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Abstract
Reproducibility is not only essential for the integrity of scientific research but is also a prerequisite for model validation and 
refinement for the future application of predictive algorithms. However, reproducible research is becoming increasingly chal-
lenging, particularly in high-dimensional genomic data analyses with complex statistical or algorithmic techniques. Given 
that there are no mandatory requirements in most biomedical and statistical journals to provide the original data, analytical 
source code, or other relevant materials for publication, accessibility to these supplements naturally suggests a greater cred-
ibility of the published work. In this study, we performed a reproducibility assessment of the notable paper by Gerstung et al. 
(Nat Genet 49:332–340, 2017) by rerunning the analysis using their original code and data, which are publicly accessible. 
Despite an open science setting, it was challenging to reproduce the entire research project; reasons included: incomplete 
data and documentation, suboptimal code readability, coding errors, limited portability of intensive computing performed 
on a specific platform, and an R computing environment that could no longer be re-established. We learn that the availabil-
ity of code and data does not guarantee transparency and reproducibility of a study; paradoxically, the source code is still 
liable to error and obsolescence, essentially due to methodological and computational complexity, a lack of reproducibility 
checking at submission, and updates for software and operating environment. The complex code may also hide problematic 
methodological aspects of the proposed research. Building on the experience gained, we discuss the best programming and 
software engineering practices that could have been employed to improve reproducibility, and propose practical criteria for 
the conduct and reporting of reproducibility studies for future researchers.

Abbreviations
AML	� Acute myeloid leukemia
Allograft	� Allogeneic hematopoietic cell transplant
CI/CD	� Continuous integration, continuous deliv-

ery and/or continuous deployment
CR1	� First complete remission
ELN	� European LeukemiaNet
GUI	� Graphical user interface
KBA	� Knowledge bank approach
LSF	� Load sharing facility
OS	� Operating system

Introduction

Acute myeloid leukemia (AML), characterized by patho-
logical proliferation and accumulation of clonal myeloid 
cells, is the most common acute hematologic malignancy 
in adults (Röllig and Ossenkoppele 2021). Primarily due to 
biological heterogeneity, patients with AML are expected to 
have varying post-therapeutic prognoses. Modern molecu-
lar techniques today have made the cytogenetic and genetic 
information of AML available, and it has become standard 
in clinical settings to initiate therapy by incorporating these 
individual profiles into a risk stratification. Compared to 
the current WHO or ELN classifications (Arber et al. 2016; 
Dohner et al. 2017), which define risk groups according to 
the presence of a long list of genetic aberrations, statistical 
algorithms are thought to be more capable of processing the 
high-dimensional AML data comprehensively, leading to a 
more accurate prediction of prognosis among risk subgroups 
who have been given a specific treatment strategy.

One promising example is the personalized, thera-
peutic decision support tool for AML patients proposed 
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by Gerstung et al. (2017), subsequently referred to as the 
knowledge bank approach, or the KBA. The KBA con-
sidered the choice between allogeneic hematopoietic cell 
transplant (allograft) in first complete remission (CR1), 
on the one hand, and standard chemotherapy in CR1, fol-
lowed by salvage treatments (either allograft or more inten-
sive chemotherapy) after relapse, on the other. They used 
a training database of 1540 patients from three clinical tri-
als (AMLHD98A, AMLHD98B, and AMLSG0704) of the 
German–Austrian AML Study Group (Schlenk et al. 2004, 
2010, 2016), to construct the KBA prediction algorithm. 
It integrated 105 clinical, cytogenetic, and genetic factors 
to predict three-year overall survival as the primary end-
point, and demonstrated an improved predictive accuracy as 
opposed to the ELN classification (Harrell’s C-index: 0.72 
vs 0.64). The KBA also allowed individual prediction of dif-
ferent survival rates (e.g. alive without CR1, alive in CR1, 
and alive after relapse) in possible therapeutic scenarios: 
receiving allograft in CR1, salvage allograft after relapse, 
or standard chemotherapy only.

Although of high clinical relevance, their results do not 
seem to have been translated into clinical practice. The 
improved predictive value of the KBA was validated later 
by Huet et al. (2018) using a retrospective cohort of 155 
AML patients. Recently, Fenwarth et al. (2021) took a step 
further by looking at NPM1 minimal residual disease and 
using the KBA to reclassify the current ELN rule. They 
emphasized the potential applicability of the KBA among a 
younger cohort (C-index for five-year overall survival using 
their modified KBA compared to the ELN: 68.9 vs 63.0). Yet 
neither study investigated the black box of the KBA.

Notwithstanding the fact that Gerstung et al. provided 
a web portal (https://​cancer.​sanger.​ac.​uk/​aml-​multi​stage/) 
which allows readers to generate outcome predictions 
effortlessly, it hides the complexity of their algorithm and 
hence leaves limited information about the implicit statisti-
cal assumptions and the derivation details behind the multi-
stage KBA. To find these, one must reference the 135-page 
Supplementary Note (https://​github.​com/​gerst​ung-​lab/​AML-​
multi​stage/​tree/​master/​doc). Their main article published in 
Nature Genetics remains, however, the tip of a methodo-
logical iceberg. Therefore, reproducing their research is a 
precondition for a better understanding of their methods and 
for performing credible external validation (preferably with 
newer data that reflect substantial therapeutic advances in 
recent decades). Only then can the refinement and applica-
tion of the KBA be possible.

Fortunately, the original data and analysis code were pub-
licly accessible and allowed for deeper inspection. It enabled 
us to perform a reproducibility assessment through accessi-
bility evaluation, code testing, error modification (if needed), 
and algorithm evaluation. This work can be seen as the first 
step towards a larger project, with the goal of validating 

and modifying the KBA with a more current, external AML 
database in Germany. In the following sections, we describe 
the results and findings of our reproducibility study.

Materials and methods

Reproducibility criteria

To date, there are no established guidelines available con-
cerning how to perform and report a reproducibility study, 
and many scientists report their attempts to reproduce 
published results as case studies in a rather ad hoc fashion 
(Gentleman 2005; Hothorn and Leisch 2011; Kitzes et al. 
2017). In the light of the study by Seibold et al. (2021), 
the Fair principles (Wilkinson et al. 2016), the reproduc-
ibility standards proposed by Heil et al. (2021), as well as 
the editorial guidance on reproducible research by Hofner 
et al. (2016) for the Biometrical Journal—one of the few 
(if not the only) statistical and biomedical journals requir-
ing mandatory reproducibility checks—we propose the fol-
lowing criteria (summarized as a checklist in Table 1) and 
processes to understand the extent to which the findings of 
Gerstung et al. could be reproduced.

Evaluation processes

Two researchers (YX is a clinical epidemiologist and UM is 
a mathematician) undertook the rerun collaboratively. First, 
the accessibility of materials essential for re-computation 
was evaluated, including data, analysis code, relevant docu-
ments (e.g. description of its theoretical background), and 
computing environment (i.e. the specific version of R with 
accompanying R packages and the corresponding operat-
ing system (OS) used in the original paper). Second, dur-
ing the run of the code, checks were performed to ascertain 
whether there were any warnings or errors occurring and, 
if so, whether they could be eliminated. Third, code read-
ability was assessed to determine if the source code was self-
explanatory and whether the inline comments, as well as the 
documentation of custom R packages, were understandable. 
Fourth, to check the reproducibility, we strictly followed the 
data processing strategies in the original paper, with respect 
to the preparation of genetic covariates, and statistical analy-
ses, such as rules for covariate selection. Modifications were 
only made when code errors from the provided R script pre-
vented the continuation of the process. In other words, ana-
lytical errors such as incorrect subsetting of the dataset, if 
any, were not modified if they did not abort the execution. 
Finally, the rerun of the code allowed for insights into the 
conceptual ideas behind the KBA so that the appropriateness 
of the implemented analytical methods could be clarified.

https://cancer.sanger.ac.uk/aml-multistage/
https://github.com/gerstung-lab/AML-multistage/tree/master/doc
https://github.com/gerstung-lab/AML-multistage/tree/master/doc
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Table 1   Reproducibility checklist

Aspect Item No Item Note

Accessibility (yes/partially/no) 1a Data Are the FAIR principles respected? Is there 
sufficient metadata to understand the data? 
Is the data provided in an easy-to-use 
format?

1b Is the data (if available) original, pro-
cessed, anonymized, or simulated?

Simulated data is usually provided when the 
original data is confidential

1c Data dictionary A collection of names, definitions, descrip-
tions, etc., of variables in the dataset(s) of 
the research project

2 Source code Is the source code a plain text script or pre-
sented as a dynamic report?

3 Documentation of the project Is there a README file, technical note, and/
or study protocol?

4 Statistical software Is the specific version, e.g. R (v.3.1.2), 
accessible?

5 Software extensions Are the specific versions, e.g. survival 
(v.3.2–13), accessible?

6 Operating system and hardware layer Does the reproducer have access to the same 
computing platform, e.g. Debian GNU/
Linux 11?

7 Can dependencies be set up easily on the 
reproducer’s computing platform?

e.g. By running simple commands

8 If not, are there any compatibility issues 
hindering the setup process?

Clarity (yes/partially/no) 9 Description of methods e.g. Theoretical concepts, analytical strate-
gies, algorithmic considerations

10 Code readability Is the code self-explanatory, regardless of 
comments? Does the code follow any style 
guide? Are compiled languages like C or 
C +  + used?

11 Inline comments Are the comments comprehensible? Are 
there unnecessary obsolete code lines?

12 Documentation of custom packages and 
functions, if applicable

e.g. R package vignette

Code execution 13 Is any form of testing on the functions/
packages performed?

e.g. R CMD check, testthat

14 (Running analysis code) On mouse-clicks 
/ Minor modifications required / Major 
modifications with expertise required 
(e.g. reverse engineering of results) / 
Impossible to rerun

Implementation of the theoretical methods 15 Consistent / Largely consistent / Largely 
inconsistent / Unable to identify

Does the code reflect the methods described 
in the paper?

Matching of outputs 16 Format of the results e.g. tables, figures, GUI (graphical user 
interface)

17 Identical with exactly the same results / 
Same interpretation with deviations in 
numbers / Inconsistent conclusions / 
Unable to reproduce the results

Overall reproducibility 18 Reproducible / Partially reproducible / 
Irreproducible

19 Background of researcher(s) performing 
the assessment

e.g. Clinician, epidemiologist, bioinformati-
cian, (bio)statistician, engineer
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The code was first inspected on a standard personal com-
puter (macOS Monterey Version 12.0.1/M1 with R v.4.1.1, 
R Core Team, 2021), and then run in an RStudio Server Pro 
(Debian GNU/Linux 11 with R v.4.0.4) on a cloud server. 
Due to software updates, dependency conflicts occurred at 
the time of our study (2021) when using R (v.3.1.2) and the 
accompanying R packages (the version the original analysis 
would have been running in 2016). In general, however, we 
believe the source code of scientific work should be robust 
enough against the upgrade of a computing environment to 
at least generate results leading to comparable conclusions, 
even if identical numbers cannot be obtained. Moreover, as 
Gerstung et al. also provided a Dockerfile in addition to the 
source code, we tried to use the Docker container to build 
an identical computing environment to increase the chance 
of reproducibility.

Data and materials

Gerstung et al. states in their paper: “To maximize reproduc-
ibility, details of statistical methods and all of the analysis 
code used are provided in the Supplementary Note and as 
a git repository online”. Specifically, the original data in 
an anonymized form, accompanied by source R code and 
other supplementary materials are publicly available in the 
online GitHub repository (https://​github.​com/​gerst​ung-​lab/​
aml-​multi​stage). This repository is licensed under the GNU 
General Public License v3.0, which grants end users the 
freedom to distribute and modify the published content for 
commercial, patent, or private use (https://​github.​com/​gerst​
ung-​lab/​AML-​multi​stage/​blob/​master/​LICEN​SE).

Results

Reproducibility assessment

Overall, rerunning the analysis was challenging and required 
considerable time commitment, sufficient expertise in bio-
medicine, statistics, and R programming, and even some 
background knowledge in systems engineering. In the end, 
our efforts to reproduce their analysis were only partly suc-
cessful. We present our assessment below with a summary 
(Table 2) using the proposed checklist (Table 1).

1.	 Accessibility

As we noted, the GitHub repository provided a folder con-
taining anonymized data, a Supplementary Note, together 
with other relevant materials (Dockerfile, README, etc.) 
sorted in a readily comprehensible way.

However, after running through the provided R script, 
we noticed that one of the two TCGA data files (i.e. 

TCGA_Clinical.txt) from the cancer genome atlas, used 
for external validation, was not provided. Although the 
TCGA database is publicly available (Cancer Genome 
Atlas Research et al. 2013), it remained unclear to us how 
this file was extracted and processed from the TCGA portal 
(https://​portal.​gdc.​cancer.​gov/​proje​cts/​TARGET-​AML). 
Thus, the corresponding results could not be reproduced 
(Sects. 4.4.3 and 4.4.4 in the Supplementary Note). A data 
dictionary was attached, yet it was found to be incom-
plete (Supplementary File 1.1), and one needed to refer to 
additional papers (Schlenk et al. 2004, 2010, 2016) before 
making sense of the Supplementary Note (Supplementary 
File 1.2). For instance, the Note mentioned the abbrevia-
tions CIR, MUD, and RD without explaining their mean-
ings. They are, in fact, short for Cumulative Incidence of 
Relapse, Matched Unrelated Donors, and Refractory Acute 
Myeloid Leukemia, respectively. Two different versions of 
the Supplementary Note were found: one that went with 
the main paper on Nature Genetics’ website (version: Wed 
Sep 7 14:26:11 2016, see https://​www.​nature.​com/​artic​les/​
ng.​3756) and another available in the repository, which 
was incomplete (version: Tue Dec 15 17:54:15 2015). The 
more recent version was referred to in this study.

The published results were originally obtained using 
R (v.3.1.2); however, many packages used in the analysis 
were no longer supported by R (v.3.1.2). Of note, the latest 
available R (v.4.1.1) used in this study in 2021 did not sup-
port several packages either, such as graph or hilbertVis. 
As a result, other than the common way of executing the 
command install.packages() for the installation, additional 
searching was needed to avoid errors. Some intensive com-
putations, such as leave-one-out cross-validation, were 
performed by Gerstung et al. in a Load Sharing Facility 
(LSF) environment. Without access to such an environ-
ment, one must manually modify the code considerably 
to proceed in another computing platform, whilst these 
modifications are also prone to error.

The Dockerfile was once deemed an opportunity 
through which we could easily re-establish an identical 
computing environment with R (v.3.1.2) and the corre-
sponding packages. However, our attempts were unsuc-
cessful, since the given Dockerfile assumed the exist-
ence of a Docker-based R (v.3.1.2), and only described 
how their author-customized R packages (i.e. mg14 and 
CoxHD) could be built on top of that. Today, this is insuf-
ficient to build a reproducible environment due to com-
patibility issues. Specifically, the OS (i.e. DebianWheezy) 
specified in the Dockerfile from the Rocker project (https://​
www.​rocker-​proje​ct.​org), upon which the R (v.3.1.2) is to 
be built, has been too old to support essential R packages 
for this analysis (Fig. 1 depicts the layered structure of an 
R computing environment).

https://github.com/gerstung-lab/aml-multistage
https://github.com/gerstung-lab/aml-multistage
https://github.com/gerstung-lab/AML-multistage/blob/master/LICENSE
https://github.com/gerstung-lab/AML-multistage/blob/master/LICENSE
https://portal.gdc.cancer.gov/projects/TARGET-AML
https://www.nature.com/articles/ng.3756
https://www.nature.com/articles/ng.3756
https://www.rocker-project.org
https://www.rocker-project.org
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2.	 Clarity

The methodological details and analysis code were pro-
vided in the Supplementary Note. Overall, the source code 
was consistently written and relative paths were used to 
allow data to be read into R on different devices without 
manual alterations. Inline comments, although with a few 
insignificant inaccuracies and undeleted obsolete com-
mands, remained very helpful for readers to understand 
the analysis. Documentation of user-defined packages and 
functions could also be easily acquired.

Still, as the research project is very complex (needing 
more than 5000 code lines in total), the source code did 
not appear to have followed the programming style guide 
for R and was not clear enough to us. Inconsistencies were 
identified throughout the code, which impacted the code 
readability, such as: different names created for the same 
concept (e.g. Time_Diag_TPL and TPL_date, Cir and 
Rel, kmPrs and kmPrd); different concepts with the same 
name (e.g. CIR could mean either cumulative incidence of 
relapse or Kaplan–Meier survival estimate for relapse); 
non-existent variables or values called in the commands 
(e.g. variable TPL_efs was not found in R data frames, 
but appeared in the code); objects that did not match the 
assigned purposes as suggested by the inline comments; 
and objects that were created, however, were not used (see 
details in Supplementary File 2).
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Fig. 1   Six-layered structure of an R computing environment. The 
Dockerfile from Gerstung et  al. constructs layers upon a pre-built 
Docker-based R (v.3.1.2), which was built by reading the instruc-
tions described in the Dockerfile from the Rocker project; however, 
dependency conflicts occur across these layers
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3.	 Code execution

A mouse-clicking rerun through the code to reproduce 
the results was impossible. The first coding error appeared 
due to a command line (i.e. dataList$Genetics = dataList$
Genetics + 0) in the 8th code chunk of the Supplementary 
Note (p. 13), which introduced undue factor variables to 
the list dataList$Genetics and stopped one from moving 
forward. We corrected this error by changing the com-
mand to dataList$Genetics[,52:58] <- as.data.frame(lap
ply(dataList$Genetics[,52:58], as.numeric)), one of the 
aforementioned modifications we made to enable progress. 
More errors occurred throughout the Note and aborted 
the execution within their corresponding sections. Spe-
cifically, Sects. 3.6.5.1–3.6.5.9, 3.6.6.4, 3.6.6.6–3.6.6.7, 
3.6.7.2–3.6.7.3, 4.4.1.3, 5.4.2.0.4, 5.4.2.0.5, 5.4.2.1.1, 
5.4.2.2.1, and 5.4.2.3.1 contained parallel processing and 
were originally executed on an LSF environment, which was 
different from our computing environments. For this, we 
were able to tailor only parts of the environment-dependent 
R script (Sects. 3.6.6.4 and 3.6.6.6) in our rerun. Even so, 
our alterations were liable to mistakes and might have exac-
erbated the irreproducibility. We reported the errors and our 
modifications in Supplementary File 2, together with our 
GitHub repository (https://​github.​com/​YX-​IBE/​AML-​multi​
stage-​repro​ducib​ility-​study) with version control to track the 
modifications.

4.	 Implementation of the methods described

The multistage KBA algorithm in the code reflected the 
ideas described in the paper. Still, it is noteworthy that the 
random-effect Cox models—the building blocks for the 
multistage KBA—assumed grouped predictors to be fol-
lowing normal distribution, and then computationally led 
to a ridge regularization (Therneau et al. 2003). This sim-
plified the computations and was realized by specifying 
the ridge regression function argument in coxph(), which 
was integrated into a user-defined function CoxRFX() (to 
learn this, we used the function debug() to step through the 
execution of CoxRFX()). It should be noted, as Gerstung 
et al. claimed in the Supplementary Note and in their func-
tion help file, that the parameter estimation was done via 
an Expectation–Maximization algorithm as suggested by 
a simulation study of Perperoglou (2014), which, in fact, 
favored the Restricted Maximum Likelihood-type method 
for the handling of random effects. Therefore, we could not 
fully understand how the CoxRFX() fits the random-effect 
Cox model.

5.	 Matching of outputs

We were able to partly execute the R script after neces-
sary modifications. With the random seed fixed, deviations 
were spotted throughout the outputs in contrast with the pub-
lished results at various locations, yet most of them were 
negligible and did not alter the corresponding study conclu-
sions, with numbers differing in the last few decimal places, 
or figures with minor alterations. For instance, the predicted 
three-year survival rate given the optimal therapeutic strat-
egy was 63.68%, as compared to 62.41% in our rerun (rela-
tive difference: 0.02). More comparisons of the outputs from 
our rerunning and the published results were documented in 
Supplementary File 2 (see p. 67–68 for three-year optimal 
survival). Notably, our multiple rerunning attempts returned 
the same warnings and errors occurring at the same loca-
tions, while discrepancies between our results (tables and 
figures) also appeared. This suggests that, besides the impact 
of a different computing platform (with the consequent dif-
ference in numerical precision, operation sequence and so 
on), there might still be hidden issues relating to random 
number generation, which led to deviations between the out-
puts from our multiple attempts.

There were in total eighteen sections in the Supple-
mentary Note involving parallel computing (as mentioned 
above), for which we were unable to modify the R script 
to rerun the analysis. This relates to the major prediction 
results presented by Gerstung et al. (i.e. Figs. 1b, 2c, 2d, 2e, 
3, 4, and 6c in the original paper), as well as the web portal 
provided. As noted earlier, two sections involving the TCGA 
data could not be rerun either, which further impacted the 
regeneration of Figs. 1a and 1c in their paper. Therefore, 
only Figs. 2b, 2f, 5, 6a, and 6b were fully or partially repro-
duced by us. More results in the Supplementary Note that 
were reproducible were documented in Supplementary File 
2.

6.	 Further notes regarding the published results

 
After the rerun of the analysis, we established the full 

picture of prognostic trajectories among the 1540 patients in 
the KBA database (Fig. 2); of those, only 995 patients were 
considered eligible for allograft in CR1.

At this point, more details concerning the theoretical con-
cepts in the paper by Gerstung et al. could be further clari-
fied. The core of the methodological strategy for the KBA 
was a random-effect multistage model combined with compet-
ing risk adjustments, where the effects of oncogenic lesions 
were assumed following a Gaussian distribution. The KBA 
was trained in a data-driven manner to optimize its predictive 
accuracy. Depending on the moment when the prediction is 
to be made: at diagnosis or on reaching CR1, two separate 

https://github.com/YX-IBE/AML-multistage-reproducibility-study
https://github.com/YX-IBE/AML-multistage-reproducibility-study
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predictive algorithms were constructed using the data of all 
1540 patients. The impartial integration into the two models 
of post-diagnosis information (e.g. the length of induction or 
the length of CR1) appeared questionable since these predic-
tors were chronologically unavailable for making predictions at 
diagnosis. Furthermore, the second model starting from CR1 
was used to answer the question of who should be offered 
allografts in CR1 by comparing the predicted three-year mor-
tality between receiving allografts in CR1 and salvage allo-
grafts (Fig. 3a, adapted from Fig. 5a in the original paper). In 
the original paper, the predictions were restricted to the 995 
patients eligible for allograft and were done by altering the 
predictor value of treatments given in CR1 for each patient, 

which represented the conflation between prediction and 
causal inference.

Discussion

We have evaluated the reproducibility of the research 
by  Gerstung et  al. published in Nature Genetics—the 
KBA that generated personally tailored predictions of 
survival using individual clinical and genomic profiles. 
This reproducibility study gives insight into the theoretical 
details and how to replicate the algorithm in future studies. 

Fig. 2   Flow chart showing treatments and prognoses of AML patients in the knowledge bank database
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Implications for the original research can be considered 
in two ways.

Firstly, the primary objective of the original study is 
risk prediction. Regardless of the internal validation via 
subsampling techniques and simulations run on the cluster, 
which we failed to execute, our reproduced results (Supple-
mentary File 2) were overall in line with the conclusions 

from their paper with regard to the predictive potential of 
the KBA, as compared to the current ELN classification. 
However, it is necessary to determine the time point when 
the prediction is to be made and modify the KBA accord-
ingly. In particular, information accumulated after predic-
tion should be discarded from the KBA, as such informa-
tion leakage usually leads to over-optimistic predictive 

Fig. 3   Predicted 3-year mortal-
ity reduction from allograft in 
CR1, as opposed to salvage 
allograft after relapse (y-axis), 
predicted 3-year mortality of 
standard chemotherapy only 
(x-axis). Date of complete 
remission as the starting point. 
Individual patients denoted by 
the points and colored by ELN 
risk classifications. Population 
average mortality fitted and 
presented by the curve. a The 
KBA was based on the entire 
1540 patients, while predictions 
were calculated for 995 patients 
eligible for allograft at CR1,  
adapted from Gerstung et al. 
(2017); b Modified KBA based 
on the 995 eligible patients
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accuracy. To illustrate, the length of CR1 is associated 
with a higher chance of receiving allograft as well as with 
an improved survival rate, hence including this informa-
tion tends to increase the model predictive accuracy. Fur-
thermore, to predict risk in hypothetical scenarios where 
an individual receives different treatments, e.g. receiving 
allograft in CR1 or after relapse, a counterfactual predic-
tion approach is needed for future model development 
(Dickerman and Hernán 2020; van Geloven et al. 2020).

Secondly, our reproducibility study clarified that 
the KBA was trained and assessed empirically so as to 
optimize the predictive performance with all predictors 
in combination; in other words, the underlying causal 
structure was not considered, and hence one cannot be 
sure if confounding effects have been handled appropri-
ately (Ramspek et al. 2021; Shmueli 2010). Although not 
explicitly described as causal inference, the comparison of 
mortality between different treatments (Fig. 3a) incorrectly 
invites etiological interpretation in favour of receiving 
allograft in CR1, particularly among patients with higher 
baseline risk: a potentially dangerous interpretation which 
has been accepted in two subsequent studies (Fenwarth 
et al. 2021; Huet et al. 2018).

The impact of mistakenly attributing the observed mor-
tality reduction to receiving allograft in CR1 could be det-
rimental in clinical settings, as it can encourage offering a 
treatment while the asserted causal efficacy might not, in 
fact, exist. The conflation of prediction and causal infer-
ence affects each step of the modeling process, and even 
one single step could easily alter the research conclusions 
(Breiman 2001; Shmueli 2010). For illustrative purposes, 
to demonstrate how the original research findings would be 
impacted, we rebuilt the KBA by restricting it to the 995 
patients who were eligible for allograft in CR1 and conse-
quently were facing clinical uncertainty, as is required to 
answer the causal question. It can be seen in Fig. 3b that, 
assuming the confounding effects have been sufficiently 
addressed by the KBA, the estimated benefits from timely 
allograft in CR1 no longer pertain among those who were 
predicted to have a lower 3-year mortality (i.e. < 40% if 
receiving standard chemotherapy, as indicated by the clus-
ters to the left of x = 0.4).

The value of open policies regarding data and relevant 
supplements (e.g. code and documents) has been widely rec-
ognized by the scientific community, and tremendous efforts 
have been made to foster sharing processes enacting these 
open policies (Open Science 2015; Wilkinson et al. 2016). 
Today, data repositories, either generalist such as Dryad 
(https://​datad​ryad.​org/) and Zenodo (https://​zenodo.​org/) 
or discipline-specific like BioModels (https://​www.​ebi.​ac.​
uk/​biomo​dels/) and PhysioNet (https://​physi​onet.​org/); code 
repository hosts, e.g. GitHub (https://​github.​com/) and Git-
Lab (https://​gitlab.​com/); and the corresponding solutions 

to data transferring, e.g. SFTP (https://​www.​ssh.​com/) and 
Aspera (https://​www.​ibm.​com/​produ​cts/​aspera), and repo-
to-repo code obtaining, e.g. git clone (https://​github.​com/​
git-​guides/​git-​clone), have materially removed the obstacles 
in accessing data and analysis code.

With full access to source materials, however, our study 
again attests to the fact that openness is merely a starting 
point for reproducible research. Based on the experience 
of the first author (YX) serving as a reproducible research 
editor at Biometrical Journal and informal correspondence 
with a senior colleague, at present only about two out of 
every ten submissions (i.e. manuscripts with supplementary 
data and code) are found to be reproducible from the start, 
while for the rest, three to four rounds of communication 
and correction between authors and editors, just to improve 
reproducibility, are standard. In the context of this study, 
we discuss three aspects of reproducibility given that open 
data and code policies have been followed: code readability, 
executability, and development.

1.	 Readability

Code readability is not necessarily a prerequisite for 
a successful rerun of the code, provided best practices in 
software engineering have been employed. In biomedical 
research, however, clean and comprehensible code not just 
increases the likelihood that negligent errors will be spot-
ted, more importantly, it enables downstream researchers 
to grasp the underlying theoretical assumptions or uncover 
biases that were unseen earlier on, as some implementation 
details are often omitted in the original paper. Even a suc-
cessful rerun of the code does not guarantee that the outputs 
provide the information originally planned to be extracted 
from the data. In this regard, code readability is central to 
reproducibility.

Practically, following programming style guides, e.g. 
PEP 8 for Python (https://​peps.​python.​org/) and Tidyverse 
Style Guide for R (https://​style.​tidyv​erse.​org/) is the basis 
of enhancing code readability (Schwab and Held 2021), 
and there are packages automatically formatting the code 
to conform to a given style guide, e.g. autopep8 for Python 
(https://​pypi.​org/​proje​ct/​autop​ep8/) and lintr for R (https://​
github.​com/r-​lib/​lintr). Another critical element of improv-
ing code readability is to avoid duplication and unnecessary 
complexity, in that these inevitably entangle the analysis 
flow and are ‘bug-prone’ due to the decreased code main-
tainability. Although code and functions were substantially 
abstracted by Gerstung et al. through building up a pack-
age (Caffo et al. 2016), duplicated and complex code were 
still appearing and hence code refactorings such as function 
extraction and variable renaming are recommended (Fowler 
2018). Moreover, the myth that ‘good code explains itself’ 
also has repercussions in reproducible research, and the 

https://datadryad.org/
https://zenodo.org/
https://www.ebi.ac.uk/biomodels/
https://www.ebi.ac.uk/biomodels/
https://physionet.org/
https://github.com/
https://gitlab.com/
https://www.ssh.com/
https://www.ibm.com/products/aspera
https://github.com/git-guides/git-clone
https://github.com/git-guides/git-clone
https://peps.python.org/
https://style.tidyverse.org/
https://pypi.org/project/autopep8/
https://github.com/r-lib/lintr
https://github.com/r-lib/lintr
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ensuing obstacles to comprehending the code are magnified 
when a research project involves multidisciplinary knowl-
edge. For this reason, while ‘what’ and ‘how’ comments are 
deemed unnecessary, we believe inline comments remain an 
indispensable complement in providing discipline-specific 
backstory and in explaining the purposes of certain execu-
tion steps. The availability of computational notebooks such 
as R Markdown (https://​rmark​down.​rstud​io.​com/) and Jupy-
ter Notebook (https://​jupyt​er.​org/), which provide a dynamic 
narrative of all the data analysis steps, from data preproc-
essing to visualization, has greatly facilitated collaboration 
and has provided substantial versatility in improving code 
quality (Perkel 2018). Nonetheless, one should note that sim-
ply implementing the notebooks is not a catch-all solution 
for best programming practices, and criticism has also been 
made of these notebooks encouraging poor coding practices 
and hence hindering reproducibility (Perkel 2021; Pimentel 
et al. 2019). Of note is a recent study proposing a framework 
of five-step code quality assurance to improve computational 
reproducibility before the fact (Sanchez et al. 2021).

2.	 Executability

From the perspective of software engineering, the essence 
of reproducibility is to ensure code execution by the repro-
ducer, independent of the original author’s computing envi-
ronment. There are many best engineering practices in this 
field that can help in achieving this objective. Documenta-
tion of code, statement of dependencies, modular program-
ming (which in our case boils down to separating the code 
into individual analytical purposes), and function abstraction 
appear to have been broadly implemented by Gerstung et al.. 
But, four years after the original paper was published, we 
encountered dependency conflicts and portability issues (i.e. 
executing the same code on another OS or machine) when 
performing this study. Next, we elaborate on how the setup 
of dependencies and testing could have been improved.

Modern software like R or Python is continuously 
updated, and the untoward impact of running the code in an 
upgraded computing environment might result in small out-
put deviations, code execution abortions, or even a complete 
dependencies setup failure. Containers, e.g. Docker (https://​
www.​docker.​com/) and Singularity (https://​sylabs.​io/​singu​
larity), are open-source tools providing an opportunity to 
address the compatibility issues and to re-install an identi-
cal computing environment for specific tasks, increasing the 
chance of reproducibility (Boettiger and Eddelbuettel 2017). 
In contrast to the incomplete Dockerfile (see Fig. 1) provided 
by Gerstung et al., a reusable one should describe all steps 
needed to build a layer-structured Docker image from the 
bottom OS, and even if this were provided, the unavailability 
of required downloads would still prohibit the setup process. 
Alternatively, an easier and more maintainable option for 

future researchers would be to directly provide a complete 
Docker image and share it via a public container repository, 
e.g. Docker Hub (https://​hub.​docker.​com/). To further pre-
vent the conflicts due to container’s reliance on OS, using a 
virtual machine such as VirtualBox (https://​www.​virtu​albox.​
org/) or QEMU-KVM (https://​www.​qemu.​org/) by provid-
ing virtual machine files is also recommended. Importantly, 
either container or virtual machine files should be success-
fully tested offline. Moreover, dependency management 
tools such as Conda (https://​docs.​conda.​io/), Python pip 
(https://​pypi.​org/​proje​ct/​pip/), and R packrat (https://​rstud​
io.​github.​io/​packr​at/) have been very helpful to track the 
versions of packages and dependencies in a specific project.

In data-intensive fields requiring high-performance com-
puting, code portability is another key factor to be consid-
ered with respect to compatibility issues. In this study, R 
script for parallel tasks was written depending on the LSF 
scheduler and hence cannot be run unmodified for a differ-
ent platform. For future authors, workflow managers such as 
Nextflow (https://​www.​nextf​low.​io/) and Snakemake (https://​
snake​make.​readt​hedocs.​io/) could present a solution, as they 
provide an abstraction to separate analysis pipelines from 
computing environments, and hence allow seamless execu-
tion of the pipelines across different platforms (Di Tommaso 
et al. 2017; Mölder et al. 2021).

Unlike a standard approach to improving code execut-
ability in software development, testing is perceived rather 
arbitrarily in some fields such as biomedicine, where writing 
code for individual purposes (so-called end-user program-
ming) is typical (McConnell 2004; Silva et al. 2017). With 
regard to testing in a biomedical research project, functions/
packages and analysis code should be considered separately. 
Unit testing is pertinent mainly to testing the functions/pack-
ages at individual levels. For the provided package CoxHD 
in the original paper, the R CMD check was performed. The 
R CMD check is an essential testing facility provided by 
R running a variety of checks automatically (https://r-​lib.​
github.​io/​rcmdc​heck/). Passing such checks is required when 
submitting an R package to the CRAN (https://​cran.r-​proje​
ct.​org/​web/​packa​ges/​polic​ies.​html), but it only ensures the 
executability of functions/packages. To test the correctness 
of individual outputs, packages such as testthat (https://​testt​
hat.r-​lib.​org/) and RUnit (https://​rdrr.​io/​cran/​RUnit/) can 
be used alongside programming, and it is also possible to 
merge them into the R CMD check for future testing. On the 
other hand, integration testing of analysis code (i.e. checking 
whether different modules of the code, including dependen-
cies setup, work well together) is more relevant to uncover 
the code errors and dependency conflicts that we experi-
enced. To this end, original authors should test their code 
through putting together all modules or combining several 
modules into higher-level modules, depending on the pro-
ject complexity. Where the virtual machine is not used, it 

https://rmarkdown.rstudio.com/
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https://www.docker.com/
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https://cran.r-project.org/web/packages/policies.html
https://testthat.r-lib.org/
https://testthat.r-lib.org/
https://rdrr.io/cran/RUnit/


1478	 Human Genetics (2022) 141:1467–1480

1 3

is recommended to perform integration testing in as many 
different computing environments as possible, particularly in 
those that are most likely to be used by future reproducers, 
i.e. mainstream cloud computing environments like AWS 
(https://​aws.​amazon.​com/) and Azure (https://​azure.​micro​
soft.​com/). In addition, testing tools like Selenium (https://​
www.​selen​ium.​dev/) can further automate the manual testing 
so as to free developers from the long wait for the comple-
tion of individual executions.

3.	 Development process

The development process of predictive models is similar 
to that of software, in that the cycle of code updating and 
testing is common to both. A key element to smooth such a 
process is version control, which tracks changes to the code, 
prevents and resolves conflicts due to concurrent develop-
ment, or restores previous versions with ease. Continuous 
integration, continuous delivery and/or continuous deploy-
ment (CI/CD) workflows further streamline the development 
process. CI allows every new change made to the code to 
trigger the testing in an unattended manner, while CD auto-
mates the delivery and deployment of the changes once test-
ing is passed, such as uploading a new Docker image to 
Docker Hub and updating the result models. The automation 
allows for early detection of errors, accelerates the develop-
ment cycle, and therefore increases research efficiency. We 
noticed that in the work by Gerstung et al., version con-
trol was enabled while CI/CD was done for the provided 
CoxHD package with Travis CI (https://​travis-​ci.​org/). Other 
common CI/CD tools that can be used in R include Jenkins 
(https://​www.​jenki​ns.​io/), GitHub Actions (https://​github.​
com/​actio​ns), and GitLab CI (https://​docs.​gitlab.​com/​ee/​ci/). 
On the other hand, the graphical user interface, such as the 
Shiny web portal in the original paper, is especially useful 
to communicate sophisticated models and promote external 
validation. An alternative to Shiny (https://​shiny.​rstud​io.​
com/) is Plumber (https://​www.​rplum​ber.​io/), which brings 
about greater flexibility in connecting the source code to a 
custom interface other than the standalone Shiny webpage.

It should be noted that based primarily on the context of 
this reproducibility study, our discussion did not cover some 
best practices that are commonly seen in other fields, for 
example, automatically pulling an updated container image 
from the repository to deploy. Moreover, the three aspects 
(code readability, executability, and development) are not 
mutually exclusive. To illustrate, version control is a key 
element in facilitating code executability and development, 
but it also improves code readability and comprehensibility 
by displaying how the code evolves. In addition, trade-offs 
are to be made depending on the researcher’s engineering 
resources; where these are scarce, much more attention 
should be paid to code readability for reproducibility. Still, 

researchers should always strive to keep up with the best 
programming and software engineering practices, otherwise 
a reproducibility study would be a post-mortem examination 
of the original paper.

Conclusion

The scientific community arguably values the novelty of 
research more than reproducibility, which systematically 
discourages the practice of reproducibility studies (Atmans-
pacher and Maasen 2016). Compared to the upfront research 
that generates and collects data through wet-lab experiments 
or large-scale population surveys, computational reproduc-
ibility remains in some ways the easiest part, even taking 
into account the technical challenges we have encountered in 
this study. However, this study reaffirms the scientific value 
of sound reproducibility practices; even a single reproduc-
ibility study can add to the credibility of published results 
(Ioannidis 2014; Seibold et al. 2021). Moreover, publishing 
and studying code offers access to a rich source of statistical 
wisdom. The code provided by Gerstung et al. has taught us 
an innovative application of methodological concepts which 
are undocumented elsewhere. It was a very valuable learning 
experience to study the code, even without rerunning it suc-
cessfully, to deepen our understanding of Cox proportional 
hazards regression models with grouped random effects and 
the handling of the multistage processes. Lastly, we noticed 
that most of the current publication standards, including 
individual journals’ submission guidelines for authors and 
general reporting guidelines such as TRIPOD (Collins et al. 
2015) or STROBE (von Elm et al. 2007), do not require 
the scrutiny of reproducibility before a submission can be 
accepted. The lack of relevant guidelines for the conduct and 
reporting of reproducibility studies means that good practice 
in this matter remains an open issue. Therefore, this paper 
proposes criteria for reproducibility (presented in Table 1), 
which are open for discussion and improvement, in the hope 
that this will not only encourage the publication of more 
reproducibility studies but also help future researchers to 
perform reproducibility checks for themselves.
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