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a b s t r a c t 

Abnormalities in the transition between 𝛼-helices and 𝛽-sheets ( 𝛼- 𝛽 transition) may lead to devastating neu- 

rodegenerative diseases, such as Parkinson’s syndrome and Alzheimer’s disease. Ionic liquids (ILs) are potential 

drugs for targeted therapies against these diseases because of their excellent bioactivity and designability of ILs. 

However, the mechanism through which ILs regulate the 𝛼- 𝛽 transition remains unclear. Herein, a combination 

of GPU-accelerated microsecond molecular dynamics simulations, correlation analysis, and machine learning 

was used to probe the dynamical 𝛼- 𝛽 transition process induced by ILs of 1-alkyl-3-methylimidazolium chloride 

([Cn mim]Cl) and its molecular mechanism. Interestingly, the cation of [Cn mim]+ in ILs can spontaneously insert 

into the peptides as free ions ( n ≤ 10) and clusters ( n ≥ 11). Such insertion can significantly inhibit the 𝛼- 𝛽, tran- 

sition and the inhibiting ability for the clusters is more significant than that of free ions, where [C10 mim]+ and 

[C12 mim]+ can reduce the maximum 𝛽-sheet content of the peptide by 18.5% and 44.9%, respectively. Further- 

more, the correlation analysis and machine learning method were used to develop a predictive model accounting 

for the influencing factors on the 𝛼- 𝛽 transition, which could accurately predict the effect of ILs on the 𝛼- 𝛽 tran- 

sition. Overall, these quantitative results may not only deepen the understanding of the role of ILs in the 𝛼- 𝛽

transition but also guide the development of the IL-based treatments for related diseases. 
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. Introduction 

𝛼-helices and 𝛽-sheets are the main secondary structures of proteins
1–3] , and the 𝛼- 𝛽 transition is associated with the processes of signal
ransduction, membrane fusion, and the transcription and translation of
enetic material [4–7] . The correct 𝛼- 𝛽 transition is required for main-
aining normal activity, e.g., Alzheimer’s and Parkinson’s syndromes are
aused by an abnormal transition of amyloid in the brain from a struc-
ure with a high 𝛼-helix content to a structure with a high 𝛽-sheet con-
ent [ 8 , 9 ]. In addition, 𝛼-helices are highly stable biomechanical struc-
ures that are the basis of the material of the cytoskeleton, hair, and nails
10] . Silk fibronectin, which is rich in 𝛼-helices, has excellent toughness
nd tensile strength and is widely used in medical functional materials,
ncluding medical hydrogels and stents [ 11 , 12 ]. Therefore, the influ-
nce and mechanism of the 𝛼- 𝛽 transition in proteins need to be better
nderstood. 

Considering the importance of the 𝛼- 𝛽 transition, the molecular
echanism of the 𝛼- 𝛽 transition and how to achieve precise regulation

f the transition process is of interest in medicine, chemistry, biology,
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nd materials science. Numerous experimental and theoretical studies
f the 𝛼- 𝛽 transition of proteins have been performed. Circular dichro-
sm and chemical cross-linking studies have shown that coiled coils may
e intermediate structures in the 𝛼- 𝛽 transition [13] . Multi-scale anal-
sis has indicated that the retractive elastic force in the 𝛼- 𝛽 transition
as not governed by entropy but was mainly the result of internal en-

rgy changes associated with conformational changes [14] . In general,
he 𝛼- 𝛽 transition can be easily regulated using external stimuli, such
s the peptide concentration and pH [15–17] . Moreover, fluorinated
mino acids have been shown to promote the conformational transi-
ion of a protein from an 𝛼-helix to a 𝛽-sheet [18] . These studies have
reliminarily indicated the mechanism of the 𝛼- 𝛽 transition and laid the
oundation for further research. 

Ionic liquids (ILs) have attracted great interest in life sciences, emerg-
ng as active drug ingredients [19–21] , delivery agents [ 22 , 23 ], and an-
imicrobial agents [24] because of their excellent bioactivity and sur-
ace activity [25] . It has been shown that because of the hydrophobic
nd electrostatic interactions between ILs and proteins, ILs adsorb to
rotein surfaces [26] , which would contribute to protein solubilization;
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herefore, ILs can serve as storage media for proteins [27] . Furthermore,
 combination of UV–Vis spectroscopy and molecular dynamics (MD)
imulations has shown that ILs can modify the water structure on a pro-
ein surface to modulate the interfacial properties of the protein [ 28 , 29 ].
mportantly, ILs can alter the permeability and mechanical properties of
ells [30] , which can have impacts on the 𝛼- 𝛽 transition. It can be con-
luded that ILs can directly or indirectly affect the structure and function
f proteins, which in turn regulate cellular activity. However, the mech-
nism by which ILs affect the 𝛼- 𝛽 transition is unclear because of the
low structural evolution between ILs and the 𝛼- 𝛽 transition. 

Molecular dynamics and machine learning have been employed for
he recognition of protein secondary structures, relying on spectroscopic
escriptors [31] . To elucidate the mechanism of the control of the 𝛼-
transition by imidazole ILs and to overcome the corresponding slow

ate, all-atom 𝜇s-long steered molecular dynamics (SMD) simulations
ere performed with the help of graphics processing units (GPU) ac-

eleration technology. We found that ILs inserted between the peptides
n the form of free ions and ionic clusters, and the inserted ILs occu-
ied the hydrogen bonding sites and reduced the number of hydrogen
onds (HBs) between the peptides, thus hindering the formation of 𝛽-
heets. The stretching rate ( v ), initial length ( L0 ), and surface charge of
he peptides, together with the alkyl chain length ( n ) and cluster state of
he ILs, affected the 𝛼- 𝛽 transition. Finally, through machine learning,
hese descriptors were modeled using neural network algorithms, with
earson correlation coefficient ( r ) reaching 0.951. These results will be
seful for understanding the interaction process of ILs with proteins at
he molecular level and for developing the application of ILs in disease
reatment. 

. Models and methods 

.1. Atomic structures 

We used the structural models of vimentin (1gk4), geminin (1uii
nd 1t6f), tumor suppressor protein (1deb), voltage-gated proton chan-
el (3vmx), and leucine zipper (1zik). These 𝛼-helix-coiled coil pro-
eins were immersed in a water solution with ILs at 0.136 mol/L.
he PACKMOL package was used to build the initial configuration
31] . As shown in Fig. 1 a, the typical ILs, 1-alkyl-3-methylimidazolium
hloride, namely, [Cn mim][Cl] ( n = 4, 6, 8, 10, 12, 14, 16), were
sed because they are widely used in biomedicine and materials sci-
nce [ 32 , 33 ]. The size of the simulated system was approximately
.1 nm × 5.1 nm × 29.7 nm. The periodic boundary condition was ap-
lied in three directions. 

All simulations were performed via GPU-accelerated Amber18 us-
ng a timestep of 2 fs [34] . The protein.ff14SB force fields were used
or peptides, and the general amber force field was adopted to describe
he interaction within the ILs [ 35,51 ]. Water molecules were described
y transferable interatomic potential with a three-point model (TIP3P)
36] . Non-bonding interactions included electrostatic and van der Waals
orces, where the long-range Coulombic interaction was computed us-
ng the particle-mesh-Ewald algorithm [37] , and the van der Waals force
as described using the Lennard-Jones potential with a cutoff of 1.0 nm.
he Lorentz–Berthelot mixing rules were used to model the parameters
etween different atom types, and the SHAKE algorithm was used to
educe high-frequency vibrations of hydrogen [ 38,52 ]. The Berendsen
hermostat [39] and Berendsen barostat [40] were used to fix the tem-
erature at 310 K and control the pressure at 1 bar with a coupling con-
tant of 1.0 ps. The system was first equilibrated at 310 K and 1 bar in
he NPT (constant-pressure, constant-temperature) ensemble for 50 ns.
fter equilibration, each structure was stretched in the NVT (canonical)
nsemble by SMD. The two C 𝛼 atoms at the left end of the peptide were
xed to a harmonic spring, with a spring constant of 2 kcal/mol/A2 ,
hile the two C 𝛼 atoms at the right end of the peptide were linked to a
armonic spring, with a spring constant of 10 kcal/mol/A2 . The springs
ere pulled at different speeds ( v = 0.02–0.4 m/s) along the axial di-
778
ection, 𝜀 = ΔL/L0 , where ΔL is the tensile strain and L0 is the initial
nd-to-end length of the peptide. For each peptide, the stretching simu-
ations were repeated at least five times. 

.2. Correlation analysis 

Correlation analysis was performed using the Statistic Package for
he Social Science (SPSS) to correlate the stretch velocity ( v ), the char-
cteristics of the peptides [the initial length of the peptide ( L0 ) and the
egatively charged ( Pneg ) and the non-polar ( Pnon ) amino acid content
f the peptide] and the state of the ILs [alkyl chain length ( n ) and the
roportion of large clusters ( PM ≥ 16 ) and free ions ( PM = 1 )] for the
aximum 𝛽-sheet formation ( P𝛽 -max ). 

.3. Model training 

The model training used Scikit-learn [41] and TensorFlow [42] . The
ataset contained 29 IL–peptide complexes, randomly divided into two
roups: 80% for model training and 20% for model testing. A neural
etwork algorithm [43] was used for mapping descriptors to the target

𝛽- max . The neural network consisted of one input layer, four hidden
ayers, and one output layer. The four hidden layers each contained
4, 64, 128, and 64 neurons, respectively; and the rectified linear unit
ctivation function was used for each hidden neural network layer [44] .

. Results and discussion 

.1. Dynamical stretching behavior of the 𝛼- 𝛽 transition in proteins 

Proteins play essential roles in cellular metabolism, and during
etabolism, cells generate tensile forces that induce 𝛼- 𝛽 transitions. To

imulate the force applied by the cells, a peptide was placed horizontally
nd a 2 kcal/mol/A2 constraint was applied to the left end, and a har-
onic spring of 10 kcal/mol/A2 was applied to the right end, which was
sed to make the peptide stretch uniformly ( Fig. 1 a). The main sub-level
onds maintaining 𝛼-helices are intra-chain HBs, while the main sub-
evel bonds that maintain 𝛽-sheets are inter-chain HBs ( Fig. 1 b). Under
ensile force, the intra-chain HBs break, leading to the decomposition of
he 𝛼-helices and the formation of a disordered peptide conformation.
ext, the disordered peptide self-assembles to form 𝛽-sheets under the

nteraction of inter-chain HBs. 
Considering the stretching speed appreciably affects the transforma-

ion process [45] , we first used different speeds ( v = 0.02–0.4 m/s) to
tretch the peptide at physiological saline concentrations. This stretch-
ng allowed the peptide (pdb: 1gk4) to deform and force-strain ( f - 𝜀 )
urves were obtained ( Fig. 1 c), where 𝜀 = ΔL / L0 , and L0 is the initial
ength of the peptide, and ΔL is the tensile strain. As the speed was
educed, the f- 𝜀 curve shifted downward as a whole, and the curve con-
erged when v = 0.04 m/s. The tensile process can be divided into three
tages [46] . The first stage (0 ≤ 𝜀 ≤ 0.2) was the elastic deformation
hase, where the peptide underwent elastic deformation, f increased lin-
arly with 𝜀 and satisfied the equation: f = k1 Δ𝜀 . The second stage was
he plastic deformation phase (0.2 < 𝜀 ≤ 1.25), f remained unchanged
uring the stretching process, f = 0.2 nN. The force f in the plastic phase
ad a linear relationship with the logarithm of the stretching velocity
ln v ), which was in good agreement with previous work [45] . When 𝜀
ontinued to increase, 𝜀 > 1.25, the peptide underwent non-linear de-
ormation, f = k2 Δ𝜀2 . 

Ramachandran plot analysis is a visual representation that reflects
he secondary structure of a protein by calculating the distributions of
he dihedral angles ( 𝜓 , 𝜑 ) of the peptide backbone. We performed a
amachandran plot analysis of the structures of the peptide before and
fter stretching ( Fig. 1 d) and found that the distribution of the dihedral
ngle of the peptide changed. Before stretching ( 𝜀 = 0), the dihedral
ngles of the peptide were mainly distributed in the region “A ”, corre-
ponding to a high 𝛼-helix content; however, when 𝜀 = 1.25, the dihe-
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Fig. 1. (a) Model for studying the 𝛼- 𝛽 transition. (b) Schematic diagram of 𝛼-helix and 𝛽-sheet. (c) Force f -strain 𝜀 curves of the peptide at different stretching speeds. 

The inset plots represent the relationship of f vs. ln v . (d) Dihedral angle distribution (Rasch diagram) of peptide before and after stretching using 1gk4 as an example. 

(e) The relationship between P𝛽- max and ln v . The inset plots represent the content of 𝛽-sheet ( P𝛽 ) as a function of strain for v = 0.04 m/s. (f) Evolution of the content 

of various secondary structures during stretching. (g) Simulation snapshots of the 𝛼- 𝛽 transition during stretching. 
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ral angles were mainly distributed in region “B ”, corresponding to a
igh 𝛽-sheet content, indicating that stretching led to the transition of
he peptide from an 𝛼-helix to 𝛽-sheet. The stretching process was also
ccompanied by the generation and decomposition of other secondary
tructures ( Fig. 1 f), the content of [Bend], [Turn] [3–10] , and [Disor-
er] were 3.2%, 10.1%, 17.1%, and 30.4%, respectively, for 𝜀 = 0.6.
hese results also suggested that 𝛼-helix and 𝛽-sheet were the two most
ominant secondary ordered structures ( Fig. 1 f); therefore, we recorded
he content of 𝛽-sheet ( P𝛽) and the maximum P𝛽 ( P𝛽 -max ) values during
he stretching process ( Figs. 1 e, S1). 

The P𝛽 value increased overall as the stretching speed was reduced
nd converged at v = 0.04 m/s, which was consistent with the trend in
he change of the f - 𝜀 curve with different values of v . Combined with
he snapshots of the peptide during the simulated process ( Fig. 1 g), it
as found that when 𝜀 reached 0.2, the stretching entered the plastic
779
hase and 𝛽-sheets began to appear at both ends of the peptide, which
as in complete agreement with the results observed for the stretch-

ng of horse hair [47] . The P𝛽 value showed a trend of first increasing
nd then decreasing, and at all the different stretching speeds, 𝛽-sheet
ormation reached a maximum of approximately 1.25. For example,

𝛽 -max = 40.0% ( 𝜀 = 1.25) at v = 0.04 m/s. Because we fitted and aver-
ged the 𝛽-sheet curve, there was a difference between the P𝛽 -max value
nd the instantaneous content Pins- 𝛽 = 69.1% ( 𝜀 = 1.25). When entering
he non-linear stretching phase, the 𝛽-sheets started to decompose from
he middle of the peptide, with P𝛽 = 27.2% ( 𝜀 = 1.5). Thus, the stretching
ed to the rearrangement of HBs and dihedral angles to achieve the tran-
ition from 𝛼-helix to 𝛽-sheet in the peptide, and v = 0.04 m/s was the ap-
ropriate stretching speed. Therefore, a stretching velocity of 0.04 m/s
as used in subsequent simulations. 
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Fig. 2. (a) Simulation snapshots of the insertion of ILs with different alkyl chain lengths between peptides. (b) Insertion process for the [C8 mim]+ free ion. (c) 𝛽-Sheet 

maxima of peptide 1deb after treatment with ILs with different chain lengths. (d, e) Content of 𝛽-sheet ( P𝛽 ) and the number of intermolecular HBs as a function of 

strain after addition of different ILs. 
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.2. Molecular mechanism of the regulation of the 𝛼- 𝛽 transition by ILs 

To investigate the mechanism by which ILs regulated the 𝛼- 𝛽 transi-
ion, we added 0.136 mol/L of imidazolium chloride ILs with different
lkyl chain lengths [Cn mim][Cl] ( n = 4, 6, 8, 10, 12, 14, and 16) to
he system (pdb:1deb) as shown in Fig. 2 a. The results indicated that
Ls spontaneously inserted between the peptides as free ions or clus-
ers. For ILs with short alkyl chains ( n ≤ 10), the ILs mainly inserted
etween the peptides vertically in the free ion state ( Fig. 2 b). When the
lkyl chain had greater than 10 carbons, ILs mainly inserted between
he peptides in the form of clusters. The inserted ILs occupied the HB
ites between the peptides and formed a complex HB network with the
eptides ( Figs. 2 b, S2). However, the inserted clusters not only occu-
ied the HB sites but also made the peptide chain ectopic. These two
ifferent insertion modes resulted in different levels of inhibition of the
ormation of 𝛽-sheets during the 𝛼- 𝛽 transition ( Fig. 2 c-d). 

Compared with a pure water system ( P𝛽 -max = 40.3%), the P𝛽 -max 

alue decreased when ILs were added. For short-chain ILs (4 ≤ n ≤ 10)
ith predominantly free-ion insertion, the P𝛽 -max value was approxi-
ately 32%, while for the long-chain ILs ( n > 10), which inserted mainly

s clusters, the inhibition of 𝛽-sheet formation was more pronounced,
or instance, P𝛽 -max = 20.8% for the IL with n = 12. The inserted ILs oc-
upied HB sites between the peptides, reducing the number of HBs be-
ween the peptides ( Fig. 2 e), which in turn impeded 𝛽-sheet formation.
he clusters occupied more HB sites and were more stable, compared
ith the free ions, which resulted in a stronger inhibition of 𝛽-sheet

ormation by ILs with long alkyl chains compared with ILs with short
hains. However, different chain lengths of the ILs had little effect on
he decomposition of the 𝛼-helix and the breaking of the intra-chain HBs
Fig. S3). 
780
It is known that ILs are inserted between peptides in the form of free
ons and clusters to hinder the formation of 𝛽-sheets during stretching.
ecause of the existence of extensive negatively charged and non-polar
egions on the peptide surface (Fig. S4), the content of IL cations was
nriched on the surface of the peptides, and this phenomenon became
ore pronounced with increasing alkyl chain lengths (Fig. S5). Hence,
e analyzed the clustering of ILs with different alkyl chain lengths
 Fig. 3 ). With the stretching of the peptide, the state of the ILs will
hange. The size distribution of the IL clusters in the system ( Figs. 3 b, S6)
ndicated that the proportion of free ions decreased with an increase in
he alkyl chain length. For example, the proportion of free ions ( M = 1)
or ILs with n = 4, 10, and 16 under 𝜀 = 1.5 was 95.3%, 39.3%, and
.0%, respectively. The content of small clusters (5 ≥ M ≥ 2) showed a
rend of first increasing and then decreasing, for instance, the propor-
ion of small clusters was 4.7%, 18.7%, and 6.0% for ILs with n = 4, 10,
nd 16 under 𝜀 = 1.5, respectively. In addition, medium-sized clusters
15 ≥ M ≥ 6) and large clusters ( M ≥ 16) also showed the same trend,
nd the proportions of medium and large clusters peaked for ILs with
 = 14 and 12, respectively. 

Interestingly, with increased stretching of the peptide, the clus-
ers of [C8 mim][Cl] dissociated, the proportion of small clusters
5 ≥ M ≥ 2) gradually decreased, and the proportion of free ions in-
reased, PM = 1 = 59.7%, 67.3%, and 80.0% at 𝜀 = 0, 0.3, and 1.5, re-
pectively ( Fig. 3 b). In detail, the number of ILs forming clusters on
he surface of the peptide NILcluster was 9 at 𝜀 = 0, and as 𝜀 increased,

ILcluster = 8 and 7 for 𝜀 = 0.9 and 1.5, respectively, and the small clus-
ers were gradually dispersed. In contrast to [C8 mim][C l ], there was
lear cluster formation by ion aggregation for [C12 mim][C l ], with a de-
rease in medium-sized clusters (15 ≥ M ≥ 6) and an increase in the
roportion of large clusters. This result suggested that peptide stretch-
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Fig. 3. (a) Simulation snapshots of the evolution of [C8 mim]+ and [C12 mim]+ clusters on the surface of peptides and trajectory density distribution of the cations. 

(b) The size distribution of the clusters in systems with ILs with different chain lengths. 

Fig. 4. (a) 𝛽-Sheet maxima ( P𝛽- max ) for peptides with different lengths. The PDB IDs of the peptides with length of 60, 74, 96, 107, 122, and 158 are 1zik, 1t6f, 

3vmx, 1deb, 1uii, and 1gk4, respectively. Ref. [48] and ref. [49] represent literature P𝛽- max values obtained by SMD simulations. (b) Reduction in P𝛽- max values for 

ILs with n = 10 and 12. 

781
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Fig. 5. (a) The architecture of the neural networks. (b) Heat map of the Pearson correlation coefficient (r) between the descriptors for predicting the values of P𝛽- max . 

(c) Prediction performance plots of the model for the 𝛼- 𝛽 transition for the training and test sets: simulation vs. predicted P𝛽- max values. The dashed line is the ideal 

1:1 ratio. The Pearson correlation coefficient ( r ) and mean squared error (rmse) are for the test set. (d) The simulation and predicted P𝛽- max values for the peptide 

(pdb:1gk4) in a water solution with ILs at 0.181 mol/L. 
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ng altered the interfacial clustering of ILs and transmitted this effect to
he entire system. 

From the above cluster analysis, we can correlate the cluster state of
Ls with their ability to inhibit 𝛽-sheet formation. When 4 ≤ n ≤ 10, the
ystem was dominated by free ILs and mainly free ions were inserted
etween the peptides, resulting in less inhibition of 𝛽-sheet formation
ecause relatively few HB sites were occupied by the free ions. When
2 ≤ n ≤ 16, the ILs were inserted between the peptide chains as large
lusters, the inserted IL clusters occupied more HB sites, the interaction
as more stable, and the hindrance of 𝛽-sheet formation was greater,

ompared with ILs with 4 ≤ n ≤ 10. For ILs with 12 ≤ n ≤ 16, the
roportion of large clusters decreased as n increased, and this decreasing
rend coincided with a decrease in the ability of the ILs to inhibit 𝛽-
heet formation, demonstrating that the insertion of large clusters was
he main reason why long chain (12 ≤ n ≤ 16) ILs hindered 𝛽-sheet
ormation. That is, the surface force of the peptide stretching drove a
 w  

782
hange in the interfacial state of the ILs, and in turn, the interfacial
tate of the ILs affected the transition process of the peptides. 

.3. Correlation analysis and machine learning-based predictive model of 

he 𝛼- 𝛽 transition 

To account for the effect of the initial length of the peptide (number
f amino acids, N0 ) on the 𝛼- 𝛽 transition, we used peptides with different
engths in stretching experiments ( Figs. 4 a and S7–S10). The maximum
alue of the 𝛽-sheet content P𝛽- max gradually increased with increasing
alues of L0 in the control groups. For instance, the values for P𝛽- max 

ere 20.0%, 28.7%, and 40.0% for 1zik ( N0 = 60), 3vmx ( N0 = 96),
nd 1 gk4 ( N0 = 158), respectively, which was consistent with previous
ork [48] . However, 1deb ( N0 = 107) showed a higher P𝛽- max because

he formation of 𝛽-sheets was not only related to the peptide length but
as also closely related to the type of amino acids and their arrangement
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n the peptide. Furthermore, [C10 mim][C l ], and [C12 mim][Cl] both in-
ibited the formation of 𝛽-sheets during the transformation of different
eptides. Hence, we also calculated the values for ΔP𝛽- max , the reduction
f the P𝛽- max value by [C10 mim][Cl] and [C12 mim][Cl] ( Fig. 4 b). The
ffect of [C12 mim][Cl] was more pronounced than for [C10 mim][Cl]
or all the peptides, which again indicated that inserted clusters had a
reater effect on the 𝛼- 𝛽 transition than free ions. 

It can be concluded that the 𝛼- 𝛽 transition was mainly influenced
y the stretching velocity ( v ), the character of the peptides, including
he initial length of the peptide ( L0 ), the negatively charged amino acid
 Pneg ), and non-polar amino acid ( Pnon , ) content of the peptide (Fig. S11),
nd the states of the ILs including alkyl chain length ( n ), the proportion
f large clusters ( PM ≥ 16 ) and free ions ( PM = 1 ). Therefore, we selected
hese descriptors for a typical correlation analysis with P𝛽- max and ob-
ained the correlation equation given below ( Fig. 5 b). 

1 = 0 . 752 𝐿0 − 0 . 757 𝑣 − 0 . 361 𝑃𝑀 ≥ 16 − 0 . 348 𝑛 
−0 . 297 𝑃neg − 0 . 151 𝑃non − 0 . 058 𝑃𝑀 = 1 

(1) 

1 ∝ 0 . 901 𝑃𝛽−max (2)

1 was set as 1 and represents the factors affecting the transition. The
ositive or negative value of the correlation coefficient ( R ) represents
he positive or negative correlation between the variables, and when
 R | is close to 1, the linear relationship is strong. As shown in Eq. 2 , the
alue of R between U1 and P𝛽- max was 0.901, indicating that there was
 significant correlation between U1 and P𝛽- max . Therefore, combined
ith Eq. 1 where R = 0.752 between L0 and U1 , these results showed

hat L0 contributed to the formation of 𝛽-sheets, while v and PM ≥ 16 

istinctly inhibited the formation of 𝛽-sheets with R values of –0.757
nd –0.297, respectively. The R of large clusters was larger than for
ree ions, indicating that large clusters had a significant effect on the
ormation of 𝛽-sheets. These results were in good agreement with our
MD simulations. 

Machine learning was further used to predict the values for P𝛽- max ,
nd the model was trained using the neural network algorithm ( Fig. 5 a),
here the descriptors were selected from SMD simulations and typical

orrelation analysis. After 300 iterations, the loss functions of the train-
ng and test sets were < 0.005 as shown in Fig. S12. Finally, a Pearson
orrelation coefficient ( r ) of 0.951 was achieved for the test set ( Fig. 5 c),
ndicating that the model could accurately predict the effect of ILs on the
- 𝛽 transition, although the plotted data clearly showed a slight over-
stimation at low values and an underestimation at high values, which
s potentially because of the lack of data with an extremely high P𝛽- max 

alue accentuated by the fact that only four data points were originating
rom a P𝛽- max value above 35%. This imbalance in the dataset led to an
mbalance in the predictions [50] . Adding more data with high P𝛽- max 

alues could potentially reduce this effect. To test the generalization of
ur model, we used the model to predict the effect of 0.181 mol/L ILs
ith n = 10 and 12 on the 𝛼- 𝛽 transition ( Figs. 5 d and S13), which was
ot considered in the previous dataset. Excitingly, the simulated values
f P𝛽- max for n = 10 and 12 were 27.9% and 24.4%, respectively, while
he predicted values from the machine learning model were 31.3% and
6.7%, respectively. These results indicated that our model had a good
eneralization performance, especially considering the small sample size
f the training set. It is worth noting that the selection of descriptors also
as certain limitations. Our descriptors are solely derived from the MD
imulations, which would restrain the applicability of the model. In the
uture, the property of ILs, the effect of concentration of ILs, and other
escriptors related to 𝛼- 𝛽 transition should be added to enhance the per-
ormance of the ML-based predictive model. 

. Conclusion 

This work elucidated the mechanism by which ILs inhibit the 𝛼- 𝛽
ransition using a multi-technique investigation (SMD, correlation anal-
sis, and ML). We demonstrated that stretching led to the rearrangement
783
f HBs and dihedral angles in the peptide to achieve the transition from
n 𝛼-helix to 𝛽-sheet. Upon the addition of ILs, the content of ILs was
nriched on the peptide surface by electrostatic and hydrophobic inter-
ctions, and the interfacial clustering state of the ILs changed as the
eptide stretched. Stretching led to the dissociation of [C8 mim]+ clus-
ers, as well as the formation of [C12 mim]+ clusters. The inserted ILs
ccupied the HB sites and decreased the number of HBs between the
eptides, thus, hindering the formation of 𝛽-sheets. Specifically, the in-
erted large clusters were a greater obstacle to 𝛽-sheet formation than
he free ions, which can be attributed to the fact that the ionic clusters
ccupied more HB sites and interacted with the peptides more perma-
ently, compared with the free ions, which caused misalignment of the
eptides. Correlation analysis showed that the stretching speed ( v ) to-
ether with the characteristics of the peptide and the state of ILs affected
he 𝛼- 𝛽 transition. We also applied machine learning techniques to the
roteins, showing that the neural network algorithm is a powerful tool
or investigating the 𝛼- 𝛽 transition. These results showing how ILs reg-
lated the 𝛼- 𝛽 transition will be useful in future medical research appli-
ations, including developing treatments for destructive neurodegener-
tive diseases, such as Parkinson’s syndrome and Alzheimer’s disease. 
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