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I. Krasku 491/30, 020 01 Púchov, Slovakia; hornak.peter@gmail.com

2 Slovak Academy of Sciences, Institute of Materials Research, Watsonova 47, 040 01 Košice, Slovakia
3 Department of Mechanical Technologies and Materials, Faculty of Special Technology, Alexander Dubček
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Abstract: In this paper, we present the results of an experimental study on WC/C coatings, deposited
by using plasma-enhanced chemical vapor deposition in an N2-SiH4 atmosphere, annealed at
temperatures of 200, 500 and 800 ◦C, in which the hexacarbonyl of W was used as a precursor.
During the experiments, the topography, chemical composition, morphology, as well as selected
mechanical properties, such as hardness, Young’s modulus, and coefficient of friction of the WC/C
coatings were analyzed. Annealing without the protective atmosphere in the mentioned temperatures
caused a decrease in hardness (up to 15 ± 2.7 GPa). In addition, the coefficient of friction value
increased only to 0.37 ± 0.03.

Keywords: WC/C coating; hexacarbonyl wolfram; plasma enhanced chemical vapor deposition;
plasma; annealing; surface properties

1. Introduction

Tungsten carbide (WC) is often used as a thin coating, characterized by high values
of hardness (42 GPa [1–3]), wear resistance, as well as a low coefficient of friction (COF,
0.22 [1,2]), whereas the surface hardness of unmodified steel is 5 GPa [4]. Therefore, WC
is often applied for the protection of functional surfaces of machining components made
of steel, and for coating high-speed steel. WC can be deposited using the physical vapor
deposition (PVD) method; WC’s melting point is notably high (2870 ◦C) [5]. Deposition
techniques, in many instances, include direct current magnetron sputtering (DCMS) [6–13]
and radio frequency magnetron sputtering (RFMS) [1,14–18]. Reactive sputtering using W,
C, or WC target is frequently carried out with additional gases, such as hydrocarbon [6],
N2, or SiH4 [7,8,17]. In addition to other existing progressive PVD sputtering methods, two
other methods for such WC coatings are high target utilization sputtering (HiTUS) [18],
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high-power impulse magnetron sputtering (HiPIMS) [7], and the chemical vapor deposition
(CVD) technique [19,20].

Importantly, during the coating deposition process using CVD (also called high-
temperature HT CVD) methods, the temperature of the process changes from 800 to
1200 ◦C, which excludes some steels and Al alloys from the deposition process.

The deposition temperature can be decreased using transitive gases, which use ionized
gas (also called low-temperature and low-pressure plasma) on the coated surface. The
kinetic energy of the gas particles increases and the temperature of the process can reach up
to 500 ◦C. This process can be used in an improved CVD method, which is also called the
plasma-enhanced (plasma-activated (PA), or plasma-inducted (PI)) chemical vapor deposi-
tion (PE CVD, PA CVD, or PI CVD) method. During plasmochemical processes (e.g., based
on Ar and N2) the gas mixture is ionized and kinetic energy is transmitted to the used
precursors, for example, wolfram carbonyl [21–31], chromium carbonyl [23,26,28,30,32–35],
and molybdenum carbonyl [21,29–31,36], which sublime in the reactor at low temperatures.

Importantly, Garner et al. [26] described the lawfulness of W, Cr, and Mo carbonyl de-
compositions, while Rezuchina et al. [28] studied the relation of saturated vapor pressures
and sublimation temperatures of W, Cr, and Mo carbonyls. Additionally, Chellappa and
Chandra [30] described data relating to the pressure of W, Cr, and Mo carbonyls. The pro-
duction and decomposition of Mo(CO)6 and W(CO)6 were presented by Usoltsev et al. [31].

The properties of WC/C coatings deposited by using PE CVD methods have been
widely studied [22–25,27], as well as the properties of the Cr/C [33–35] and MoC/C [29]
layers. To obtain a higher value of surface hardness and lower COF of WC/C thin coatings,
C2H2 [23] and N2 [8,17,27] gases have been used during the deposition process.

In this study, based on our previous experiments [27], we focused on the microstruc-
ture, chemical composition, and selected useful properties of WC/C coatings deposited
using an N2-SiH4 gas mixture and tested after annealing at various temperatures (200, 500,
and 800 ◦C); the selected mechanical and tribological properties (i.e., hardness, Young’s
modulus, and the coefficient of friction) of the deposited WC/C coatings were analyzed.
The obtained results are discussed and compared with the results of other studies published
in the literature on this field.

2. Materials and Methods
2.1. Sample Preparation

For the deposition process of the WC/C coatings, two types of substrates were used,
monocrystal of Si (20× 15× 1 mm, for evaluating thickness and structure) and construction
steel C45 (AISI 1045, for evaluating tribological tests). The chemical composition (wt.%)
of the steel substrate is as follows: 0.42 ÷ 0.50 C, 0.40 Si, 0.50 ÷ 0.80 Mn, 0.40 Cr, 0.10 Mo,
0.4 Ni, and 0.035 P, according to the Slovak Technical Standards (STN 412050) [27]. The steel
samples were cut using wire electrical discharge machining from bars with diameters of 50
and 25 mm and machined to a thickness of 3.00 ± 0.05 mm. Furthermore, the substrates
were case hardened in oil after being heated to 860 ◦C, and subsequently annealed at
200 ◦C. After thermal processing, the substrates were polished using diamond pastes
with granularity equal to 15, 9, and 3 µm. Finally, the samples were polished using 1 µm
diamond paste to obtain surface roughness (Ra) values of 12 nm. In the next stage, the
substrates were cleaned in acetone using an ultrasonic batch for 10 min and dried in air for
5 min. Following this, the samples were inserted into a vacuum chamber and etched in Ar
plasma at a pressure 2 Pa, where bias of the holder was Ub ≈ −5 kV, current density was
1 mA·cm−2, and the time was 15 min [27]. In addition, an Ar flow of 65 cm3·min−1 in the
vacuum chamber was applied.

2.2. Coating Deposition and Annealing

The coating was deposited by adding Ar (as the working gas) in the N2-SiH4 gas
mixture, where the content of SiH4 (silane) was 1.5%. Table 1 summarizes the technological
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parameters of the deposition process (which lasted for 2 h) and the selected mechanical
properties of the obtained coating before annealing.

Table 1. The technological parameters of the WC/C coating deposition using the PE CVD method
using hexacarbonyl of W as the precursor and the selected mechanical properties of the obtained
coating before annealing.

Type of
Coating

Gas
Mixture

Total
Pressure

(Pa)

Gas
Pressure

(Pa)

HIT
(GPa)

EIT
(GPa)

COF
(-)

WC N2-SiH4 4.0 2.0 18.7 ± 4.3 220 ± 17 0.35

The WC/C coatings were deposited in a ZIP 12 apparatus (NTC New Technology
Centre, Košice, SK, Slovakia) with a sublimation chamber (Figure 1) using the PE CVD
method by applying direct-current electric voltage [27].
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Figure 1. Scheme of the PE CVD equipment used during coating deposition, ZIP 12 type with
sublimation chamber.

The substrates were placed on the cathode (substrate holder), where the maximum
temperature of the deposition was controlled using Kapton tape (made from polyimide
with a silicone sticking surface on one side). During the experiments, the crucible with
the precursor was put into the sublimation chamber and closed using a butterfly valve
between the sublimation chamber and the vacuum chamber. The cleaning procedure was
performed under a pressure of 10−3 Pa using Ar (purity of 99.999%) as the working gas.
In the next stage, during the WC/C coating deposition, the W(CO)6 (hexacarbonyl of W)
was used.

According to [29], during the coating deposition process, the W(CO)6 decomposes into
W + 6 CO, and then carbon monoxide is decomposed according to the Boudouard reaction
2CO→C + CO2. These reactions occur simultaneously in the plasma and on the substrate.

Carbon created in this manner reacts with wolfram and, as a result, creates wolfram
carbide (tungsten carbide, WC). Then, tungsten carbide is deposited onto the substrate
with the influence of bias on the substrate (cathode).

Annealing of the WC/C coated substrates was carried out in an electric furnace at
temperatures of 200, 500 and 800 ◦C, without a protective atmosphere. The duration of the
annealing at the mentioned temperatures was 1 h. After heating, the substrates were left to
cool down.
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2.3. Nanohardness and Young’s Modulus

After the deposition on steel substrates, selected mechanical properties of the WC/C
coatings (specifically, hardness (HIT), and indentation (EIT) modulus) were measured
using the instrumental indentation method (Nanoindenter NHT, CSM Instruments, Basel,
Switzerland). The measurements were provided using sinus mode with an amplitude equal
to 1 mN, applied load of 20–60 mN, and frequency of 15 Hz. The values of indentation
hardness and indentation modulus were calculated as an average of maximal values of
indentation curves.

2.4. Coefficient of Friction

The COF measurements of the WC/C coatings prepared on the metal substrates were
performed using a ball-on-disc method on a HTT tribometer (CSM Instruments, Basel,
Switzerland). The following parameters were used for the tests: unencumbered strength,
0.5 N; temperature, 21 ◦C; without a protective atmosphere, in the air; the counterpart
(a steel ball) was made using 100 Cr6 steel with a diameter of 6 mm, a velocity of the
balls’ movements of 10 cm/s, and path length of 50 m. The coefficient of friction was
continuously measured in the course of every test as a function of time (in some cases as a
function of the number of rotations) of the substrate and path length.

2.5. SEM, AFM, and XPS Analyses

The surface morphology of the evaluated coatings and their microstructures were
observed using an electron microscope JEOL JSM 7000F (Tokyo, Japan).

The topography of the coated surface was measured by using an atomic force micro-
scope (AFM) Dimension Icon, Veeco (Plainview, NY, USA).

The thicknesses of the coatings were evaluated using an electron microscope JEOL
JSM 7000F by observing a transversal fracture of the WC/C coatings deposited on the
Si substrates.

The chemical composition and selected atomic groups of the tested structures were
observed using X-ray photoelectron spectroscopy (XPS). The XPS was performed on an
instrument SPECS (SPECS GmbH, Berlin, Germany) equipped with a PHOIBOS 100 SCD
and a non-monochromatic X-ray source. The survey surface spectra of samples were
measured at 70 eV transition energy and core spectra at 30 eV, at room temperature. The
spectra were all obtained at a basic pressure of 1 × 10−8 mbar with MgKα excitation at
10 kV (200 W). and the data analyses were performed using SpecsLab2 CasaXPS software
(Casa Software Ltd., Teignmouth, UK). A Shirley and Tougaard type of baseline was used
for all peak fits.

3. Results and Discussion
3.1. Thickness, Morphology, and Chemical Composition

Figures 2 and 3a, d show the AFM and SEM images of deposited WC/C coating
characterized by a nanocolumnar structure. The thickness of the deposited coating was
0.75 ± 0.05 µm (Figure 3a). After annealing at a temperature of 500 ◦C, the beginning of the
coating degradation process can be observed, Figure 3b,e. The diameter of grains increased
and, in places marked with arrows, column structures and the presence of globulites with
a size up to 200 nm are visible, which point toward signs of coating degradation caused by
swelling. Swelling is caused by the reaction between C within the coating and oxygen from
the atmosphere in an environment with higher temperatures. Next, CO2 is created, which
swells within the coating. The outcome is a degraded coating in the whole cross-section,
such as that shown by Lofaj F. and Kaganowskyy Yu.S. [37]. On the other hand, it can
appear within the whole cross-section, but in small volumes (Figure 3c). As a result of
annealing at 800 ◦C (Figure 3f) and swelling, empty spaces with varying sizes ranging from
0.1 to 0.5 µm (see arrows) are created. Despite this, the degradation of the WC/C coating
deposited with the N2-SiH4-Ar gas mixture is significantly lower as compared with other
study results [8,17], where massive degradation of WC/C coatings as a result of swelling
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alongside the whole cross-section have occurred, such as that shown by Lofaj F. and
Kaganowskyy Yu.S. [37]. This indicates that the significant increase in the refractoriness of
the WC/C coatings at the mentioned temperatures is the result of adding 1.5% SiH4 (silane)
to N2 during the PE CVD process as compared with the WC/C coatings deposited by
applying the N2-SiH4 gas mixture using DCMS [8] and RFMS [17] methods. The thickness
of the coating after annealing remained in the range of 0.75 ± 0.05 µm (Figure 3c,e).

Figure 2. The AFM image (3D) of the unannealed WC/C coating.
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Figure 3. SEM images of the cross-sectional (left) and surface morphology (right) of WC/C coatings: (a,d) unannealed;
(b,e) after annealing at 500 ◦C; (c,f) after annealing at 800 ◦C.

The most common chemical bonds in amorphous and nanocrystalline carbon films are
sp3 and sp2 hybridizations. In the sp3 configuration, a carbon atom forms four sp3 orbitals
making a strong σ bond to the adjacent atom. In the sp2 configuration, a carbon atom forms
three sp2 orbitals forming three σ bonds and the remaining p orbital forms a π bond. The π
orbital geometrically lies normal to the σ bond plane and is the weaker bond, and therefore
it is closer to the Fermi level. The three σ bonds and π bond usually constitute a ring plane
in sp2 clusters. An XPS analysis is a very sensitive method that can be used to identify and
determine the concentration of elements within the escape depth of the photoelectrons
in the near surface region. Because it can reveal the binding energy of the carbon atoms
and discern the hybrid sp3 and sp2 bonds, it is a very powerful method for evaluating the
structure of carbon films without causing excessive damage to the materials [38]. The XPS
analysis evaluates the emitted electrons from the surface, and from the emitted electrons,
we are able to characterize a binding energy which is typical for each element.

The XPS spectrum of the WC/C deposited unannealed coating (Figure 4a) shows the
presence of C 1s 82.2 at.%, N 1s 2.9 at.%, Si 2p 2.9 at.%, and tungsten 8.0 at.%.

In addition, the obtained results (Figure 4b) show the presence of hard WC and dia-
mond phase (3.4 at.%), graphite phase of C (66.0 at.%), and phase of C-O (30.6 at.%). The
high-resolution spectrum of N 1s nitrogen (Figure 4c) shows the presence of hard WC-N
(65.4 at.%) and nitrogen oxide (34.6 at.%). The spectrum of silicon Si 2p contains two peaks
(Figure 4d), and peak with a value of 99.72 eV (11.0 at.%), which is characteristic for the SiC
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phase and confirms the binding of silicon in a thin layer. A peak of 103.12 eV (89.0 at.%)
is characteristic for the silicon nitride phase. The high-resolution spectrum of W 4f tung-
sten is divided into four peaks (Figure 4e), i.e., peaks with values of 38.85 eV (18.4 at.%)
and 36.59 eV (48.4 at.%) are characteristic for nitrogen-bound tungsten. In addition, the
tungsten carbide compound is confirmed by peaks of 33.99 eV and 32.16 eV (20.8 at.% and
12.5 at.%). These results are in good agreement with results for C deconvolution [39], N
convolution [40], and W convolution [41].
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This is beneficial for the creation of chemical compounds, such as WSi2, SiC, SiO2, and
Si3N4. These phases in the obtained structure during deposition and after annealing caused
an increase in the refractoriness properties of the WC/C coating. Changes in the structure
of the coating related to chemical reactions took place during the process of annealing at
500 ◦C without the protective atmosphere.

As shown in Figure 5a, the surface spectra of the WC/C coatings after annealing at
500 ◦C show the presence of oxygen, carbon, nitrogen, silicon, and tungsten, i.e., O 1s
15.6 at.%, C 70.2 at.%, N 1s 1.9 at.%, Si 2p 10.5 at.%, and W 1.9 at.%, respectively.

The high-resolution spectrum of C 1s carbon (Figure 5b) can be decomposed into three
peaks, a peak of 286.29 eV (42.3 at.%), which is characteristic for the carbon in the C = O
bond; the carbon bonded with oxygen from the air, a peak of 284.96 eV is attributed to the
C-O bond (51.3 at.%); and the peak at 283.61 eV is typical for sp3 hybridization, which is
characteristic for the diamond phase and the tungsten carbide compound (6.4 at.%). The
presence of nitrogen (Figure 5c) on the surface of the coating confirms the high-resolution
N 1s spectrum. From the given spectrum, we can confirm the bonding of the nitrogen,
carbon, and tungsten in a thin layer. The value of 400.00 eV is attributed with nitrogen
oxide. The high-resolution spectrum of silicon Si 2p (Figure 5d) contains two peaks. A line
with a value of 99.72 eV (8.8 at.%) is characteristic for the SiC compound, which confirms
the binding of silicon in a thin layer. A peak of 103.12 eV (91.2 at.%) is characteristic for
silicon oxide.

The high-resolution spectrum of tungsten W 4f (Figure 5e) is divided into four peaks,
i.e., values of 3572 eV (50.7 at.%) and 3783 eV (42.4 at.%) are characteristic for oxygen-bound
tungsten. The tungsten carbide compound is confirmed by a peak at the value of 32.64 eV
(3.7 at.%) and at the value of 30.65 eV (3.2 at.%).

As is shown in Figure 6a (after annealing at 800 ◦C), the surface spectra of the WC/C
coatings show the presence of O 1s 15.6 at.%, C 1s 65.9 at.%, N 1s 3.2 at.%, Si 2p 7.5 at.%,
and tungsten 7.8 at.%.
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The high-resolution spectrum of C 1s carbon (Figure 6b) can be decomposed into
three peaks, a peak of 286.82 eV (23.9 at.%), which is characteristic for the carbon in the
C = O bond; the carbon bonded with oxygen from the air, a peak of 285.1 eV-the given
peak is attributed to the C-O bond (68.6 at.%); and the peak at 283.69 eV is typical for
sp3 hybridization, which is characteristic for the diamond phase and the tungsten carbide
compound (7.5 at.%).

The presence of nitrogen in the tested sample confirms the high-resolution N 1s
spectrum (Figure 6c), the peak at the value of 400.57 eV (90.3 at.%) belongs to nitrogen
oxide. The high-resolution spectrum of silicon Si 2p (Figure 6d) contains two peaks, with
a value of 99.72 eV (13.7 at.%) characteristic for the SiC phase. The peak of 103.18 eV
(86.3 at.%) is characteristic for silicon oxide in the obtained structure.

The high-resolution spectrum of W 4f tungsten (Figure 6e) is divided into four peaks,
with a value of 38.81 eV (18.7 at.%) and with a value of 36.74 eV (38.6 at.%), which are
characteristic for oxygen-bound tungsten. In addition, the tungsten carbide compound is
confirmed by peaks of 32.26 eV and 34.51 eV (13.3 at.% and 29.4 at.%).

3.2. Hardness and Young’s Modulus

Figure 7 shows a depth profile of the indentation hardness course of the tested WC/C
coating deposited using the N2-SiH4-Ar gas mixture.
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The maximum HIT value of the deposited coating is 18.7 ± 4.3 GPa as compared
with that obtained by other studies, namely [8] (18.0 ± 3.1 GPa) and [17] (22.1 ± 2.5 GPa),
where thin layers were obtained using the DCMS and RFMS techniques, respectively.
Simultaneously, the hardness is 30% lower as compared with the hardness of the WC/C
coatings deposited using the PE CVD method with and without adding Ar in a gas
mixture [27]. Young´s modulus of the tested samples is 220 ± 17 GPa (Figure 8).

After annealing at 200 ◦C, the HIT decreased to 12.5± 2.3 GPa (Figure 9). The hardness
of the coating did not change after annealing the coated substrate at 500 ◦C. A slight increase
in hardness to 15.0 ± 2.7 GPa can be spotted after annealing the coated substrate at 800 ◦C,
which is more than in the case of WC/C coating deposited using the PE CVD method
with added Ar (12.0 ± 0.8 GPa) and significantly more than in the case of added N2 gas
(3.0 ± 0.2 GPa) [27].
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The mentioned difference could be attributed to the presence of WC, WN, W2N, SiC,
and SiN which have been made in the process of deposition of the coating (Figure 4b–e) or
during annealing, especially at a temperature of 800 ◦C (Figure 6b–e). It can also be stated
that the mentioned differences correspond with the degree of distraction of the coating
(as compared with the results by [27]) after annealing at the mentioned temperature. As
compared with the results by [27], the least disrupted coating was the one which was
deposited in the N2-SiH4-Ar atmosphere (Figure 3f).

3.3. Coefficient of Friction

Measures of the COF (0.35 ± 0.02, Figure 10) agree with other study results [8], where
the achieved values of the COF of the WC/C coatings deposited with added N2 and Ar
gas are equal to 0.58 ± 0.03 and. 0.77 ± 0.03, respectively.

If we compare the measured COF values of and the WC/C coatings deposited with
the N2-SiH4 gas mixture using the DCMS (0.28 ± 0.03) [8] and RFMS (0.23 ± 0.02) [17]
methods, it can be said that our measured value of COF increased by ca. 30%.
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In contrast, after the applied annealing process at a temperature of 200 ◦C, the COF
value increased slightly to 0.36 ± 0.03 (Figure 11).
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After annealing at 500 ◦C and 800 ◦C, the value of the COF was equal to 0.37 ± 0.40.
This value increased by ca. 30% as compared with other study results (0.27 ± 0.02 [8]
and 0.26 ± 0.01) [17] (annealing at a temperature of 500 ◦C) and by ca. 35% as compared
with (0.22 ± 0.01) [17] (annealing at a temperature of 800 ◦C). It can be stated that the
evaluated WC/C coatings deposited with the N2-SiH4 gas mixture have shown only an
insignificant increase in the COF values after annealing at temperatures of 200, 500 and
800 ◦C (Figure 11).

The presented differences in the COF values (for the WC/C coating that has not been
annealed) can be attributed to the amount of C in the graphite phase, which acts as a dry
lubricant and causes a decrease in the COF value. In addition, regarding high COF values,
C is present in harder particles, such as WC and WC1-X, WN and W2N, and even SiC, which
in small amounts can be created during the coating deposition and, especially, during the
annealing process at high temperatures (in our case at 800 ◦C). The presence of these harder
particles in the WC/C coating causes an increase in the HIT value. If a significantly softer
counterpart is used, relative to the evaluated surface of the WC/C coating, the presence of
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harder particles in the WC/C coatings can cause an increase in the COF, which is attributed
to an increase in contact surface during the tribological test.

4. Conclusions

According to the results of the tested samples of deposited WC/C coatings (unan-
nealed and annealed at various temperatures), it can be stated that:

i. The obtained WC/C coatings using the PE CVD method are characterized by the follow-
ing measurements of evaluated properties: HIT = 18.7 ± 4.3 GPa, EIT = 220 ± 17 GPa,
and COF = 0.35 ± 0.02. In addition, higher values of hardness can be obtained by
optimizing the technological process parameters.

ii. On the one hand, the annealing process causes a significant decrease in the HIT value,
starting at 200 ◦C. On the other hand, after annealing at 500 and 800 ◦C, the hardness
increases only insignificantly as compared with hardness after annealing at 200 ◦C.

iii. After annealing without a protective atmosphere at 500 ◦C, a slight coarsening of the
granulate was spotted on the surface of the WC/C coating, creating bulgy particles
with a diameter up to ca. 200 nm.

iv. The annealing process at 800 ◦C caused the creation of empty spaces in the coating
with a diameter up to ca. 50 nm (less often up to ca. 400 nm), which were periodically
located all over the surface of the coating. The oxidation process, which was partially
accompanied by swelling, could have caused such an occurrence. This mechanism
did not appear in the whole volume of the coating, but only in small regions.

v. The N2-SiH4-Ar gas mixture used during the deposition process of the WC/C coatings
protects against significant degradation up to a temperature of 800 ◦C.
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W–C layers as a function of composition and residual stresses. Key Eng. Mater. 2015, 662, 107–110. [CrossRef]

14. Park, Y.S.; Park, Y.; Jung HJung, T.H.; Lim, D.G.; Choi, W.S. Tribological properties of a-C:W film deposited by radio frequency
magnetron Co-sputtering method. Thin Solid Film. 2012, 521, 107–111. [CrossRef]

15. Li, Y.; Zhang, A.; Li, G. The influence of microstructure on mechanical property of polytypic TiC/WC nanomultilayers. Vacuum
2015, 117, 23–26. [CrossRef]

16. Zhao, H.; Ni, Z.; Ye, F. Effect of carbon content on structure and properties of WCN coatings prepared by RF magnetron sputtering.
Surf. Coat. Technol. 2016, 287, 129–137. [CrossRef]
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