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Rationally inattentive intertemporal choice
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Discounting of future rewards is traditionally interpreted as evidence for an intrinsic pre-
ference in favor of sooner rewards. However, temporal discounting can also arise from
internal uncertainty in value representations of future events, if one assumes that noisy
mental simulations of the future are rationally combined with prior beliefs. Here, we further
develop this idea by considering how simulation noise may be adaptively modulated by task
demands, based on principles of rational inattention. We show how the optimal allocation of
mental effort can give rise to the magnitude effect in intertemporal choice. In a re-analysis of
two prior data sets, and in another experiment, we reveal several behavioral signatures of this
theoretical account, tying choice stochasticity to the magnitude effect. We conclude that
some aspects of temporal discounting may result from a cognitively plausible adaptive
response to the costs of information processing.
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he preference for sooner over later rewards is traditionally

interpreted as an intrinsic decline in value as outcomes

recede into the future. However, recent evidence suggests
an alternative (although not mutually exclusive) viewpoint:
temporal discounting could arise from internal uncertainty in
value representations of future rewards. Imagining the future
allows an agent to immediately experience anticipated outcomes,
helping them to delay gratification, but this prospection may lose
its impact when mental simulations are noisy. A number of
influential studies show that patience is enhanced by treatments
that may be thought of as increasing the precision of mental
simulation. For example, discounting is attenuated when people
are asked to imagine spending future rewards!, when they ima-
gine future outcomes in greater detail2, and when episodic tags
are provided to facilitate such imagination3.

Thus, even if agents with imperfect foresight intrinsically
valued delayed rewards just as much as immediate rewards, the
myopic nature of their prospection could reduce the impact of
the future. This idea has recently been formalized in a Bayesian
model of discounting?, in which an agent observes noisy
simulations of future value and applies Bayes’ rule to obtain a
posterior estimate. Assuming simulations become noisier the
further they reach into the future, the agent increasingly relies
on their prior beliefs and discounts the reward value. Gabaix
and Laibson* showed how this can lead to hyperbolic dis-
counting while accommodating the effects of experience on
intertemporal choice tasks. However, this analysis is predicated
on a fixed relationship between reward delay and simulation
noise, although there is reason to think that the relationship is
not fixed. We extend this perspective by considering how the
degree of simulation noise may be adaptively controlled, and
propose how such a mechanism contributes to the well-known
magnitude effect in intertemporal choice—the finding that
people are disproportionately more patient when judging high-
value outcomes®~°.

According to our theory, vivid prospection can help agents to
delay gratification, but this comes at a cost. Making simulations
more precise requires mental effort, and this effort may only be
invoked if its benefits outweigh its costs. We formalize this
intuition in terms of rate-distortion theory, an information-
theoretic framework for modeling the optimal level of internal
uncertainty (ref. 19, see also refs. 11-13). Richer simulations are
cognitively costly, and therefore a decision maker must make a
trade-off involving precision and effort. Most relevant in the
present context, larger rewards may be more important to eval-
uate carefully. In this case, greater magnitudes would be simu-
lated more precisely and, in light of the above argument, would
engender more patience. The model thus implies a direct con-
nection between stochasticity and discounting.

Our theory is consistent with several lines of psychological
evidence. Mental representations of events farther in the future
generally contain fewer sensory and contextual details than those
closer in time!%1>. Future events are imagined with greater
vividness when cued by more rewarding stimuli!®, and people
produce longer lists of thoughts when prompted to evaluate
higher magnitude intertemporal choices!”. Moreover, when
people are asked to write down justifications for their choices,
patience is enhanced specifically for lower magnitude rewards, as
if cognitive control is already being exerted at higher
magnitudes!$.

In what follows, we investigate the behavioral implications of
this theory. We show how it qualitatively accounts for several
empirical findings pertaining to the magnitude effect, quantita-
tively improves model fit in a large existing data set, and accu-
rately predicts patterns of discounting and stochasticity
in another experiment. These results help sharpen our

understanding of the relationship between patience, reward, and
mental effort.

Results

A Bayesian model of as-if temporal discounting. In this section,
we first describe the Bayesian model of discounting developed by
Gabaix and Laibson*. In the next section, we extend this analysis
by endogenizing the simulation noise variance using a rational
inattention analysis.

Following Gabaix and Laibson* we model an agent who is
faced with a choice between several rewards that occur at some
time in the future. For ease of exposition, we will consider a single
reward r, delivered after delay ¢, whose true value is denoted by u.
We assume that this value is drawn from a Gaussian distribution
with mean p and variance 02: u ~ N (4, 6%). We further assume
that the agent does not directly observe u, but instead observes a
noisy signal s ~ A (u,02t) generated by some form of mental
simulation.

Noise arises from the agent’s limited ability to simulate the
event’s future value. Gabaix and Laibson* assumed that the
variance increases linearly with the delay because events farther in
the future are harder to simulate. Combined with the assumption
that the prior mean y is 0 (which we suppose for the remainder of
the paper), this leads to the following expression for the posterior
mean:

u=FEuls] = /p(u|s)udu = Ds, (1)
where p(uls) is the posterior, computed using Bayes’ rule:
p(s|u)p(u)
uls) = ——~5—F—, 2
P = 1 p(shap)du )

with likelihood p(s|u) and prior p(u) as defined above. The term
D, expresses an as-if hyperbolic discount function:

1
D, =——+ 3
14kt )
with the as-if discount rate k given by:
o
_ _¢&
k= g (4)

The discount function is as-if because the agent in fact has a
neutral time preference, but chooses in accordance with
hyperbolic discounting, one of the most broadly supported
models of intertemporal choice (see ref. 1 for a review). Figure 1
illustrates how Bayesian inference in this model produces
temporal discounting.

The estimated value of a reward will be regularized towards the
mean y (0 in this case). The strength of this regularization
depends on k, which can be thought of as an inverse signal-to-
noise ratio. Intuitively, when the simulation noise variance o? is
large relative to the prior variance o2, the simulations are less
reliable and the agent will rely more on their prior, whereas when
the simulation noise variance is relatively small, then the agent
will rely more on their simulations.

Because we (the experimenters) cannot directly observe the
signal s, we use the objective reward r; as a proxy. This allows us
to link the model directly to experimentally observable variables.
We note, however, that this assumption may generate erroneous
inferences. For example, we may misinterpret the effects of model
misspecification in terms of simulation noise.

Rational inattention. The Gabaix and Laibson* analysis assumed
that the agent has a fixed simulation noise variance. Here we
develop the idea that the simulation noise variance is determined
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Fig. 1 lllustration of rational-discounting model. a lllustration of discounting as Bayesian inference. Mental simulation generates a noisy value signal
(s;=1), which is combined with a prior distribution to form a posterior distribution over value. The black line denotes the true underlying value u, and
the shaded region shows the standard deviation of the noise corrupting the value at each possible delay t (in arbitrary units). Similarly, the blue line

is the posterior mean, and the shaded region is the posterior standard deviation. Because the standard deviation of s; (simulation noise) increases with
delay, the posterior mean is pulled more strongly towards the prior mean for longer delays. b Same simulation as in a but with a smaller signal variance,
demonstrating a reduction in discounting. ¢ Discount factor under the rational inattention model as a function of the sensitivity parameter () and reward
magnitude. d Choice stochasticity under the rational inattention model as a function of the sensitivity parameter (8) and reward magnitude.

by the agent’s attention to the signal. Intuitively, an agent can
improve the reliability of their mental simulations by exerting
cognitive effort (i.e., attending more), but pays a cost for this
effort.

We approach this problem through the lens of rate-distortion
theory!V. Rate-distortion theory offers us a principled way to
study the optimal precision of internal representations, forma-
lized using information theory. As such, it has been fruitfully
applied to human cognition in domains such as perceptual
judgment and working memory??, and its close relative, rational
inattention!!21, has been used to analyze a variety of economic
problems!213, In this framework, the agent is modeled as a
communication channel that takes as input the signal and outputs
an estimate of the value. The agent can select the design of the
channel subject to a constraint on the information rate of the
channel (the number of bits that can be communicated per
signal).

In this case, we define a family of channels parametrized by the
simulation noise scaling parameter, o2. The optimization problem
is to select the value of o2 that minimizes the expectation of a
squared error distortion (aka loss) function that quantifies the
cost of estimation error. As shown in the “Methods” section, the
optimal simulation noise parameter under some assumptions is
given by:

2
o2 = 5
N o
where >0 is a sensitivity parameter that governs the link
between information rate and magnitude. As f increases, the rate
becomes increasingly sensitive to variations in reward and delay.

Plugging this into Eq. (4) yields the optimal discount parameter:

Al (6)

Thus, the rate-distortion framework can lead us to a model that
captures the magnitude effect (inverse relation between discount
factor and reward magnitude; Fig. 1c). As shown in the
“Methods” section, the model also predicts a choice stochasticity
magnitude effect: choices should become less stochastic as
magnitude increases (Fig. 1d). This arises in the model because
choice stochasticity is partially driven by simulation noise, which
should decrease with reward magnitude.

Applications to prior experimental results. In this section, we
explore the empirical implications of the rational inattention
analysis. We begin by examining experimental data collected by
Ballard et al.!8, in which subjects reported their indifference point
between an immediate and delayed reward. The reward magni-
tude was manipulated across subjects (see “Methods” section for
more details). In addition, some subjects were assigned to a jus-
tification condition in which they were asked to explicitly justify
their choices. Ballard et al.!® hypothesized that the magnitude
effect arises from increased self-control in response to large
magnitudes, and reasoned that justification would elevate the
ceiling on self-control. In the language of rational inattention, we
interpret justification as prompting increased allocation of cog-
nitive resources to prospective simulations. This hypothesis can
be formalized by increasing the 3 parameter in the justification
condition compared to the no justification condition.
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Fig. 2 Justification effect results. a Mean discount factor as a function of magnitude and justification condition. b Standard deviation of the discount factor
as a function of magnitude and justification condition. Data from ref. 18, n = 1382 participants. Data are presented as mean values and error bars show 95%

confidence intervals.

Five predictions follow from this hypothesis, all of which are
confirmed in Fig. 2, and quantified by a regression with regressors
for justification (no justification coded as +1, justification coded
as 0), magnitude, and the interaction between justification and
magnitude (negative coefficient indicates a reduced justification
effect for larger magnitudes). For all of the following analyses, we
report bootstrapped 95% confidence intervals. First, the average
discount factor k should be larger in the no justification
condition, because k decreases monotonically with f (regression
coefficient for the main effect of justification: CI = [0.064, 0.155]).
Second, the justification effect should diminish with magnitude,
because dk/d is a concave function of |r| (regression coefficient
for the interaction: CI = [—0.036, —0.015]).

The next three predictions are distinctive of our theory, and
pertain to the variability of k, which we quantify by the standard
deviation. The third prediction is that the standard deviation of k
should be higher for small magnitudes (i.e., a magnitude effect for
response variability; regression coefficient for the main effect of
magnitude: CI = [—0.016, —0.008]). The fourth prediction is that
the standard deviation should be lower in the justification
condition, because response variability decreases with 3 (regres-
sion coefficient for the main effect of justification: CI = [0.203,
0.501]). The fifth prediction is that the justification effect for
response variability should diminish with magnitude (regression
coefficient for the interaction effect: CI = [—0.109, —0.045]).

The Ballard data set confirms several predictions qualitatively,
but is ill-suited to confirming quantitative predictions because
each subject only saw a single experimental condition. To
quantitatively assess the validity of our model, we re-analyzed a
large data set (N=1284) of intertemporal choices collected by
Chdvez et al.22, Each subject in this study was presented with the
same set of 27 choices, taken from ref. 7. The rewards for both
options and the delay for the larger-later option varied across
trials, while the delay for the smaller-sooner option was held fixed
at 0 days.

We compared our rational inattention model with several
alternatives using random-effects Bayesian model selection (see
“Methods” section). In particular, we compared the full rational
model (R2) to a variant (R1), which uses the optimal discount
factor, but treats the inverse temperature « as a free parameter.
We also compared against standard quasi-hyperbolic (QH)
discounting?3, and several variations of hyperbolic discounting,
including the basic functional form (HO), and generalized
versions that incorporate magnitude-dependent discounting and
choice stochasticity (H1-H3%%). We used the protected excee-
dance probability (PXP) as a measure of model evidence. The

PXP measures the probability that a particular model is more
frequent in the population than all the other models under
consideration, adjusting for the probability of differences arising
by chance.

We found that the full rational inattention model (R2) was
decisively favored (PXP>0.99). Among the four variants of
hyperbolic discounting, H3 was favored. We used this model to
assess the qualitative predictions of the rational inattention theory
(note that the rational inattention theory assumes discounting
and choice stochasticity magnitude effects, so it cannot be used to
falsify these predictions). Consistent with the theory’s predictions,
the magnitude scaling parameter for inverse temperature (rm,)
was significantly >0 [#(1283) =7.47, p <0.0001], indicating that
choice stochasticity decreases with reward magnitude, whereas
the magnitude scaling parameter for discounting (my;) was
significantly <0 [#(1283) =15.42, p<0.0001], indicating that
myopia decreases with reward magnitude (Fig. 3a). Finally, we
observed that the two magnitude scaling effects are negatively
correlated (r= —0.21, p <0.0001; Fig. 3b), consistent with the
rational inattention model’s predictions. Thus, the data support
the theory both qualitatively and quantitatively.

To further support the rational inattention model, we
compared the psychometric functions of standard hyperbolic
discounting (HO) and the full rational inattention model (R2),
finding that choice probabilities were much better fit by R2,
despite having fewer parameters (Fig. 3c, d).

The effect of reward variance on discounting and choice sto-
chasticity. The rational inattention model predicts that the choice
stochasticity magnitude effect should decrease with reward var-
iance, because the noisy simulations become increasingly down-
weighted as the reward variance increases, and this down-
weighting interacts multiplicatively with the reward magnitude.
The model also predicts that there should be no effect of reward
variance on the discounting magnitude effect. We tested these
predictions in another experiment (N = 221) in which the reward
variance was manipulated while holding the mean and range of
rewards fixed.

To evaluate the variance predictions, we fit the same models
described above to the choice data. In this case, the model with
the strongest support (PXP = 0.61) was H3 (hyperbolic discount-
ing with magnitude-dependent discounting and choice stochas-
ticity). The key parameter estimates are shown in Fig. 4, broken
down by variance condition. Replicating our prior results with the
Chavez data set, we found a significant discounting magnitude
effect [my <0: #(220) =7.16, p <0.0001] and a significant choice
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Fig. 3 Model fit results. a Magnitude scaling parameter estimates for the three-parameter hyperbolic discounting model (H3). b The magnitude scaling
parameter for choice stochasticity declines as a function of the magnitude scaling parameter for discounting. € Choice probabilities as a function of delay
for low and high variance conditions, with theoretical functions obtained from the standard hyperbolic discounting model (HO). d Same as ¢, but with

theoretical functions obtained from the rational-discounting model (R2). Data from ref. 22, n = 1284 participants. Data are presented as mean values, dots
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Fig. 4 Experiment results. Magnitude scaling parameter estimates for the
three-parameter hyperbolic discounting model (H3), aggregated separately
for low and high variance conditions. n = 221 participants. Data are
presented as mean values, dots denote individual subjects, and error bars
show 95% confidence intervals.

stochasticity magnitude effect [m, > 0: #(219) =9.95, p <0.0001]
when collapsing across conditions. Critically, the choice stochas-
ticity magnitude effect was significantly lower in the high variance
condition, [#(219) = 2.22, p < 0.05], whereas there was no effect of
variance on the discounting magnitude effect (p = 0.84). Using a
Bayesian ¢ test with a scaled JZS (Jeffreys—Zellener-Siow) prior?>,
we found a posterior probability >0.99 favoring the null
hypothesis that variance does not modulate the discounting
magnitude effect. These results collectively provide evidence
consistent with our rational inattention model.

Discussion
Temporal discounting may stem partly from the inability of decision
makers to perfectly simulate future outcomes?®. In this paper, we

develop a theoretical account of prominent regularities in inter-
temporal choice, based on the idea that mental simulation of the
future is noisy but controllable. Our approach connects the Bayesian
model of discounting from* with the information-theoretic frame-
work of rate-distortion theory!? (see ref. 20 for an overview of rate-
distortion theory applications to human perception; see refs. 11-13
for closely related economic applications of rational inattention).
Supposing the prospective value of a reward becomes noisy when
it is internally projected into the future, Bayesian agents should
compensate for this uncertainty by relying more heavily on their
prior beliefs—if priors are centered near zero, this leads
to discounting of value. However, the degree of noise in the simu-
lation may be controlled by the agent, at a cost. If it is more
important to accurately evaluate larger rewards, the agent should
spend extra mental effort to make their simulations more precise
when dealing with greater magnitudes. This mechanism could lead
to reduced temporal discounting when dealing with large rewards, a
commonly observed phenomenon known as the magnitude effect.
Our model can also account for how reward magnitude and con-
textual variability are simultaneously related to stochasticity in
choice, which we validate in the re-analysis of two data sets and
another experiment.

Note that the uncertainty we are dealing with is internal. This
contrasts with theories of discounting based on objective risk in
the arrival of rewards (e.g., refs. 27:28). In the present framework,
discounting can occur even when the decision maker has no
innate preference for earlier rewards and there is no extrinsic risk.
Of course, all of these pathways are not mutually exclusive, and
we do not claim the others are inconsequential. Our goal is rather
to clearly describe how apparent anomalies of intertemporal
choice could arise from a cognitively plausible adaptive response
to limits on information processing.

Our proposal is supported by a range of neural and behavioral
evidence. Psychologically speaking, the allocation of attention in
our framework (and what Gabaix and Laibson? refer to as mental
effort) may manifest as cognitive control—the set of mechanisms
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required to pursue a goal in the face of distractions and com-
peting responses. It has been argued that the exertion of cognitive
control depends on its expected value, the combination of its
effort costs and payoff benefits in a given task, and that this plays
a role in many decisions including intertemporal choices®.
Future events have been found to be imagined with greater
vividness when cued by more rewarding stimuli'®, and people list
a greater number of thoughts when prompted to evaluate higher
magnitude intertemporal choices!”. Moreover, when people are
asked to explicitly justify their choices, they exhibit more patience
specifically for lower magnitude rewards, as if they have already
hit a ceiling for higher magnitudes'8. Our model formally draws
out the implications of this cost-benefit logic, providing a high-
level normative perspective that complements more mechanistic
analyses of cognition and discounting (e.g., refs. 30:31),

From a neuroscientific perspective, the exertion of cognitive
control is known to rely on a network of regions in prefrontal
cortex, which some studies have linked directly to temporal
discounting!32, Shenhav et al.2? have proposed that the expected
value of control is computed by connected regions and guides the
investment of attention into each task, while Ballard et al.!$
demonstrated that frontal executive-control areas of the brain are
particularly engaged in challenging intertemporal choices with
high-magnitude rewards. Moreover, disruption of activity in such
areas via transcranial magnetic stimulation reduces the magni-
tude effect33. Taken together, these studies indicate that the brain
adaptively modulates simulation noise and this plays a mean-
ingful role in temporal discounting.

Another perspective from neuroscience is provided by studies
of patients with Parkinson’s disease, who are known to have
systemically low levels of dopamine. Foerde et al.3* observed that
patients on medication (with putatively higher dopamine levels)
exhibit both more patience (higher estimated values of the k
parameter) and a weaker magnitude effect compared to patients
off medication. Both of these findings are consistent with the idea
that higher levels of dopamine correspond to higher values of the
sensitivity parameter 8. Higher sensitivity means that reward will
induce a greater willingness to exert cognitive effort, which in this
case means reducing simulation noise and thereby reducing dis-
counting. At the same time, increases in sensitivity will actually
make the magnitude effect smaller, because of the concave rela-
tionship between the discount parameter and reward magnitude.
Our interpretation of dopamine in terms of sensitivity is con-
sistent with other work on Parkinson’s patients showing that high
levels of dopamine produce greater reward sensitivity>>3°. More
broadly, it has been suggested that dopamine may control allo-
cation of cognitive effort’”. We conjecture that dopamine may
play a specific role in mediating the relationship between reward
and information rate, but further research will be required to
directly test this hypothesis.

An important limitation of our experimental study was the
hypothetical nature of choices made by subjects, a design element
prompted by the impracticality of payment at the lengthy delays
needed to precisely estimate discount rates. Many of the classic
(e.g., refs. >38) and modern (e.g., refs. 1339) studies of the
magnitude effect are not incentive compatible, for the same
reason. A recent survey has argued that comparison between
incentive compatible and incompatible designs typically yield the
same results for studies of intertemporal choice??. For example,
Bickel et al.4! have found that discount rates are highly correlated
across real and hypothetical rewards®, as are their neural
responses. Moreover, according to our analysis (following Gabaix
and Laibson?), all decisions involve some future simulation, with
the difference resting in the degree of simulation noise. Thus,
although incentive compatibility is an important criterion
towards which to strive in decision-making studies, practical and

theoretical considerations render it less applicable to the experi-
mental questions pursued here.

Finally, while our theory naturally captures a number of
empirical phenomena surrounding the magnitude effect, future
work may examine what other observations might be accom-
modated under other assumptions. For instance, people seem to
savor and dread future outcomes*2, which could lead people to
prefer early resolution of losses, and the magnitude effect has been
found to reverse in the loss domain!”. The Bayesian discounting
model cannot account for this inverted pattern, as it implies that
deferred losses should be treated better than immediate ones.
Nonetheless, there might be adaptive value in anticipation if it
could facilitate planning and decision making*3. A more formal
account of the costs and benefits involved may help predict when
people will channel energy into such anticipatory thoughts.

Methods

Derivation of optimal precision. In order to derive the optimal precision

o’ = argminﬁg]E[[,(u, it)|0?], the expected quadratic loss is computed as follows.
Conditioning on u and s:

(u—i)" = (u—Dys)’ (7)
= (D(u—s) +u(l = D,))* (8)
= D*(u —s)* +2D,(1 — D,)u(u — s) + u*(1 — D). )
Taking the expectation over p(s|u), and subsequently over p(u),
E,l(u — ] = 02D} +0 4+ (1 - D,)?, (10)
£ =B,[E[(u— )] = 0}tD} + 0;(1 - D,)’ (11)
240522 2 2.\2
_ ) den’ )
(02 4+ 02t)" (02 + o2t)
o2o%t
o024t (13)

We then plug this into the rate-distortion function for a Gaussian source (which
reflects the rate-distortion frontier, that is, the minimal achievable information rate
for a given distortion level, or equivalently the minimal achievable distortion for a
given rate):

1 2
R:ﬂ(‘%) (14)
1 , (0% + okt
:Eln(a”‘( oot >> (15)
1 2
:iln<l+%>, (16)

which can be rearranged to yield the optimal precision:

0.2

=2 u
= 17
£ (eR—1)t’ (17)
where R is the information rate constraint in nats (i.e., units of information in base
e).
We impose an additional constraint on this formulation, by assuming that
information rate increases with reward magnitude (greater incentive to expend
cognitive resources) and decreases with delay (simulation of distal events is more

cognitively demanding):
_ L (Bl
szln( : +1), (18)

where >0 is a sensitivity parameter that governs the relationship between rate,
magnitude, and delay. As 8 increases, the rate becomes increasingly sensitive to
variations in reward and delay. The constraint follows in the spirit of Gabaix and
Laibson’s framework, reflecting a cost-and-benefit perspective on their baseline
assumptions. The greater cost of simulating more distal events parallels their
supposition of greater noise for projections extending farther into the future.
Plugging R into Eq. (17) yields the optimal simulation noise parameter:
o = O

=g (19)
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Note that although the optimal simulation noise variance in Eq. (17) depends on t,
this dependence disappears when we use the rate constraint specified in Eq. (18).

We can draw out further implications of this model by connecting it to choice
behavior. Let us assume, in the simplest case, that the agent deterministically
chooses the option with highest estimated value. In this case, all stochasticity in
choice behavior is driven by stochasticity in the agent’s simulation process.
Marginalizing over these noisy simulations, the choice probability for a standard
two-alternative choice (early vs. late) is given by:

P(choose early) = ®(a[D,r, — D, ,1,,.]), (20)
where @ is the standard Gaussian cumulative density function, 7 is the difference in
delay between early (r,) and late (r,,,) options, and

1
&= (21)

o./Dit + Di(t +7)
is an inverse temperature parameter controlling the degree of choice stochasticity

(smaller values of « produce greater stochasticity). In the case where the early option
is immediate (i.e., t=0), as in many studies of discounting, this simplifies to:

1
o=—-r.
0.D\/T
Plugging in the optimal simulation noise parameter gives:

o VBRI /Bl )

Ju\/:l:

(22)

One can show that

oa

olr]
which means that for sufficiently large rewards and sufficiently short delays, the
model predicts a choice stochasticity magnitude effect: as reward magnitude gets
larger, choice stochasticity should get smaller. One can also show that

o’

dlr.|9a,

which means that the choice stochasticity magnitude effect declines with reward
variance (under the same conditions on reward and delay).

Finally, we can examine what happens to the two magnitude effects when the
sensitivity parameter 3 changes:

>0 for f|r,| >, (24)

<0forf|r,| >, (25)

%k
_ 26
alrjop " 9
o’
—_— > . 27
a‘rf‘aﬁ>0forﬁ\rr\>1 (27)

Because % <0, this means that increasing 8 will decrease the discounting

magnitude effect (i.e., push it closer to 0). This is somewhat counterintuitive, since
one might reason that greater sensitivity to reward should translate into a stronger
magnitude effect. This intuition is correct for the choice stochasticity magnitude
effect: increasing 8 will magnify the dependence of choice stochasticity on reward
magnitude. The key implication of this analysis is that a change in sensitivity will
push the two magnitude effects in opposite directions.

Ballard data set description. Ballard et al.!8 recruited 1500 subjects for their
Study 3. After exclusions, the final sample size was 1382. Subjects considered a
hypothetical choice between an immediate reward vs. a reward in 1 month. Each
subject was randomly assigned to one immediate reward magnitude ($20, $50,
$100, $200, $2000) and reported the delayed reward that would make them
indifferent between the two options. Subjects in the justification condition were
asked to justify their responses in two to three written sentences; subjects in the no
justification condition did not have to provide any written justification.

Chavez data set description. Chévez et al.22 collected data from 1284 Mexican
students (a mix of high school juniors and seniors and first-year university stu-
dents). Subjects completed an intertemporal choice questionnaire developed by
Kirby et al.*4, consisting of 27 questions, each presenting a hypothetical choice
between a smaller-sooner (immediately available) monetary reward and a later-
larger one. Monetary amounts were the same as in the original questionnaire, but
expressed as Mexican pesos rather than US dollars.

Experimental methods. Two hundred and twenty-one people were recruited from
Amazon Mechanical Turk via TurkPrime®>, and paid $1.25 for their participation.
To elicit time preferences, we used a choice titration task in which subjects made a
series of binary choices between a smaller-sooner reward and a larger-later reward
(see, e.g., ref. 7%). They faced 40 titrator trials, each consisting of six hypothetical
binary choices between fixed smaller-sooner and larger-later options, distinguished

by larger-later delays, which varied from 1 to 6 months. The smaller-sooner reward
was always $1 in every trial. The larger-later rewards were drawn from a Gaussian
distribution, with a mean $5 truncated to be above $1 and below $9, rounded to the
nearest cent. Subjects were randomly assigned to one of two conditions: in the low
variance condition, the larger-later distribution had (untruncated) standard
deviation 1, while in the high variance condition, the larger-later distribution had
(untruncated) standard deviation 5. Empirically, the former condition had variance
1.03 and the latter had variance 4.97. The task was coded in JavaScript using
jsPsych?. Participants provided informed consent, and the study was approved by
the Harvard Committee on the Use of Human Subjects.

Model fitting and comparison. We fit and compared several models with varying
degrees of flexibility.

®  QH: quasi-hyperbolic discounting function, defined by D,., = &'r and Dy =
r. We modeled choices using a generalized version of Eq. (28):

P(chooseearly) = (1 — w)®(«[D,r, — D, ,1,.]) +%, (28)

where « is the inverse temperature and w is a lapse probability, capturing
occasional random responses (see also ref. 24). All subsequent models share
the same choice probability function. This model has four free parameters: S,
6, &, and w.

®  HO: standard hyperbolic discounting function, D, = 1/(1 + kt). This model
has three free parameters: k, a, and w.

®  HI: hyperbolic discounting with baseline- and magnitude-dependent discount
factor, using the parametrization of Vincent?*:

) (29)

where ¢, is a free parameter capturing baseline discounting (ie. the
component of discounting that is independent of magnitude), and my
captures magnitude-dependent discounting. This model has four free
parameters: ¢, My, o, and w.

® H2: same as HI1, but with baseline- and magnitude-dependent inverse
temperature:

K, = exp(e; — myloglr,

a = exp(cy + melog(|r | + [riyl)- (30)

This model has five free parameters: ¢k, 1y, ¢o M, and w.

®  H3: same as H2, but without the baseline discounting and inverse temperature
parameters. In this case, the parametrization simplifies to k = |r,|™ and
a = (|ry| + |r,|)™. This model has three free parameters: 1y, m,, and w.

® RI: hyperbolic discounting with endogenized discount factor, using Eq. (6),
fitting B as a free parameter. We approximated o? as the empirical variance of
the rewards each individual subject observed in the experiment. As in the
other models, we use Eq. (28) to model choices, treating a and w as free
parameters. This model has three free parameters: f, o, and w.

® R2: hyperbolic discounting with endogenized discount factor and inverse
temperature. This model uses the same formulation as R1, but sets « using
Eq. (21). The model has two free parameters: § and w.

Note that none of the models defined above, except for R1 and R2, are
constrained to make the same qualitative predictions as the rational inattention
theory. For example, the magnitude scaling parameters in HI-H3 might be 0 on
average, or might go in a direction opposite what the theory predicts. Thus, fitting
these models gives us the opportunity to test whether the parameter estimates are
in qualitative alignment with the rational inattention theory, without making a
commitment to the specific parametrization of that theory.

All models were fit using maximum likelihood estimation. To compare models,
we computed the PXP¥, the probability that each model has higher model
evidence than all the other models, taking into account the probability that the data
may have arisen from a null (chance) model. To approximate model evidence, we
used the Bayesian information criterion.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

The data sets analyzed here are available online at https://github.com/sjgershm/rational-
discounting. A reporting summary for this Article is available as a Supplementary
Information file.

Code availability
The code reproducing the analysis is available online at https://github.com/sjgershm/
rational-discounting.
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