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A B S T R A C T   

The aim of this study is to identify spatiotemporal clusters and the socioeconomic drivers of COVID-19 in Tor-
onto. Geographical, epidemiological, and socioeconomic data from the 140 neighbourhoods in Toronto were 
used in this study. We used local and global Moran’s I, and space-time scan statistic to identify spatial and 
spatiotemporal clusters of COVID-19. We also used global (spatial regression models), and local geographically 
weighted regression (GWR) and Multiscale Geographically weighted regression (MGWR) models to identify the 
globally and locally varying socioeconomic drivers of COVID-19. The global regression model identified a lower 
percentage of educated people and a higher percentage of immigrants in the neighbourhoods as significant 
predictors of COVID-19. MGWR shows the best fit model to explain the variables affecting COVID-19. The 
findings imply that a single intervention package for the entire area would not be an effective strategy for 
controlling COVID-19; a locally adaptable intervention package would be beneficial.   

1. Introduction 

In Canada, the coronavirus disease (COVID-19) burden is unevenly 
distributed spatially, while the highest number of cases are witnessed in 
Toronto (Detsky and Bogoch, 2020; COVID-19 Tracker Canada, 2021). 
COVID-19 is a part of a family of enveloped single-strained RNA viruses 
that can cause acute and chronic communicable respiratory diseases in 
humans (World Health Organization, 2020). Toronto, the most densely 
populated city in Canada, has been severely impacted by COVID-19 and 
has become an epicenter of COVID-19 outbreaks (City of Toronto, 
2021). COVID-19 was first reported in Wuhan, China, in December 2019 
(Shereen et al., 2020; Kang et al., 2020). As of March 7, 2022, the 
large-scale outbreaks of COVID-19 have contributed to over 440 million 
cases and 5.9 million deaths worldwide (WHO, 2021). The World Health 
Organization (WHO) declared the COVID-19 outbreak a global 
pandemic on March 11, 2020 (Cucinotta and Vanelli, 2020). The first 
two cases of COVID-19 in Canada were reported in Toronto on January 
21, 2020, from a couple who had recently returned from Wuhan, China. 
The local government of Toronto has adopted several control strategies 
that include emergency lockdowns, stay-at-home orders, increased 
testing, contact tracing capacities, and closure of in-person schools and 
non-essential businesses. Despite these ongoing measures, Toronto 

continues to experience a rise in cases, creating an enormous challenge 
for public health as well as causing economic and social burdens. 

Spatial studies in COVID-19 showed wide variances in the distribu-
tion of case and mortality rates among different communities across 
space. The lower socioeconomic groups have historically been shown to 
have a disadvantage in the diagnosis and mortality rates of infectious 
diseases. The city of Toronto has a diverse population of 2.99 million 
(2020) with varying socioeconomic statuses across the neighbourhoods 
(City of Toronto, 2021). People with low socioeconomic or marginalized 
status, such as minorities and low-income individuals, might be forced 
to leave their homes to maintain income or live in congregate settings, 
which places them and their neighbourhoods at a higher risk during this 
pandemic (Cordes and Castro, 2020a; Sun et al., 2020a; Vaz, 2021). 
Identifying disease clusters and understanding the driving factors for 
these clusters using spatial analytical approaches can provide us with a 
more realistic view of the issue in Toronto compared to the traditional 
simple maps (Cordes and Castro, 2020a). 

Geographic Information Systems and spatial analysis have been 
established as important tools in infectious disease surveillance. Prox-
imity is an important factor in the infectious disease distribution and 
diffusion processes. Spatial analysis is based on Tobler’s first law of 
geography, stating that locations that are closer have more similar 
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attributes than locations that are further apart (Miller, 2004). Infectious 
diseases can show heterogeneity in cases and mortality rates, while the 
process of contagion can diffuse from the source to the neighbouring 
areas (Cordes and Castro, 2020a). Spatial analytical methods using 
community-based datasets are particularly important for new emerging 
diseases such as COVID-19 (Ali et al., 2009) to understand disease eti-
ology and the transmission process in the communities (Chowell and 
Rothenberg, 2018). The results can help slow disease transmission rates 
in the study area. 

In the case of COVID-19, previous spatial studies used space-scan 
statistic (Acharya et al., 2020; Alkhamis et al., 2020; Andersen et al., 
2021a; Andrade et al., 2020; Arashi et al., 2020; Azmach et al., 2020; 
Ballesteros et al., 2020; Benita et al., 2020; Chakraborty, 2021; Chow 
et al., 2020; Cordes and Castro, 2020b; Da Silveira Moreira, 2020; 
Desjardins et al., 2020; Ferreira, 2020; Ferreira et al., 2020; Gomes et al., 
2020; Greene et al., 2020; Han et al., 2021; Hohl et al., 2020; Islam et al., 
2021; Kim and Castro, 2020; Leal-Neto et al., 2020; Masrur et al., 2020; 
Ladoy et al., 2021) and local Moran’s I (Han et al., 2021; Bilal et al., 
2020; Li et al., 2020a; Saffary et al., 2020; Xie et al., 2020; Xiong et al., 
2020; Ye and Hu, 2020), MST-DBSCAN (Ridder et al., 2020; De Ridder 
et al., 2021), GeoMEDD (Curtis et al., 2020) to locate clusters of 
increased risk of COVID-19. A few studies have used global spatial 
regression models (Cao et al., 2020; Demenech et al., 2020; Feinhandler 
et al., 2020; Sannigrahi et al., 2020a; Sun et al., 2020b; You et al., 2020), 
Geographically Weighted Regression (GWR) (Han et al., 2021; Islam 
et al., 2021; Sannigrahi et al., 2020a; Das et al., 2020; Huang et al., 
2020; Iyanda et al., 2020; Mollalo et al., 2020; Shariati et al., 2020a; 
Snyder and Parks, 2020) and MGWR (Multiscale Geographically 
Weighted Regression) (Mansour et al., 2021; Maiti et al., 2020a; Middya 
and Roy, 2021; Ma et al., 2022) to understand the contributing factors 
that may influence the risk of COVID-19. Some studies have linked so-
cioeconomic influences to explain the variations in COVID-19 in-
cidences or mortality rates. Some of the key factors to have an influence 
on the incidence or mortality rates of COVID-19 include income (Cordes 
and Castro, 2020a; Sannigrahi et al., 2020b; Chaudhry et al., 2020; 
Abedi et al., 2020; Maiti et al., 2020b), poverty rates (Sannigrahi et al., 
2020b; Goutte et al., 2020; Chen and Jiao, 2020; Fielding-Miller et al., 
2020; Richmond et al., 2020), education (Cordes and Castro, 2020a; 
Abedi et al., 2020; Goutte et al., 2020; Wu et al., 2020) ethnicity or 
minority status (Cordes and Castro, 2020a; Sun et al., 2020a; Maiti et al., 
2020b; Chen and Jiao, 2020; Niedzwiedz et al., 2020; Sun et al., 2020c; 
Andersen et al., 2021b; Kathe and Wani, 2020), immigrant population 
(Fielding-Miller et al., 2020; Borjas, 2020), and unemployment rate 
(Sun et al., 2020a; Goutte et al., 2020). 

Even though Toronto remains at heightened risk in this pandemic, 
spatial studies on the burden of COVID-19 in Toronto have so far been 
very limited. A detailed assessment is critical to identify the hotspots and 
the key spatial drivers for a more efficient intervention plan. This study 
is to fill the gaps of earlier studies by performing a comprehensive 
assessment of spatial dynamics of the COVID-19 outbreak in Toronto at 
the neighbourhood level. The main goal of this study is to improve our 
current understanding of the disease hotspots and provide information 
on the spatial association between the socioeconomic factors and 
COVID-19 outbreak in order for infection prevention and mitigation. 
The primary objective of this study is to identify the spatial and 
spatiotemporal clusters of COVID-19 incidences in Toronto, and the 
secondary objective is to identify globally and locally variable socio-
economic drivers of the COVID-19 incidences. 

2. Methods 

2.1. Study area, study population and data 

Toronto is the capital city of Ontario and the fourth largest city in 
North America. The city, located on the Southwestern shores of Lake 
Ontario (Fig. 1), has a population density of 4692 people per square 

kilometer, making it the most densely populated city in Canada. The city 
of Toronto consists of four community council areas: Etobicoke York, 
North York, Toronto, and East York and Scarborough (Fig. 1). Toronto 
has a very diverse population, with a 51.2% of Toronto’s population 
being a visible minority, and 51.2% of the population are immigrants 
(born outside of Canada) (City of Toronto, 2021). Toronto, based on the 
2016 census, comprises immigrants from Asian (53.4%), European 
(23.6%), Americas (16.8%) and Africa (6.1%) origins. 49% of the Asian 
immigrants have immigrated from Chinese and the Philippines, and 
11.7% of Asian immigrants are from India. 37.5% of the American im-
migrants are of Jamaican and Guyanese origin. 41.7% of the European 
immigrants are from Italy, Portuguese, and United Kingdom. 55% of the 
African immigrants are from Ethiopia, Egypt, Kenya, Nigeria, Somalia 
and South Africa. 

The city has an unemployment rate of 6.4%, and 20.2% population 
lives in a low-income bracket. The direct and indirect impact of this 
pandemic’s burdens can pose significant threats for a densely and 
diversely populated city like Toronto. 

The study area is comprised of 140 geographically distinct neigh-
bourhoods in Toronto (Fig. 1). The neighbourhoods were defined based 
on Statistics Canada census tracts for the purposes of statistical reporting 
(Statistics Canada, 2022). The140 neighbourhood profiles in Toronto 
contain social, economic, and demographic details using the census 
2016 population dataset collected and released by Statistics Canada. Our 
study used a population size of 2.7 million (2016 census dataset) for 
analysis. Further details of these neighbourhood profiles datasets can be 
found on the city of Toronto website (Neighbourhood Profiles – City of 
Toronto) (City of Toronto, 2020a). The population dataset at the 
neighbourhood level was obtained from an open-source (https://open. 
toronto.ca/dataset/wellbeing-toronto-demographics). 

The epidemiological data were collected by Toronto Public Health 
that contained the geographic and demographic details for all confirmed 
and probable cases of COVID-19. Confirmed cases are defined by a 
person with confirmation of SARS-CoV-2 infection documented by 
detection of at least one specific gene target by a validated laboratory- 
based nucleic acid amplification test (NAAT) assay (e.g. real-time PCR 

Fig. 1. The 140 neighbourhoods in the study area in Toronto, Canada.  
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or nucleic acid sequencing) performed at a community, hospital or 
reference laboratory (e.g. Public Health Ontario Laboratory or National 
Microbiology Laboratory) or a validated POC NAAT has been deemed 
acceptable by the Ontario Ministry of Health to provide a final result or 
demonstrated diagnostic rise with a 4-week interval in viral-specific 
antibody in serum or plasma using a validated laboratory-based sero-
logical assay for SARS-CoV-2. The probable cases are defined by a person 
with symptoms compatible with COVID-19 and had high-risk exposure 
with a confirmed case of COVID-19 or was exposed to a known cluster or 
outbreak and in whom a laboratory-based nucleic acid amplification test 
(NAAT-based assay (e.g. real-time PCR or nucleic acid sequencing) for 
SARS-CoV-2 are inconclusive or has not been completed or had SARS- 
CoV-2 antibody detected in a single serum, plasma, or whole blood 
sample using a validated laboratory-based serological assay for SARS- 
CoV-2 collected within four weeks of symptom onset or had a POC 
NAAT or POC antigen test for SARS-CoV-2 completed and the result is 
presumptive positive or had a validated POC antigen test for SARS-CoV- 
2 completed and the result is positive (Canada PHA of 2021). 

The case datasets are extracted from the provincial Case & Contact 
Management System (CCM). The epidemiological datasets are updated 
weekly (City of Toronto 2020b). The case dataset includes the episode 
date and neighbourhood attributes of the infected individuals. For this 
study, the COVID-19 case data between January 1, 2020 – January 31, 
2021, were extracted for analysis. The cases were plotted to the centroid 
of the infected individual’s neighbourhood. During the study period, a 
total of 87,501 cases (71,940 sporadic cases and 15,561 
outbreak-associated cases) of COVID-19 were diagnosed in Toronto, 
including the first reported case (January 21, 2020). Use of 
outbreak-associated cases, which are generally in healthcare (e.g., 
long-term care homes, hospitals) and residential or congregate settings 
(City of Toronto 2020b), can potentially create a bias towards clustering 
in outbreak areas (17.71% of total cases). Therefore, this study excluded 
the outbreak-associated cases to control for potential bias and included 
only the community-based sporadic cases. Among the total sporadic 
cases, 1185 (1.64%) cases were excluded due to missing neighbourhood 
information, leaving 70,755 sporadic cases for analysis. 

We considered five socioeconomic covariates (2016 census) based on 
the literature review and available datasets. These covariates were 
previously identified as potential risk factors in some COVID-19 studies. 
The covariates included: (i) percentage of immigrants (individuals who 
were born outside of Canada) (Government of Canada SC, 2021), (ii) 
percentage of the population aged 25–64 years with a lower level of 
education (not having a university certificate, diploma or a bachelor 
degree) (A City of Toronto 2020), (iii) prevalence of low income (living 
in a low-income household based on the low-income cut-off (LICO) table 
representing the poverty line) (Government of Canada, 2021), and (iv) 
unemployment rate (population over 15 years and unemployed) (Gov-
ernment of Canada SC, 2021). While mortality and hospitalization rates 
may differ across different age groups, there is not enough evidence that 
the incidence rate of COVID-19 and transmission risks for sporadic cases 
vary significantly by sex or age (Li et al., 2020b). Since the entire pop-
ulation is at risk of contracting and transmitting the disease, we did not 
pursue any adjustment by age or sex. 

2.2. Spatial and spatiotemporal cluster analyses 

2.2.1. The global spatial autocorrelation 
The global Moran’s I by Anselin was first used in GeoDa, version 

1.18.0, to assess whether the COVID-19 incidence rates (per 1000 
population) in Toronto neighbourhoods display a tendency to cluster 
together and measure the extent of the correlation among neighbouring 
observations (Anselin, 2022). Global Moran’s index is used to examine 
the absence or presence of spatial autocorrelation in disease diffusion 
processes by comparing location and attribute similarities in the area. 
The value of the global Moran’s I must show a clustering distribution 
pattern to find high or low-risk clusters for further analysis (Shariati 

et al., 2020b). The formula for calculating global Moran’s I index 
(Anselin, 2022) is shown in Eq. (1): 

I =
Σi ΣjwijZi.Zj

/
S0

Σi Z2
i
/

n
(1)  

where Zi and Zj represent the COVID-19 incidence rate variations in 
neighbourhood i and j, respectively, wij refers to the elements in the 
spatial weights matrix, neighbourhood i and j at study period, S0=

Σi Σjwij, wijas the sum of all weights, and n represents the number of 
observations. 

The value of global Moran’s I can range between − 1.0 and +1.0, 
where the positive value suggests the presence of a positive spatial 
correlation, while a negative value suggests a negative correlation. The 
higher the value of I, the stronger the spatial autocorrelation (Kim and 
Castro, 2020). Values close to 0 indicate no spatial autocorrelation and 
that the distribution of data is random (Li et al., 2020a). 

2.2.2. Spatial clustering by local Moran’s I statistics 
The local Moran’s I, a local indicator of spatial association (LISA), 

was used in GeoDa, version 1.18.0, to evaluate the local level of spatial 
autocorrelation or dependency of spatial data and to visualize the 
possible high-risk or low-risk clusters (Anselin et al., 2010) based on 
COVID-19 incidences in different neighbourhoods across Toronto. 

The formula (Li et al., 2020a; Anselin, 1995) for calculating local 
Moran’s index Ii is shown in Eq. (2:) 

Ii = xi

∑

j
wijxj (2)  

where xi and xj represents the COVID-19 incidence rates in neighbour-
hood i and j respectively, wij is the spatial weights matrix. 

The global and local Moran’s I tests were run using the first-order 
queen’s contiguity spatial weights matrix that uses the values from all 
first-order neighbouring neighbourhoods in order to determine whether 
the area has a higher or lower mean assessing the degree of spatial 
autocorrelation. A permutation test was conducted using Monte Carlo 
simulations with 999 permutations to test the statistical significance of 
the clusters under the assumption that COVID-19 incidence rates are 
randomly distributed in the study area. The local Moran’s I divide the 
neighbourhood polygons into four categories: high-high (hotspots), low- 
low (coldspots), high-low, and low-high, based on the type of spatial 
autocorrelations (Anselin, 1995). The high-high and low-low areas 
represent spatial clusters, and the high-low and low-high areas represent 
discordant patterns. The intensity value is calculated for each point, 
which shows the level of clustering of similar values around the point. 
The local Moran’s I result showing local spatial autocorrelation of 
COVID-19 incidences in the Toronto neighbourhoods were presented in 
the form of cluster maps with a significance level of 0.1%, 1%, and 5%. 
Additionally, we have also performed the Bonferroni bound procedure 
to carry out an extensive sensitivity analysis to avoid the risk of 
obtaining false-positive results (Type I errors), and to check the 
robustness of the findings (not ultimately presented these results). We 
have presented the results that best represent the important High-High 
and Low-Low clusters. 

2.2.3. The space-time scan statistic 
Kulldorff’s space-time scan statistic method was used in SaTScan™, 

version 9.7, to identify the space-time clusters of COVID-19 cases be-
tween January 2020 and January 2021 in Toronto neighbourhoods. 
SaTScan™ software is a widely used open-source spatial scan statistic 
software that utilizes Kulldorff’s retrospective space-time permutation 
method to identify significant clusters in a study area (Kulldorff, 2009a). 
SaTScan™ uses a moving cylinder with circular or elliptical windows 
across a study area that locates the spatial clusters that are significant 
during a specific period. A discrete Poisson probability model was 
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chosen for the clustering analysis with the assumption that the disease 
cases have a Poisson distribution. The scan parameters with a time in-
terval of one month ranged from January 1, 2020 – January 31, 2021. 
After a preliminary test, the spatial and temporal scanning windows 
were restricted to include 10% of the population at risk and 50% of the 
study period, respectively, to avoid a large cluster size. The clusters were 
tested for significance using 999 Monte Carlo simulations, and the 
clusters with a p-value<0.05 are considered to be the significant 
high-risk clusters. The neighbourhoods within the significant high-risk 
clusters are identified as high-risk neighbourhoods. The relative risk of 
COVID-19 for a cluster is calculated using the ratio of observed to ex-
pected cases, comparing the risk within a cluster to the areas outside the 
cluster. The relative risk (RR) (Kulldorff, 2009a; Rao et al., 2017) 
defined in Eq. (3): 

RR =
o/e

(O − o)/(O − e)
(3)  

Where e is the expected number of cases in the cluster, o is the total 
number of observed cases within the cluster, and O is the total number of 
observed cases in the study area. The values of RR for a cluster greater 
than 1 indicate a high COVID-19 incidence rate. A spatiotemporal map 
with the clusters and the relative risks (RR) of the neighbourhoods was 
created in ArcGIS version 10.8.1 to show the spatial variations of 
COVID-19 risks in the Toronto neighbourhoods. 

2.3. Regression analyses 

We used five different global and local spatial regression models to 
understand the relationship between the socioeconomic variables and 
COVID-19 incidence rates. The models include three global regression 
models: ordinary least squares (OLS), spatial error model (SEM), spatial 
lag model (SLM), and two local regression models: geographically 
weighted regression (GWR) and multiscale GWR (MGWR). Before 
running these models, a bivariate regression analysis was conducted to 
select the explanatory variables. GeoDa version 1.18.0 was used for 
running the three global models. The local models were implemented in 
a stand-alone software (MGWR version 2.2: Spatial Analysis Research 
Center (SPARC), Tempe, USA), developed by Fotheringham et al. 
(2017). ArcGIS version 10.8.1 was used for mapping of all outputs. 

2.3.1. Global regression models 
The COVID-19 incidence rate per 1000 population was used as the 

dependent variable for the global models. A preliminary data analysis 
shows that the incidence rates were highly skewed, violating the 
normality assumptions of spatial regression models (Yu et al., 2010); 
thus, the log-transformed (based 10) incidence rates were used as the 
dependent variable in the models. 

The ordinary least squares (OLS) is a regression method investigating 
the relationship between the dependent and explanatory variables (Li 
et al., 2020a). OLS makes two major assumptions: the observations are 
independent and constant across the study area, and there is no corre-
lation between the error terms (Yandell and Anselin, 1990). A spatial 
error model (SEM) (Yandell and Anselin, 1990) is based on the 
assumption that there is a spatial dependence in the OLS model residuals 
generated from the OLS error term model. A spatial lag model (SLM) 
Spatial lag model (Yandell and Anselin, 1990) is based on a 
spatially-lagged dependent variable. The SLM model assumes de-
pendency among the dependent and the independent variables. The SLM 
also assumes that an independent variable can depend on another in-
dependent variable in the neighbourhood region. 

The OLS model is expressed in Eq. (4) as: 

yi = β0 + xiβ + εi (4) 

The mathematical expression for the SEM is shown in Eq. (5) as: 

yi = β0 + βxi + λWiμj + εi (5) 

The SLM model is expressed in Eq. (6) as: 

yi = β0 + xiβ + ρWiyi + εi (6)  

where yi is the COVID-19 incidence rate in neighbourhood i, xi is the 
vector of the explanatory variable, εi is an error term, Wi is a vector of 
(nxn)spatial weights matrix, β is the vector of regression parameters, β0 
is the intercept, μi and μj are the error terms at neighbourhood i and j, 
respectively, λ is the coefficient of spatial correlated errors, and ρ is the 
spatial lag parameter. 

However, in the case of COVID-19 in the Toronto neighbourhoods, as 
supported by SLM and SEM results shown later in the results, a spatial 
correlation exists between variables. Therefore, the interactions from 
the OLS are omitted from the results, and the spatial models (SEM and 
SLM) were considered better suited for this study. The AIC values were 
used in the final model selection process to evaluate overall model ac-
curacy and how well the model fits the data, and a lower AIC value 
indicates an improvement in model performance. 

2.3.2. Local regression models (GWR & MGWR) 
Two local models, GWR and MGWR, were applied to the same set of 

predictors used in the global models to explore the local spatial variation 
in the relationships with the COVID-19 incidence rates. 

The GWR model is a local spatial regression model that makes as-
sumptions that spatial interactions are non-stationary and that param-
eter estimates may spatially vary that can not be explained by the global 
regression models (Lin and Wen, 2011). GWR takes spatial heteroge-
neity into consideration while calculating the spatial interaction among 
the dependent and explanatory variables and produces local regression 
parameter estimates at each observation location (Lin and Wen, 2011; 
Maiti et al., 2021). Geographically Weighted Regression (GWR) uses a 
local smoothing processing method to estimate the geographical func-
tional form of regression coefficients non-parametrically (Nakaya, 
2016). The GWR model is denoted in Eq. (8) as: 

yi =
∑m

j− 0
βj
(
μj, vj

)
Xij + εi (8)  

where at an area i, yi is the dependent variable (log of COVID-19 inci-
dence rate), βj(μj, vj) is the jth coefficient, (μj, vj) is the vector form of x, y 
coordinates, Xij is the value of the jth explanatory parameter, and εiis the 
random error term (Iyanda and Osayomi, 2021). 

However, the GWR models produce a single optimal bandwidth for 
all variables, which assumes that all factors affect COVID-19 rates at the 
same spatial scale (Yu et al., 2020). This assumption is given that 
different processes may affect COVID-19 rates at different spatial scales. 
This can result in underestimation of the parameters, particularly in a 
large city such as Toronto with a high population density (Leong and 
Yue, 2017). Therefore, we have also applied the MGWR model, which is 
an extension of GWR that allows for studying the relationship between 
variables at different scales (Yu et al., 2020). MGWR obtains a set of 
optimal covariate-specific bandwidths in which each bandwidth in-
dicates the spatial scale at which a factor impacts the outcome variable 
(Fotheringham et al., 2017). The MGWR model can be formulated in Eq. 
(9) as: 

yi =
∑m

j− 0
βbwj

(
μj, vj

)
Xij + εi (9)  

where βbwjis the bandwidth used for calibration of the jth relationship 
(Iyanda and Osayomi, 2021), and the rest of the parameters are the same 
as Eq. (8). 

Additionally, geographically weighted regression models generally 
ignore the multiple testing issues that can lead to an excess of false 
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positives and therefore, the significance of the local parameter estimates 
may be questionable (da Silva and Fotheringham, 2016). Therefore, we 
have also used the newly developed correction method by da Silva and 
Fotehringham (da Silva and Fotheringham, 2016) for inference in the 
GWR/MGWR to solve the multiple testing issues to obtain reliable local 
parameter estimates. da Silva and Fotheringham proposed an effective 
correction to the significance level α to assess the significance of local 
parameter estimates and avoid the proportion of false positives 
exceeding α. The corrected significance level α value is calculated using 
Eq. (10): 

α =
ξ

ENP
P

(10)  

Where ξ is the expected type I error rate before correction, ENP is the 
effective number of parameters in the model, which is a function of the 
optimal bandwidth parameter, and P is the number of parameters in the 
model (da Silva and Fotheringham, 2016). 

The adaptive bisquare spatial kernel function was applied to develop 
both local models, and the golden search was applied to select an 
optimal bandwidth (Yu et al., 2020). The adaptive bandwidth is defined 
as the proportion of data points involved in the calibration process of 
local estimates and eliminates the influence of outside the neighbour-
hood spatial units (Yu et al., 2020). AICc was used to evaluate and 
compare the global model fit and performance. The best model fit is 
indicated by a larger R-square and a smaller AICc value. The outputs 
from the best-fitted local model were used to map the local parameter 
estimates, their estimated standard errors, the significant parameter 
estimates (after adjusting for multiple tests), the local R-square and the 
local Condition numbers. A condition number greater than 20 can affect 
model accuracy and inferences, and a value less than 20 indicates no 
effect of multicollinearity (Oshan et al., 2019a). 

3. Results 

3.1. Descriptive statistics 

Fig. 2 shows the distribution of the total cumulative sporadic cases of 
COVID-19 in Toronto by epidemiological week. The total monthly cases 
started to increase in March (week 12) and experienced a continuous 
decline from June 2020 (week 25) to August 2020 (week 34). However, 
the numbers continued to rise exponentially in the following months, 
with the maximum number of cases witnessed in January 2021 (20,506 
total monthly cases). 

3.2. Spatial and spatiotemporal cluster analyses 

3.2.1. The global spatial autocorrelation 
Before implementing the spatial and spatiotemporal cluster analyses, 

we examined the global Moran’s I statistic results to evaluate the pres-
ence of spatial autocorrelation in the study area (Fig. 3). The outcome 
variable (incidence rate of COVID-19) demonstrated a positive spatial 
autocorrelation suggesting a strong clustering pattern, with a statisti-
cally significant Moran’s I value of 0.62 (p-value=0.001, z-value 
=12.96). The results indicate that the distribution of the incidence rate 
of COVID-19 had a positively significant correlation with the incidence 
rate of the nearest neighbourhoods during the study period. 

3.2.2. Local Moran’s I 
The results from the local Moran’s I method show COVID-19 clusters 

with a significance level of 0.1%, 1% and 5% in the Toronto neigh-
bourhoods. The impositions of the Bonferroni bounds result in only the 
low-low and high-high clusters being significant. Our goal is to under-
stand the interesting locations rather than interpreting the most strin-
gent tests (p-value=0.00012), and therefore we have interpreted the use 
of the traditional p-value of 0.05, 0.01 and 0.001. The results also show 
distinct clustering of statistically significant high-high clustering or 
’hotspots’ in the northwestern and southeastern parts of Toronto in 29 
neighbourhoods (20.71% of all neighbourhoods) and Low-Low clus-
tering or cold spots in 35 neighbourhoods (25% of all neighbourhoods) 
in central Toronto (Fig. 3). 

3.2.3. The space-time scan statistic 
We found eight statistically significant space-time clusters of COVID- 

19 in different parts of Toronto from January 2020 to January 2021 
using the space-time statistic method in SaTScan™ (Fig. 4, Table 1). 
Table 1 provides the space-time cluster characteristics that include the p- 
values, the total population at risk, the observed and the expected 
number of cases, the total number of neighbourhoods and the relative 
risk rates for each cluster. The high-risk clusters varied in terms of size, 
the magnitude of relative risks, the total number of neighbourhoods, and 
the number of population at-risk. Forty-two neighbourhoods (30%) not 
within the significant clusters were considered low/no risk (of COVID- 
19) neighbourhoods. The highest relative risks (RR>3.0) were recor-
ded in the western and the eastern part of Toronto. The temporal periods 
for the eight high-risk clusters fell between October 2020 -January 2021, 
with cluster 1 (located in the northwestern corner) experiencing a three- 
month-long clustering period. 

Fig. 2. Total cumulated sporadic COVID-19 cases by epidemiological week in Toronto between January 2020 and January 2021 (used for the statistical analysis).  
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Fig. 3. Cluster and significance maps of COVID-19 incidence rates in Toronto using the local Moran’s I approach.  

Fig. 4. The space-time clusters in Toronto between January 2020 and January 2021.  

Table 1 
COVID-19 space-time clusters characteristics (January 2020-January 2021, in Toronto).  

CLUSTER P-VALUE Radius START END # of Neighbours OBSERVED EXPECTED RR POP 
DATE DATE 

1 <0.001 6691 2020/10/1 2021/1/31 13 11,690 2184.21 6.21 272,167 
2 <0.001 8912 2020/11/1 2021/1/31 10 7137 1584.07 4.90 263,895 
3 <0.001 3463 2020/10/1 2021/1/31 16 5967 1765.93 3.60 220,046 
4 <0.001 4049 2020/11/1 2021/1/31 10 5298 1609.89 3.48 268,198 
5 <0.001 3905 2020/12/1 2021/1/31 11 3447 987.09 3.62 244,011 
6 <0.001 3045 2020/11/1 2021/1/31 12 3674 1206.91 3.16 201,063 
7 <0.001 5643 2020/12/1 2021/1/31 15 2665 1026.03 2.66 253,639 
8 <0.001 2880 2020/12/1 2021/1/31 10 1608 760.13 2.14 187,906 

RR = Relative risk, Pop = Poulation at risk. 
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3.3. Regression analyses 

The results of the bivariate regression analysis show a significant 
positive correlation of COVID-19 incidences with the four independent 
variables: percentage of immigrants (p-value<0.0001), the prevalence 
of low income (p-value<0.0001), unemployment rate (p-value<0.0001) 
in the neighbourhoods, whereas a significant negative correlation was 
observed with the percentage of the population with a lower level of 
education (p-value<0.0001) in the neighbourhood (Table 2). The spatial 
regression models were run with the four independent variables, and the 
multicollinearity among predictor covariates was tested using the mul-
ticollinearity condition number method. The model yielded a multi-
collinearity condition number of 18.9. Since the multicollinearity 
condition number was under 30, it indicates that the predictor variables 
in the regression model are not highly correlated (Yandell and Anselin, 
1990; Anselin et al., 2006). The presence of autocorrelation among the 
predictor variables was further investigated using a correlation matrix. 
The results indicated no strong correlation between the four indepen-
dent variables and were included in the local and global regression 
models. 

3.3.1. Global regression models 
The results from the OLS diagnostics show that the LM lag and LM 

error were both statistically significant at the 0.05 significance level, 
indicating that spatial models such as SLM and SEM are more appro-
priate and relevant global models. The Akaike information criterion 
(AIC), R-square and the log-likelihood values were compared to find the 
most appropriate (Yandell and Anselin, 1990) spatial regression model 
(SLM or SEM) that explains the global spatial relationship between the 
socioeconomic variables and COVID-19 incidence rates. Table 3 shows 
that the SEM model had the lowest AIC value and highest R2value. 
Therefore, the SEM model is chosen as the most appropriate model that 
successfully incorporates spatial effects in the model and can better 
explain the model variability. The results from the SEM model showed a 
one percent increase of the immigrants in a neighbourhood was asso-
ciated with a 1% (exponentiation of the estimate of 0.0110) increase in 
the COVID-19 incidence rate in the neighbourhood. Moreover, a 
one-unit increase in lower educated individuals in a neighbourhood was 
associated with a 2% (exponentiation of the estimate of 0.0179) increase 
in the COVID-19 incidence rate in the neighbourhood. The spatial 
autoregressive coefficient (LAMDA) of the SEM model has a positive sign 
and is highly significant (p-value<0.05), indicating a positive spatial 
dependence between the neighbourhoods (Table 4). 

3.3.2. Local regression models (GWR and MGWR) 
Table 5 shows the covariate-specific bandwidths, the effective 

number of parameter estimates, critical t values, adjusted alpha, R 
square and AICc values for both GWR and MGWR models. The di-
agnostics of the local models indicated that the MGWR model presented 
the largest R-square and lowest AICc among all models and, therefore, a 
better-fitted model (Table 5). The R-square value indicates that the 
MGWR model explains 88.4% of the variations in the COVID-19 rates in 
Toronto. The summary results of the MGWR are listed in Table 6. 

The spatial associations between the socioeconomic factors and 
COVID-19 rates using the outputs from the MGWR model are shown in 

Figs. 5–8, where the local parameter estimates and associated standard 
errors are mapped in (a) and (b), respectively, while (c) indicates only 
the significant local parameter estimates defined based on the signifi-
cance (α) value given in Table 4 which has been adjusted for multiple 
tests. 

Significant positive associations between COVID-19 incidence rates 
and the percentage of immigrants were observed in all neighbourhoods 
in Toronto (Fig. 5c). The higher local parameter estimates were 
observed in the northwestern and southern parts of Toronto, whereas 
lower local parameter estimates were observed in the northeastern parts 
of Toronto. Similar to the percentage of immigrants, a higher percentage 
of the population with a lower level of education was positively asso-
ciated with COVID-19 incidence rates throughout all neighbourhoods of 
Toronto (Fig. 6c). The higher local parameter estimates were observed 
in northeastern Toronto, whereas relatively lower local parameter esti-
mates were observed in southern Toronto. 

The association between COVID-19 incidence rate and the two fac-
tors: prevalence of low income and unemployment rate, were not found 
to be significant in the majority of the neighbourhoods in Toronto 
(Figs. 7c and 8c). The prevalence of low-income local parameter esti-
mates varied from positive to negative values (Fig. 7a). However, only 
six neighbourhoods in northwestern Toronto had a significant negative 
association with COVID-19 incidence rates (Fig. 7c). The unemployment 
rate was found to be significantly associated with COVID-19 incidence 
rates in only five neighbourhoods in the northeastern part of Toronto 
(Fig. 8c) 

Fig. 9 presents spatial variations in local R-square values in the study 
area and the local condition numbers (CN) from the MGWR model for 
each neighbourhood. The highest local R-square values (R2≥0.86) were 
observed in the western and central parts of Toronto, namely in the 
Etobicoke and North York regions (Fig. 9a). The local condition number 
(CN) was observed higher in the northern and central parts of Toronto. 
However, the overall the CN value was <20 with maximum value being 
9.5, suggests that there were no presence of multicollinearity in the 
model (Fig. 9b). 

4. Discussion 

The results of our analysis of the COVID-19 incidences displayed 
non-random spatial distribution patterns in our study area in Toronto. 
Both Anselin’s local Moran’s I and Kulldorff’s space-time statistic pro-
duced similar patterns of hotspots/clusters in the Northwestern part of 

Table 2 
Results of the bivariate regression analysis (Outcome variable: log of COVID-19 
incidence rate).  

Variables Estimate (95% 
CI) 

p-value 

Percentage of immigrants 0.69 (0.60, 0.77) <0.0001 
Percentage of population with lower level of 

education 
0.82 (0.75, 0.86) <0.0001 

Prevalence of low income 0.30 (0.15, 0.45) <0.0001 
Unemployment rate 0.64 (0.53, 0.72) <0.0001  

Table 3 
Summary of output from the global spatial regression models.  

Index Spatial Lag Model 
(SLM) 

Spatial Error Model 
(SEM) 

R2 00.79 0.81 
Log-likelihood 102.67 107.60 
Akaike information 

criterion 
− 193.35 − 205.21  

Table 4 
Regression outputs from the Spatial Error Model (SEM) model (n = 140).  

Variable Coefficient Std. 
Error 

z-value Probability 

Constant 1.4605 0.1562 9.3487 <0.0001 
Percentage of Immigrants 0.0110 0.0035 3.0842 0.0020 
Percentage of population with 

lower level of education 
0.0179 0.0026 6.8249 <0.0001 

Prevalence of low income − 0.0024 0.0061 − 0.3988 0.6899 
Unemployment rate 0.0402 0.0255 1.5738 0.1155 
LAMDA 0.4455 0.1077 4.1337 <0.0001 

Dependent variable: base-10 logarithmically transformed rates of COVID-19. 
Akaike Information Criterion (AIC): − 63.46. 
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Toronto in the Etobicoke region. An assessment of the MGWR maps 
suggests that the higher percentage of immigrants in the neighbour-
hoods may have contributed to the higher COVID-19 incidence in that 
part of Toronto. Additionally, in the eastern part of Toronto, the lower 
level of education of the people in the neighbourhood may have 
contributed to higher COVID-19 incidence. 

Although there were some similarities, we also observed a few dis-
similarities in the clusters detected by the two clustering approaches. It 
is important to note that the local Moran’s I do not take the temporal 
factors into account, and the magnitude of the risk is not provided, 
which is covered in the scan statistic. While the scan statistic identified 

clusters in the southwestern parts of Toronto, the local Moran’s I found 
no significant clusters in those areas. Overall, the clusters identified by 
the scan statistic were more localized and covered a broader area than 
that identified by the local Moran’s I. In local Moran’s I method, the 
clusters are identified in a strictly bounded area, where the correlation is 
assessed between the disease rate of a certain neighbourhood and the 
average disease rate of its surrounding (first-order contiguity) neigh-
bourhoods (Laohasiriwong et al., 2018). Scan statistic might be a more 
sensitive method (Laohasiriwong et al., 2018) and provides more elab-
orate details of the cluster characteristics such as the total population at 
risk, radius, and relative risks compared to local Moran’s I. Since each 
method has its own set of strengths and limitations, we believe a com-
bined approach to identify the disease clusters would provide an 
in-depth understanding of the disease clusters and ensure logical con-
sistency of the results of the analyses. 

The results of the global regression yielded that the percentage of 
immigrants and a lower level of educated people in the neighbourhood 
influenced to vary COVID-19 incidence rates in Toronto, consistent with 
the previous studies (Goutte et al., 2020; Fielding-Miller et al., 2020; 
Borjas, 2020). We found that a higher concentration of immigrants in 
the neighbourhood was associated with the increased COVID-19 inci-
dence in the neighbourhood, suggesting that COVID-19 might have 

Table 5 
GWR and MGWR Summary Statistics for the COVID-19 Data.  

Diagnostic GWR MGWR 
Entire Model Entire Model Intercept Immigrants Lower level of education Low Income Unemployment Rate 

Bandwidth 71 n/a 43 65 99 43 139 
Effective No. of Parameters 20.23 21.09 6.79 3.83 1.98 7.20 1.28 
Adjusted α 0.0125 0.0018 0.007 0.013 0.025 0.006 0.039 
Critical t (95%) 2.53  2.72 2.51 2.26 2.74 2.08 
AICc 158.105 149.45      
R2 0.874 0.884      

n=140.  

Table 6 
Summary of coefficients results from the local MGWR Model.  

Variables Mean STD Min Median Max 

Intercept 0.019 0.195 − 0.248 − 0.022 0.526 
Percentage of Immigrants 0.307 0.095 0.077 0.310 0.489 
Percentage of population with 

lower level of education 
0.505 0.048 0.437 0.492 0.609 

Prevalence of low income − 0.019 0.128 − 0.368 0.027 0.231 
Unemployment rate 0.119 0.008 0.110 0.116 0.136  

Fig. 5. (a) Local parameter estimates (b) Standard errors (c) Significant local parameter estimates (after adjusting for multiple tests) for the percentage of immigrants 
factor from the MGWR model. 
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disproportionately impacted the immigrant population in Toronto. This 
could be attributed to immigrants living in overcrowded housing con-
ditions, lower-income neighbourhoods and/or working in an 

environment where physical distancing is often challenging (COVID-19 
Disproportionately Impacted Immigrants and Refugees in Ontario, 
2021; Choi et al., 2020). It is worth noting that Asian countries account 

Fig. 6. (a) Local parameter estimates (b) Standard errors (c) Significant local parameter estimates (after adjusting for multiple tests) for the lower level of education 
factor from the MGWR model. 

Fig. 7. (a) Local parameter estimates (b) Standard errors (c) Significant local parameter estimates (after adjusting for multiple tests) for the prevalence of low income 
factor from the MGWR model. 
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for the majority (53%) of immigrants in Toronto, with China alone ac-
counting for 20%. Heterogeneity in risk factors across Asian-origin 
subgroups may have led to distinct patterns of geographic disparities 
of risk in COVID-19. 

We also found that neighbourhoods with lower levels of education 
had higher outbreaks of COVID-19 in Toronto. This suggests that the 
least educated people may have a lower understanding and awareness of 
COVID-19, highlighting the importance of knowledge to fight this 
pandemic. It is also possible that the less educated people are employed 
in professions where they are at higher risk of contracting COVID-19, 
and it is not possible for them to self-isolate at home. However, note 
that the global models have some limitations since these models assume 
that the interactions between the variables are stationary over space 
which is often not realistic (Thayn and Simanis, 2013). A variable that is 
not found significant at the global scale may not be true at a local spatial 
scale. The results of our study also suggest that although the prevalence 
of low income and the unemployment rate were not found to be sig-
nificant predictors in the global model, the individual influences of these 
two predictors exhibited a significant association (negative and positive) 
in the local MGWR model in a few neighbourhoods in the city. These 
suggest that ignoring the locally variable indicators may not help to 
control the disease transmission. 

A major advantage of using the local regression model in this study is 
that it allows us to visually demonstrate the magnitude of risk deriving 
from a factor at a spatial scale, which would allow us to know where a 
particular type of intervention will be required based on the different 
associations between characteristics of given populations located at 
different places. The intervention may also include informing on COVID 
protection measures using which languages and where to ask people to 
stay at home and work remotely, etc. The parameter estimates and 
significant maps allowed a comparison with the cluster maps to identify 
the socioeconomic drivers of the clustering of the disease in 
neighbourhoods. 

While the global models performed well, the local models provided a 
more parsimonious quantitative output of the socioeconomic 

determinants that may influence COVID-19 rates. The MGWR allowed 
the relationship between COVID-19 and explanatory variables to vary 
spatially and at different scales. The MGWR has the advantage of more 
accurately depicting spatial heterogeneity, diminish multicollinearity 
and lessening the bias in the parameter estimates (Yu et al., 2020; Oshan 
et al., 2019b). Our findings indicated that the MGWR does not suffer 
from the effect of multicollinearity and is robust as it allowed each of the 
parameters to be processed at flexible and varying scales. The use of the 
correction method proposed by da Silva and Fotheringham (da Silva and 
Fotheringham, 2016) allowed us to identify the significant association 
with each predictor variable at a local scale for a more validated output. 
The MGWR model explained 88.4% of the model variances, which is 
higher than the global four-parameter SEM model (81%), SLM (79%), 
and the local GWR model (87.4%), suggesting that the results of the 
MGWR model provided a more enhanced model accuracy. Therefore, we 
believe using the MGWR approach to demonstrate the influence of so-
cioeconomic components on COVID-19 incidence patterns in Toronto 
benefitted our study. 

There are several limitations to our study. First, we used a limited 
number of variables based on the publicly available data at the neigh-
bourhood level. Further study by including additional explanatory 
variables may benefit our understanding of the spatial variations of the 
disease incidences. Second, this study used confirmed and probable 
COVID-19 cases collected from Toronto Public Health. However, 
COVID-19 is often known to be asymptomatic. Thus, we could have 
missed the infected individuals who had mild symptoms and not visited 
any hospital or testing centers and were unreported. Furthermore, there 
is a possibility of misclassification and variation in the propensity to test. 
However, we believe that these unreported cases could be randomly 
distributed and may not have a significant impact on our analysis. Third, 
the scan statistic uses a circular window to detect disease clusters and is 
unable to detect clusters irregular in shape (Kulldorff, 2009b; Hughes 
and Gorton, 2013). 

In Toronto, COVID-19 has rapidly evolved, creating a dire public 
health crisis. Several ongoing preventative measures were adopted in 

Fig. 8. (a) Local parameter estimates (b) Standard errors (c) Significant local parameter estimates (after adjusting for multiple tests) for the unemployment rate 
factor from the MGWR model. 
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Toronto by the government to control the spread of COVID-19 due to the 
higher rates of infections among the residents. However, the number of 
cases continued to rise. Spatial modeling of disease is important to assess 
a newly emerging infectious disease such as COVID-19 to understand the 
magnitude of the risk in a densely populated city like Toronto. Some 
studies have emphasized the importance of early implementation of 
intervention strategies to mitigate the disease risk from COVID- 
19,111,112. Our study has several policy implications for mitigating the 
risk from COVID-19: (i) it may serve as a spatial guideline for the 
decision-makers to formulate mitigation strategies focusing on the hot-
spots across the neighbourhoods with effective and clear guidelines, (ii) 
the socioeconomic determinants of COVID-19 may provide spatially 
explicit information about the spatial drivers of COVID-19 to identify the 
localities, and the policymakers can establish disease surveillance based 
on the socioeconomic drivers that were influencing disease risk in the 
neighbourhoods, (iii) it may help in developing plans for decreasing the 
socioeconomic inequalities in the high-risk neighbourhoods to mitigate 
the disease risk, and (iv) it may help to identify areas where in-
terventions will be required to improve public knowledge and aware-
ness of COVID-19. 

Future research may focus on how the epidemics are disseminated by 
using diffusion modeling techniques to display the diffusion direction, 
magnitude, and dynamics by taking into account of the knowledge 
related to the virus, such as the incubation time and injected into 
modeling to better represent the reality. 

5. Conclusion 

The use of spatial methods to model COVID-19 incidence in Toronto 
is warranted to improve the current control and vaccination strategies at 
the postal code level. Our study adopts multiple spatial and spatiotem-
poral models to provide a deeper insight into the magnitude of the risk of 
COVID-19 in Toronto. We detected several high-risk clusters in different 
parts of Toronto, and the socioeconomic conditions in the neighbour-
hoods could be the underlying factors for clustering the cases. 
Addressing the socioeconimic determinants of health such as education, 
diversity, income, and unemployment status is important in infectious 
disease surveillance. People living in a lower socioeconomic condition 
may struggle to adhere to proper social distancing measures. The find-
ings of our study could allow a closer focus on the COVID-19 incidence 
and the socioeconomic predictors to mitigate the disease risk and control 
it. The policymakers could benefit from the findings of this study. 
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