be due to

the presence of the unresolved recombina-

tion intermediates, including those between

more than two chromatids that are seen in

yeast [29,30]. The fragmentation of univa-

lent chromosomes at meiotic anaphase I in

double dmc1/blap75 mutants might also

suggest such interchomatid linkages (Arabi-

dopsis dmc1 mutants have asynaptic meiosis

[31]), although other explanations, such as

the existence of unrepaired chromatid

breaks, are equally likely. Interestingly, no

later meiotic stages (second division) were

seen in either study, implying meiotic arrest

at the end of the first division. This

phenotype contrasts strikingly with that

seen in many Arabidopsis recombination

mutants, such as rad50 or rad51, which

complete the two meiotic divisions, not-

withstanding severe chromosome fragmen-

tation at leptotene [32,33]. The depen-

dence of this meiosis I arrest upon the

presence of paired chromosomes is con-

firmed by the completion of the two meiotic

divisions in double dmc1/blap75 mutants.

Homologous chromosome recognition and

synapsis through recombination thus pro-

gresses to bivalent formation in blap75/rmi1

mutants, even in the absence of the ZMM

proteins Mer3 and Msh5—notwithstand-

ing the fact that they are required for the

major meiotic cross-over pathway in Arabi-

dopsis [34–36]. The bivalents of blap75/rmi1

mutants are, however, interlinked and

unable to separate properly, finally frag-

menting at anaphase I.

Blap75/Rmi1 and Top3a are thus

needed for resolution of recombination

intermediates that form between both

sister chromatids and homologs, and are

essential for separation of bivalents and

meiosis I chromosomal disjunction in

Arabidopsis. An essential meiosis I role is

also seen in yeast top3 and rmi1 mutants

[1,37]. However, Arabidopsis recQ4a mu-

tants have apparently normal meiosis and

are fertile, as are mouse BLM2/2 mutants,

and yeast sgs1 mutants show only minor

defects in meiosis [38,40]. Thus, Blap75/

Rmi1 and Top3a appear to have meiotic

functions that are independent of RecQ4a.

The relative high fertility of yeast sgs1

mutants may be explained by findings that

Sgs1 and the Mus81/Mms4 nuclease can

partially substitute for each other [29,30].

The co-lethality of recQ4a and mus81 in

Arabidopsis [39] is suggestive of a similar

situation in mitosis in yeast, although their

relation in meiosis remains to be deter-

mined.

These findings lead to the question of

whether the critical meiotic function of

Blap75/Rmi1 and Top3a in resolving

recombination intermediates is performed

by these two proteins alone, or whether

they perform this function in complex with

another helicase. Other unanswered ques-

tions concern the nature of the meiotic

joint molecule intermediates, the resolu-

tion of which requires Blap75/Rmi1 and

Top3a in Arabidopsis. Does the absence of

these proteins lead to an excess of normal

dHJs, overwhelming the capacity of other

HJ resolvase(s), or are these aberrant,

unresolvable structures? The Mus81 nu-

clease acts in an interference-insensitive

cross-over pathway in Arabidopsis meiosis

[41], but clearly it cannot complement the

absence of Blap75/Rmi1 or Top3a—what

role does it play in recombination inter-

mediate metabolism in Arabidopsis meiosis?

In addition to their importance for the

understanding of recombination and mei-

osis in plants, these results extend the

known meiotic activities of this complex—

demonstrating and clearly placing its

essential role in the separation of synapsed

chromosomes at the first meiotic division.
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