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Tracing and constraining anthropogenic aerosol
iron fluxes to the North Atlantic Ocean using iron
isotopes
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Atmospheric dust is an important source of the micronutrient Fe to the oceans. Although

relatively insoluble mineral Fe is assumed to be the most important component of dust, a

relatively small yet highly soluble anthropogenic component may also be significant. How-

ever, quantifying the importance of anthropogenic Fe to the global oceans requires a tracer

which can be used to identify and constrain anthropogenic aerosols in situ. Here, we present

Fe isotope (δ56Fe) data from North Atlantic aerosol samples from the GEOTRACES

GA03 section. While soluble aerosol samples collected near the Sahara have near-crustal

δ56Fe, soluble aerosols from near North America and Europe instead have remarkably

fractionated δ56Fe values (as light as −1.6‰). Here, we use these observations to fingerprint

anthropogenic combustion sources, and to refine aerosol deposition modeling. We show that

soluble anthropogenic aerosol Fe flux to the global surface oceans is highly likely to be

underestimated, even in the dusty North Atlantic.
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Iron (Fe) is an important marine micronutrient, thought to be
acting as the principal control on phytoplankton growth and
carbon export in up to a third of the world’s oceans1,2, as well

as influencing global distribution of nitrogen fixation, due to the
high Fe requirement of nitrogen-fixing diazotrophs3. However,
the low solubility of Fe in seawater means that dissolved Fe
concentrations are often vanishingly small away from Fe sources4.
Deposition of Fe-bearing atmospheric dust, while highly episodic
and regionally variable, may be the most important source of new
Fe to the surface oceans in some Fe-limited regions1,5, and is
especially important in the North Atlantic due to the close
proximity to the Saharan dust source6–8. Consequently, changes
in the deposition, composition, and distribution of aerosol Fe
supply has the potential to dramatically influence biogeochemical
cycles and the carbon cycle at the global scale, especially across
climatic transitions such as glacial-interglacial change9–11. While
natural desert dust from arid regions around the world has long
been considered a globally important source of atmospheric Fe to
the oceans over multiple timescales, in recent years, a number of
observational and modeling studies have suggested that the
release of Fe during combustion (including anthropogenic
industrial sources, biofuel or fossil fuel burning, and global bio-
mass burning) may also be an important supply of soluble Fe to
the surface oceans12–17.

Disparate lines of evidence have previously suggested an
important role for anthropogenic aerosol Fe, though the magni-
tude of this flux is currently poorly characterized. Anthro-
pogenically produced aerosols, as fingerprinted either from air
mass back-trajectory analysis or the presence of anthro-
pogenically sourced elements (e.g. Ni and Pb from coal or fly ash
or gasoline and V from heavy oil), have been suggested to contain
relatively highly soluble Fe compared with mineral dust14,15. For
example, high Fe solubilities (up to 19%) in marine aerosols
collected near Bermuda have been linked to anthropogenic
processes14,15, while mineral Fe within natural desert dust typi-
cally has very low solubility (1%)18. Although such studies
demonstrate that aerosols can carry large amounts of soluble Fe,
it is not possible to determine whether solubility is directly related
to the presence of an anthropogenic component or whether Fe
solubility has been enhanced due to physical and/or chemical
atmospheric processing. For example, several workers have sug-
gested that under low dust loading, or far from source, or under
variable composition, aerosol solubility is enhanced from <1% up
to 10% or even greater19–21. The challenges of determining a
representative Fe solubility under laboratory conditions also
complicates efforts. Overall, these complications lead to a large
range in estimated aerosol Fe solubility from <1 to 95%20,22.
Furthermore, measurements of Fe solubility in preindustrial (and
thus truly natural) Last Glacial Maximum ice-core dust ranged
from <1 to 40%23, suggesting that high Fe solubilities are not
purely diagnostic of the presence of anthropogenic Fe.

Another approach to evaluating the biogeochemical impor-
tance of anthropogenic Fe deposited to the oceans is to use global
aerosol deposition models, which resolve iron aerosol. Currently,
modeling suggests that a small but highly soluble flux of
combustion-sourced Fe has a major impact on the total estimated
atmospheric soluble Fe delivery to the oceans worldwide24,25.
Such models have even gone so far as to suggest that anthro-
pogenic Fe may dominate soluble aerosol Fe deposition in some
regions of the globe, especially to the ocean in the Southern
Hemisphere26–28. However, a major uncertainty in extrapolating
from observations to modeling global fluxes arises from uncer-
tainties in the solubility of Fe from various natural and anthro-
pogenic sources. Generally, modelers have assumed that Fe from
mineral dust is very insoluble, using Fe solubilities of <2%
(although this may not capture the observed range of spatial

variability)12,29,30, while assuming much higher solubilities for
anthropogenic Fe based on measurements from point sources12.
However, both of these assumptions are subject to large uncer-
tainties, principally because of the uncertainty over the causes of
different Fe solubilities in observational studies. Similarly, using
other elements as tracers for anthropogenic Fe requires them to
be derived from the same source with a reproducible or repre-
sentative ratio, which is challenging to quantify in a well-mixed
atmosphere far from aerosol sources31. A quantitative evaluation
of the global importance of anthropogenic Fe therefore requires a
tracer which can be used to inform anthropogenic fluxes in situ.

The stable isotope ratio of Fe (δ56Fe) within aerosols may provide
an additional way to constrain the relative importance of Fe sourced
from natural dust versus other types of aerosol, provided there are
resolvable and characterizable differences between natural and
anthropogenic aerosol Fe. Natural Fe within bulk natural aerosol
dust, and within material from dust source regions, has been
characterized by a near-crustal δ56Fe value of +0.1‰ (relative to
IRMM-014 standard)32–36. In addition, several recent studies have
suggested that there is also an isotopically light marine aerosol
Fe phase which may be linked to anthropogenic activity34,37,38.
This attribution is supported by near-source measurements, which
suggest that anthropogenic sources of aerosol Fe such as those
emitted from combustion of gasoline can be highly fractionated (−3
to +0.3‰)34,35,39,40. Specifically, isotopically light δ56Fe values have
been observed in bulk aerosol near anthropogenic sources such as a
road tunnel at Hiroshima, Japan (−3 to +0.3‰)40. Similarly light
δ56Fe values were measured in aerosols collected in the bulk phase
(−2.01 to +0.23‰) and even lighter in simulated rain-water
extractions (−3.91 to −1.87‰) at Hiroshima, Japan, over several
months34, providing further evidence for a light δ56Fe anthropogenic
endmember near combustion sources.

However, from these near-source measurements, which span a
range of isotopic compositions and particle sizes, it is difficult to
establish precisely what the δ56Fe signature of an anthropogenic
endmember might be, were it to be measured in open-ocean
marine aerosols. Insight for the latter is provided from mea-
surements of the mean fine-fraction (<2 µm) bulk phase
aerosols collected from in the winter at Bermuda (mean −0.1‰,
as light as −0.5‰)35, and in the two samples of fine-fraction bulk
phase aerosol particles from the North West Pacific (−1.2
and −1.7‰)34. Isotopically light bulk phase aerosol Fe has also
been reported from Taiwan, linked to anthropogenic activity by
high Fe solubility37. Together, these studies are indicative of the
presence of an isotopically light Fe component within marine
aerosols, meaning that aerosol δ56Fe values may allow us to
distinguish between the presence of anthropogenic Fe from nat-
ural mineral Fe within an aerosol sample, provided we can con-
strain isotopic end members.

Here, we present new data for aerosol iron isotopes (δ56Fe)
collected shipboard from the North Atlantic Ocean during the US
GEOTRACES North Atlantic GA03 section. While bulk δ56Fe
show some variability across the section, we observe a dramatic
difference in soluble aerosol δ56Fe between samples collected
from Saharan air masses (+0.1‰), and those collected from
North American or European air masses, which show remarkably
fractionated δ56Fe values (as light as −1.6‰). We attribute these
Fe isotope signals to mineral dust and anthropogenic sources,
respectively, demonstrating that the signature of anthropogenic
combustion is visible at the basin scale even in the very dusty
North Atlantic. By coupling these results to dust deposition
modeling, we show that a reduction in natural dust source
solubility and an increase in anthropogenic aerosol Fe supply to
the region are needed to reproduce GA03 δ56Fe observations.
Applying those model refinements at the global scale suggests that
current parameterizations of dust deposition models may
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underestimate anthropogenic aerosol Fe fluxes to the global
oceans.

Results
GA03 Fe isotope results. We measured δ56Fe in total bulk
(HNO3 and HF-digested) and soluble (water- and seawater-
soluble) fractions of marine aerosols collected from above the
North Atlantic Ocean during two GEOTRACES GA03 section
cruises41,42 during winter 2010 and 2011. Based on published
HYSPLIT back-trajectory modeling of air masses sampled on the
cruises43, we chose a subset of samples (Fig. 1) from defined air
masses, including areas strongly influenced by the mineral dust
plume emanating from the Sahara desert (Saharan air masses) as
well as regions near North America (North American air masses)
and Europe (European air masses).

We found that GA03 aerosols considered to be dominated by
the Saharan dust plume were characterized by near-crustal δ56Fe
in both the bulk and water-soluble phases (+0.12 ± 0.03‰ and
+0.09 ± 0.02‰, respectively), confirming the observation that
natural aerosol Fe is defined by near-crustal δ56Fe (Table 1;
Fig. 2a32,33). Leaching of the same aerosol dust with surface
seawater also yielded crustal values (+0.04‰ and +0.05‰; Supp.
Data), consistent with the only other previous δ56Fe measure-
ment for soluble Saharan aerosols33. However, in dramatic

contrast to the Saharan-dominated aerosols, the aerosols collected
from North American or European air masses showed
pronounced fractionation toward lighter δ56Fe values (−0.8 to
−1.6‰; mean −0.91‰) in the water-soluble phase (Table 1;
Fig. 2a), the seawater-soluble phases (−1.45‰), and more-muted
but similar fractionation towards lighter δ56Fe values in the bulk
phase (−0.12 ± 0.06‰). While these lighter δ56Fe values could be
caused by either a primary source signal or the result of kinetic
isotope effects during partial dissolution or re-precipitation of Fe
during leaching, the presence of lighter-than-crustal δ56Fe in the
bulk aerosol, as well as similar observations in bulk phase marine
aerosol from other studies34,35 means the isotopically light soluble
phase cannot simply be attributed to differences in chemical
behavior during processing or leaching. Instead, our data are
indicative of at least two kinds of aerosol Fe present in the
samples, one of which is natural and one of which we hypothesize
to be anthropogenically sourced.

Comparison of Fe isotopes results with other aerosol para-
meters. The Saharan-dominated aerosols were characterized by
much higher Fe loading than the non-Saharan samples (Table 1;
Fig. 2a)43, an observation consistent with global aerosol models of
highly soluble anthropogenic Fe mixing with a large contribution
of very poorly soluble Fe from desert dust15,26. Indeed, that idea is
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Fig. 1 North Atlantic GA03 aerosol Fe isotope sampling locations. Aerosol samples are a subset of those collected on the cruise, and are characterized as
Saharan (gray), North American (blue), or European (red), according to HYPSLIT air mass back-trajectory analysis43. 2010 and 2011 legs of the GA03
cruises (USGT10 and USGT11) are shown separately

Table 1 Mean GA03 North Atlantic aerosol data (±1SD) for each air mass, as defined by back-trajectory modeling43

Air mass Fe loading Instantaneous Fe solubility Mean bulk δ56Fe Mean water-soluble
δ56Fe

Mean (Pb/Al)Bulk

(ng m−3) % ‰IRMM ‰IRMM

Saharan 2010 3000 ± 1300 0.4+ 0.2 +0.12 ± 0.03 +0.08 ± 0.03 0.0006 ± 0.0002
Saharan 2011 3100 ± 1600 0.3 ± 0.1 +0.13 ± 0.03 +0.09 ± 0.02 0.0004 ± <0.0001
Saharan 3000+ 1400 0.4 ± 0.1 +0.12 ± 0.03 +0.09 ± 0.02 0.0005 ± 0.0001
Euro. 2010 81+ 61 8.7 ± 7.8 −0.04 ± 0.03* −1.20 ± 0.11 0.0096 ± 0.0077
N.Am. 2011 45 ± 32 3.6 ± 1.8 −0.16 ± 0.06 −1.08 ± 0.36 0.0057 ± 0.0034
Euro. & N.Am. 66 ± 51 6.0 ± 6.7 −0.12+0.06 −1.15 ± 0.24 0.0079 ± 0.0062
UCC − − +0.09 − 0.0002

See Supplementary Data 1 for the full dataset. Saharan denotes aerosol from the Saharan air masses for both years, Euro & N.Am. denotes aerosols from either European or North American air masses.
Fe solubility denotes instantaneous solubility in ultrapure water (see Methods). Fe loading, Fe solubility and (Pb/Al)Bulk are reproduced from previous work43–45, 58, and UCC denotes typical upper
continental crust composition32, 48. For *, only one sample was measured, so this is shown rather than the mean
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in strong agreement with data in this study when water-soluble
δ56Fe is plotted against Fe solubility44,45 (Fig. 2b); aerosol samples
fall into two well-defined groups, either a natural dust field (δ56Fe
+0.1‰, 0.2–0.5% soluble) or a hypothetical anthropogenic field
(δ56Fe −0.5 to −1.6‰; 2–21% soluble). The isotopically light
signature of anthropogenic Fe is thus largely masked in the bulk
phase by the much greater presence of Saharan dust particles, but
becomes dominant in the soluble phase due to the higher solu-
bility of anthropogenic Fe46,47. Furthermore, in addition to the
high Fe solubilities and light δ56Fe signatures, highly elevated
(15–95×) bulk Pb/Al ratios (0.003–0.019)43 in the anthropogenic
field (Fig. 2c; Table 1) compared with the upper continental crust
Pb/Al (0.0002)48 are similarly indicative of anthropogenic pol-
lution. This Pb/Al signature, together with elevated Ni/Al and V/
Al over crustal in these samples43,44, while not definitive evidence
that the light Fe is anthropogenic, provides further weight to the
hypothesis that the light Fe-bearing aerosols within North
American and European air masses are strongly influenced by
anthropogenic activity.

Discussion
Our data provide clear evidence for the presence of an isotopically
light highly soluble Fe phase in marine aerosol over the Atlantic,
which we suggest is linked to anthropogenic activity through
chemical analyses. This scenario can be simply modeled using a
two-component isotope mixing equation:

δ56Fesoluble aerosol ¼
fdust ´ δ

56Fesoluble dust
� �þ fanthropogenic ´ δ

56Fesoluble anthropogenic
� �

ð1Þ
which can be re-arranged to solve for the relative fractions of

natural dust Fe (fdust) and anthropogenic aerosol Fe (fanthropogenic)
in the soluble phase of the GA03 aerosol samples, by assigning
fixed values for δ56Fesoluble dust and δ56Feaoluble anthropogenic, based
on appropriate assumptions, and using the measured isotope
ratio in each soluble aerosol sample (δ56Fesoluble aerosol). For this
simple mixing model, we assigned +0.09‰ as the δ56Fedust
endmember, which is the crustal Fe isotopic composition32

(confirmed for Saharan soluble aerosol in this study), and −1.6‰
as the anthropogenic aerosol endmember, based on data from this
study and the literature (see Methods for further discussion of

endmember choice). Using these assigned end members, geo-
chemical modeling suggests that the European and North
American soluble aerosols are characterized by ~50–100%
anthropogenic Fe, while the Saharan aerosols are characterized by
~100% dust Fe (Fig. 3). This clearly demonstrates the dominance
of anthropogenic Fe to some open-ocean regions of the North
Atlantic, and also how δ56Fe can be used to place direct con-
straints on the two Fe sources in aerosols.

While the pattern of isotopically light soluble aerosol δ56Fe
observed in the North Atlantic in this study provides evidence for
an important anthropogenic aerosol Fe source, it does not iden-
tify whether the anthropogenic Fe comes from fossil fuel or
biofuel combustion, as previous studies have attributed the
observation of isotopically light Fe to either one of these sources.
However, comparison with aerosol deposition models can help to
answer this question. To inform this, we considered model
deposition output from the Community Earth System Model
(CESM 1.0.5) with the Community Atmosphere Model (CAM4)
bulk aerosol model, which has recently been adapted to include
an intermediate complexity soluble Fe atmospheric processing
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scheme (denoted here as the baseline scenario)49,50. This version
of the CAM4 model simulates both mineral dust Fe and com-
bustion (fossil fuel, biofuels, and fire) Fe emissions, with transport
and atmospheric processing to simulate soluble Fe deposition for
each type of aerosol (Fig. 4). As can be seen from Fig. 4, the
spatial patterns during the time of GA03 aerosol collection
(October–November) are most consistent with the light δ56Fe
resulting from fossil fuel combustion sources, which are the
dominant source of anthropogenic aerosols in the North Atlantic
at this time of year, and not biomass burning (i.e., fires are not
prevalent in Northern Hemisphere mid-latitude during winter).

As well as providing spatial information about which source
may be responsible for the isotopically light Fe, deposition model
output provides the opportunity to test how well models are
capturing discrete aerosol observations, and whether the
hypothesis linking isotopically light Fe to anthropogenic sources
is consistent with current model scenarios. Here, we directly
compared output from the baseline CAM4 deposition model
scenario49 for the North Atlantic with GA03 aerosol observations,
in terms of both Fe solubility and a predicted aerosol δ56Fe at the
location and time the GA03 samples were collected. While the

baseline CAM4 model produced similar solubilities (4–8%) to
GA03 measurements (mostly 2–6%) for the North American and
European aerosols, CAM4 overestimated observations for
Saharan Aerosols (median 2% vs 0.4%), resulting in a poor cor-
relation between model-predicted and observed soluble δ56Fe of
aerosols, when an δ56Feanthropogenic endmember of −1.6‰ was
used (Fig. 5). It is worth noting that this correlation cannot be
improved simply by using a lighter δ56Feanthropogenic such as
−3‰. However, initial model-observation comparisons were
based on a monthly mean model deposition output which was
compared with the sub-weekly (often daily) observations. How-
ever, the monthly mean will likely miss the details of discrete dust
storms which occur on a sub-monthly time frame. Increasing the
model temporal resolution to daily mean model output allowed
for a more direct comparison with the days of collection and
hence improved the model-observation comparison (reduced
median solubility from 2.0 to 1.4%). However, this was still higher
than GA03 observations.

A reduction in the solubility of readily released Fe (the Fe
assumed soluble at emission) in mineral dust at source from 25 to
10% within the model also improved the fit to solubility data

0.1 10001 10010
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Fig. 4 Modeled aerosol Fe for the North Atlantic. CAM4 baseline model soluble aerosol Fe (combined October+November deposition) of aerosol Fe
concentration for crustal mineral dust, fossil fuel, biofuels, and fire, with sampling locations in this study shown. Panels show soluble aerosol Fe
concentration output for a mineral dust, b fossil fuel, c biofuel, and d fire from the Community Earth System Model (CESM 1.0.5) with the Community
Atmosphere Model (CAM4) bulk aerosol model, using intermediate complexity soluble atmospheric processing (baseline CAM4 scenario)49,50.
GA03 sampling locations are color coded as in Fig. 1

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10457-w ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:2628 | https://doi.org/10.1038/s41467-019-10457-w |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


(median of 0.81%), improving the δ56Fe predictive power com-
pared with observations (Fig. 5a). However, even this modeling
scenario still failed to capture the lightest δ56Fe values, which
suggested that the magnitude of the soluble anthropogenic
aerosol was being underestimated. Recent work based on mag-
netite observations in China27, has suggested that anthropogenic

aerosol Fe emission are currently underestimated globally,
potentially up to a factor of 8. To test this, we increased com-
bustion Fe emissions (fossil fuel, biofuel, and fire) by 5× here to
match the CAM4 NEW scenario of Matsui et al.27, to see if this
provided a better fit to the observed lighter δ56Fe. We found that
this 5× increase in anthropogenic emissions, together with the
changes to mineral dust outlined above (denoted here as the
CAM4isotope-refined scenario) produced a good fit to GA03 obser-
vations (Fig. 5a).

Following refinement of the CAM4 model to match GA03
observations in this study using an assumed anthropogenic
endmember of −1.6‰, we took the CAM4isotope-refined output and
optimized the slope of the trendline of the model observations to
as close to 1:1 as possible, simply by varying the anthropogenic
δ56Fe endmember while keeping the dust δ56Fe endmember fixed
(Fig. 5b). This exercise, while not influencing the soluble Fe
deposition output of the model, may provide a better constraint
on the specific isotope endmember for anthropogenic Fe in this
region (−1.43‰). While this predicted endmember is slightly
heavier than the lightest GA03 observation (−1.58 ± 0.08‰), it is
lighter than all but one North American and European GA03
aerosols, and significantly heavier than some of the potential
combustion sources that have been described from Japan34,40.
This variability may reflect variability in regional sources, source
signatures or grain size effects in the two basins. For example,
combustion products are isotopically heavy (+0.4‰34) in the
coarser size fractions (>2 μm). Interestingly, coarser-grained
heavier anthropogenic Fe might explain the observations of Fe
which is heavier-than-crustal in one of our European sample total
digests (+0.3‰), but which was not obvious in the corresponding
soluble fraction (−0.78‰), and in several previously reported
Equatorial Pacific aerosols (+0.3 to +0.4‰51). Size-fractionated
marine aerosol collection, coupled with soluble δ56Fe analysis,
while challenging, would therefore help to provide better con-
straints on the range of anthropogenic δ56Fe end members in
future studies.

The overall observation of an isotopically light water-soluble Fe
phase in North Atlantic aerosols, and the changes made to pro-
duce our CAM4isotope-refined scenario for the North Atlantic have
implications for both the global ocean Fe isotope budget and,
perhaps more importantly, the flux of soluble aerosol Fe to the
oceans.

Previously, studies have used seawater δ56Fe as a tool to trace
different sources of Fe to the ocean, assuming that each source
has a single unique endmember6,32,52. Previous work in the North
Atlantic, based on water-column data from the GA03 section,
assumed a dust endmember δ56Fe of +0.7‰6. That study
assumed the dust δ56Fe endmember was heavier than crustal due
equilibrium dissolution of natural mineral dust in concert with
strong iron-binding ligands, resulting in an isotopically heavy
dissolved Fe pool, over much longer timescale than the instan-
taneous leaches carried out here53. However, data from the pre-
sent study suggest that a second significant aerosol component
should be considered, particularly in regions with high potential
deposition fluxes of combustion-derived Fe. Indeed, a continuous
background delivery of light δ56Fe to the Western North Atlantic
could contribute to the observation that the δ56Fe of the water
column at Bermuda appears to show little variability between
season54, and is near +0.4‰ throughout the water column6,55,
lighter than the proposed natural dust endmember. However, we
note this might also be influenced by the recently described
process of eddy-driven sediment Fe supply to this region with a
near-crustal δ56Fe signature56. The primary δ56Fe signature of
deposition to the ocean may thus vary significantly on regional
scales as the relative contribution from mineral dust and
combustion-derived Fe fluxes changes. This may be especially
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Fig. 5 Comparison of GA03 observations with model predictions. Black
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et al.49 with monthly average output and end members of +0.09‰ for
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a, agreement is improved by changing model to use daily mineral dust to
capture dust storms and reduced dust source solubilization (from 25 to
10%) (blue circles). Agreement is further improved in a by using 5×
anthropogenic emissions, to generate an isotope-refined model scenario
(CAM4isotope-refined scenario) which best matches GA03 observations (red
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best fit between model and observations (see main text; red points are with
an anthropogenic δ56Fe endmember of −1.6, purple circles are with an
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true in the Pacific Ocean, with the large observed gradient in
Asian dust and postulated large changes in the proportion of
anthropogenic and natural soluble Fe deposition26 (Fig. 6a).

If we apply the isotope-informed changes to the CAM4 base-
line model, which are required in the North Atlantic to match
observations (5× increase in combustion of Fe and 10× decrease
in dust source solubilization) to the baseline CAM4 model49

globally to create a new global model scenario (denoted here as
CAM4isotope-refined), it is clear that soluble anthropogenic Fe
deposition dramatically increases at the global scale (Fig. 6a). We
calculate that global soluble anthropogenic Fe (fossil fuel, biofuels,
and fire) increases with this scenario from 120 to 293 Gg yr−1.
The effect of this is that anthropogenic Fe deposition becomes
more dominant for the soluble Fe aerosol deposition budget at the
global scale, especially over large regions of the Southern and
Pacific Oceans, but also over Asia, Europe, and North America
(Fig. 6b). This finding is consistent with the other previously
mentioned recent work using CAM4, which suggests that com-
bustion of Fe must be ~8× greater, in order to reproduce obser-
vations of magnetite aerosols, leading to a 50% increase in soluble
anthropogenic Fe supply to the Southern Hemisphere and the
dominance of combustion as an Fe source to this region27,57.

To conclude, we present the first clear evidence that anthro-
pogenic Fe from combustion sources is visible at the basin scale,
using δ56Fe observations in the North Atlantic. These results
suggest that aerosol δ56Fe is a promising new tracer for finger-
printing and constraining anthropogenic aerosol Fe sources to the
oceans. It is striking to observe anthropogenic aerosol Fe so
clearly in a region that is dominated by large deposition fluxes of

natural Saharan dust6,8, demonstrating the sensitivity of this
tracer. Furthermore, we show that aerosol deposition models can
be improved by constraining them with δ56Fe observations, better
capturing the magnitude of anthropogenic Fe fluxes. Here, our
model-observation comparison suggests that, in line with other
recent observations, anthropogenic combustion sources may be
underestimated in current dust model scenarios, while natural
dust sources are likely overestimated, meaning that anthro-
pogenic Fe is likely to be a more dominant Fe source to the
oceans than previously considered. This is especially true of
regions of the ocean which receive much less natural dust8 than
the North Atlantic and will therefore be proportionately more
sensitive to Fe deposition resulting from the distribution and
degree of industrial combustion. Near-future increases in
anthropogenic Fe supply, such as increased Southern Hemisphere
industrialization and increased Northern Hemisphere dust sour-
ces may therefore lead to episodic and short-term changes in
carbon sequestration which may act to mitigate long-term
increases in atmospheric CO2 from anthropogenic emissions.

Methods
Data availability. All GA03 aerosol δ56Fe data from this study are available in
Suppl. Data, with GA03 water-soluble and bulk elemental concentrations for this
subset of GA03 aerosols. GA03 bulk aerosol Fe data are reproduced from Shelley
et al.43, GA03 soluble aerosol Fe concentration data are reproduced from Wozniak
et al.44,45 and Shelley et al.58. All GA03 aerosol concentration data are available in
the 2017 GEOTRACES Intermediate Data Product4.

Laboratory and analytical methods. Shipboard aerosols were collected on board
the R/V Knorr as part of the US GEOTRACES North Atlantic GA03 section cruises
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in October–November 2010 (USGT10) and November 2011 (USGT11), and
sampling details are shown in Supplementary Table 1. Samples were collected onto
acid-washed 47 mm Whatman 41 ashless filter discs using a high-volume aerosol
sampler (1.2 m3 air min−1) on the ship’s flying bridge (14 m above sea level), with a
procedure designed to avoid contamination from the ship’s stacks, as previously
described43. On the ship, the filters were leached rapidly with 100 mL of ultrapure
water (>18MΩ.cm; pH 5.5) to release the instantaneously water-soluble phase59,
which was then filtered through a 0.45 µm pore-size GN-6 cellulose filter, and the
leachate acidified to 0.024M HCl (pH ~1.7) for later (onshore) analysis of ele-
mental concentrations44. The remaining filters were stored frozen, prior to onshore
processing for determination of total particulate (bulk) concentrations following a
HF-HNO3 total digestion procedure43. Samples were analyzed for trace metal
elemental concentrations using an Element II HR-ICP-MS at Florida State Uni-
versity (FSU), and have been the focus of other studies43–45.

Full deposition and procedural leaching blanks for total digests and water-
soluble samples were 200–800 ng and 3–9 ng (per filter), respectively, based on
blank filters deployed on the ship43. The means of these blank values corresponds
to <0.4% (Saharan) and 4–82% (Euro and North American) of the total digests and
<1% (Saharan) and 2–5% (Euro and North American) of the sample for the
ultrapure water leaches (see Suppl. Data for % blank contribution). The δ56Fe of
two total-digested deposition blanks for 2011 were 0.00 ± 0.16‰ and +0.47 ±
0.06‰, while dissolved deposition blanks were of too low concentrations to analyze
for δ56Fe. We note that the two bulk samples from non-Saharan air masses which
were the only total samples with a high calculated blank component (60–80%),
were also the only two bulk non-Saharan samples with isotopically heavy δ56Fe
values. This observation suggests that the primary isotopically light aerosol
signature of these two samples was attenuated by a relatively large blank
contribution with an isotopically heavy δ56Fe values, similar to the blank values
mentioned above. As we have insufficient constraints to correct for this blank
contribution, these two samples were excluded from the means calculated here.

Of the 39 aerosol samples collected on the GA03 cruises and processed for total
or water-soluble elemental concentrations43,45, aliquots of the total digests and
deionized water leachates from 17 of the samples were processed and analyzed for
stable Fe isotope ratios (δ56Fe). Samples were chosen based on those which had
sufficient Fe for isotopic analysis, and to sample aerosols from North American,
Saharan, and European air masses43. Second, a subset of the GA03 aerosol-laden
filters from North American air (19.87–21.41 N, 51.46–52.47W) and Saharan air
were later leached at the University of Alaska (UA) with either ultrapure water
(>18.2 M.cm; 0.08 nmol kg−1 Fe) or 0.2 μm filtered surface seawater, following a
modification (the entire 250–500 mL volume in one aliquot) of previous leaching
procedures47. The surface seawater used was collected from the Gulf of Alaska
(58.4°N 139.14°W; 04/18/13) using clean techniques and had a Fe concentration of
2.63 nmol kg−1 Fe and a δ56Fe of −0.09‰ (−0.08 ± 0.03‰, −0.10 ± 0.03‰; 2σ).
Due to the relatively high Fe in the seawater (10–20% of the Fe leached; Suppl.
Data), and a well-constrained background seawater δ56Fe, the seawater-leached
δ56Fe was corrected using the simple assumption of two-component mixing:
δ56Fedissolved= (fBL × δ56FeBL)+ (fSAM × δ56FeSAM), where BL= background
medium, and SAM= aerosol samples (corrected values are shown in Table 1 and
both values are shown in Suppl. Data).

Samples were processed for δ56Fe using previously published techniques60. All
work was carried out under ULPA-filtered air, all water was >18.2 MΩ.cm and all
reagents were Aristar UltraTM, obtained from VWR International. Briefly, aliquots
of either total digests or aerosol leachates were spiked with an 57Fe–58Fe double
spike in a 1:2 sample:spike ratio and then evaporated to dryness, before being
purified by AGMP-1 anion-exchange column chemistry. Alaskan seawater and
seawater leaches were spiked with Fe double spike in a similar manner and then
processed using a Nobias PA1 chelating resin extraction and AGMP-1 purification
technique for the determination of δ56Fe in seawater60. δ56Fe ratios were analyzed
by Neptune MC-ICPMS at the University of South Carolina and are expressed
relative to the IRMM-014 international Fe isotope standard:

δ56Fe ð‰Þ ¼
56Fe
54Fe

� �
sample

56Fe
54Fe

� �
IRMM�014

� 1

" #
� 1000

Each processed aerosol sample was analyzed by MC-ICPMS twice, and mean
δ56Fe values were calculated. Where two aliquots of the total-digest were processed
separately, a mean has been calculated. Sample data in plots are expressed with 2σ
internal uncertainty on δ56Fe ratios based on the internal analytical error of
samples and bracketing standards following our previous work60. We estimate 2σ
external precision to be 0.05‰ for the water and seawater-soluble aerosol leach
samples based on replicate similar analyses of δ56Fe in 60 seawater samples54 (with
duplicates measured over several analytical sessions during a similar time period as
these samples), and 0.05‰ for the total-digested aerosol samples (based on
duplicate analyses of 22 total-digested Fe samples in this study (with internal errors
0.02–0.04‰) over three analytical sessions, excluding two lower concentration
samples which had internal errors >0.1%). We therefore regard these 2σ external
error values as a more conservative estimate of uncertainty when larger than 2σ
internal error.

Anthropogenic endmember. There are less available constraints on the anthro-
pogenic endmember compared with Saharan dust. However, we used data from

this study and the literature to choose the most representative value. The δ56Fe
endmember cannot be heavier than −1.6‰, because using a heavier value than this
would lead to f >1 for some samples in this dataset. The lightest potential value for
the endmember can be constrained by published observation of fine-fraction bulk
aerosol from Hiroshima, Japan (−2.01 to −0.56‰34), from marine aerosols in the
North West Pacific (−1.17 to −1.72‰34) and from a road tunnel near Hiroshima
(−3.1 to +0.3‰40). In the latter near-source case, however, δ56Fe composition was
particle size dependent, with only the smallest size fraction (0.2 μm) at −3‰, 0.5
μm at −1.5‰, and larger particles at heavier δ56Fe values40. Although published
size-fractionated marine aerosol information is globally scarce, limited information
suggests that most soluble Fe in South Atlantic aerosol is in larger size fractions
than 0.2 μm61,62, meaning that if North Atlantic aerosols are comparable, a near-
source δ56Fe −3‰ would likely be too light a choice. Considering the available
constraints, we suggest −1.6‰ is most applicable for the anthropogenic end-
member in calculations, since this both falls within the range of observations (−1.5
to −2‰), and was directly observed in the GA03 North Atlantic dataset.

Modeling output. Deposition output for this study was taken from the Commu-
nity Earth System Model (CESM 1.0.5) with the Community Atmosphere Model
(CAM4) bulk aerosol model, using intermediate complexity soluble atmospheric
processing, as described previously49 (here defined as CAM4 baseline). The model
was initially run to give monthly average deposition for October or November as
appropriate to the observations and to match the relevant grid square (Fig. 4). The
model was then adapted to output daily data in order to properly capture dust
storms and Fe solubility (see main text, Fig. 5); collection start day was used to
compare with all GA03 samples except 5965, where collection end day was used as
the model deposition showed a peak in mineral dust occurring during the period of
collection rather than at beginning of collection. The original model para-
metrization was modified (denoted as CAM4isotope-refined) to reduce mineral dust
solubilization from 25 to 10%, and to increase anthropogenic combustion emis-
sions by 5× compared with the baseline CAM4 scenario of Scanza et al.49 in order
to generate Figs. 5 and 6 and conclusions.

Data availability
All Fe concentration and δ56Fe data reported in this study are available as Supplementary
Data or are previously published43–45,58. All model output and codes will be publicly
available either by request to the authors or from http://www.geocornell.edu/eas/
PeoplePlaces/Faculty/mahowald/dust/Conwayetal2019/.
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