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Abstract

We sought to assess effects of fragmentation and quantify the contribution of
ecological processes to community assembly by measuring species richness,
phylogenetic, and phenotypic diversity of species found in local and regional plant
communities. Specifically, our fragmented system is Craters of the Moon National
Monument and Preserve, Idaho, USA. CRMO is characterized by vegetated islands,
kipukas, that are isolated in a matrix of lava. We used floristic surveys of vascular
plants in 19 kipukas to create a local species list to compare traditional dispersion
metrics, mean pairwise distance, and mean nearest taxon distance (MPD and MNTD),
to a regional species list with phenotypic and phylogenetic data. We combined phy-
logenetic and functional trait data in a novel machine-learning model selection ap-
proach, Community Assembly Model Inference (CAMI), to infer probability associated
with different models of community assembly given the data. Finally, we used linear
regression to explore whether the geography of kipukas explained estimated support
for community assembly models. Using traditional metrics of MPD and MNTD neutral
processes received the most support when comparing kipuka species to regional spe-
cies. Individually no kipukas showed significant support for overdispersion. Rather,
five kipukas showed significant support for phylogenetic clustering using MPD and
two kipukas using MNTD. Using CAMI, we inferred neutral and filtering models struc-
tured the kipuka plant community for our trait of interest. Finally, we found as species
richness in kipukas increases, model support for competition decreases and lower
elevation kipukas show more support for habitat filtering models. While traditional
phylogenetic community approaches suggest neutral assembly dynamics, recently
developed approaches utilizing machine learning and model choice revealed joint in-
fluences of assembly processes to form the kipuka plant communities. Understanding
ecological processes at play in naturally fragmented systems will aid in guiding our

understanding of how fragmentation impacts future changes in landscapes.
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1 | INTRODUCTION

With the continued anthropogenic alteration of natural landscapes,
there is a persistent and pressing need to investigate the conse-
quences of habitat fragmentation and how these consequences
affect biodiversity in ecological communities. Specifically, there
is a need to understand the effects of fragmentation on phyloge-
netic and functional trait diversity (Debinski & Holt, 2000; Ewers
& Didham, 2006) as they have the power to elucidate past ecolog-
ical processes that have impacted the community (Cavender-Bares
et al., 2009). Understanding the processes involved in community
formation can provide insight into what ecological pressures are in-
fluencing community assembly and ultimately the biodiversity we
observe (Faith, 1992). By studying recently formed, naturally frag-
mented landscapes, we can explore the ecological processes that
are involved in the early construction of species assemblages, the
coexistence of species, and importantly the maintenance of diver-
sity. Thus, if we understand the natural ecological processes at play
in response to fragmented landscapes, we can use this information
to guide our understanding of how future ecosystems may respond
to fragmentation, either natural or human-caused. Additionally, we
can explore the impact of fragmentation on phylogenetic and phe-
notypic diversity.

Previous work has characterized species richness and phyloge-
netic diversity in fragmented systems, and sometimes both com-
ponents are explored (Helm et al., 2006; Santos et al., 2010). In
these and other studies, however, the fragmentation process is
often implemented experimentally or due to human impacts on
a system (Arroyo-Rodriguez et al., 2012; Laurance et al., 2010).
Furthermore, functional trait diversity of fragmented systems
is rarely explored alongside phylogenetic information (but see
Ribeiro et al., 2017), even though the traits important for existing
in a community and local environment can be very telling of the
processes that led to the assembly of the current community (de
Bello et al., 2009; Kraft et al., 2007; McGill et al., 2006; Weiher
& Keddy, 1999). Research has thus far focused on frequency of
traits, for example, relative abundance of reproductive strategy
and how overall functional diversity is reduced with fragmentation
(Girdo et al., 2007), rather than the impact of the functional trait
variation present. Exploring the effect(s) of fragmentation on phy-
logenetic and functional trait diversity in a naturally fragmented
system will help establish what ecological pressures fragmenta-
tion evokes, for example possible increased competition, and how
biodiversity is impacted by fragmentation.

The phylogenetic diversity of a community captures information
about the amount of evolutionary history shared among the spe-
cies within a community, which is oftentimes used as a proxy for
functional trait differences among species within that particular
community (Webb et al., 2002). Phylogenies overall are assumed
to reflect morphological, ecological, genetic, and physiological dif-
ferences that have accumulated between lineages (Gerhold et al.,
2015). Phylogenies are thus useful in understanding processes that
have influenced, and may continue to influence, multiple aspects
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of diversity within a community (Brooks & McLennan, 1991; Owen
et al., 2019; Tucker et al., 2017; Webb, 2000). For example, com-
munity phylogenetic approaches have been used to understand
ecological processes important for the assembly of alpine plant
communities (Marx et al., 2017), as plants in alpine environments are
exposed to harsh conditions requiring a suite of functional traits that
may be best represented using a phylogeny.

In the field of community ecology, dispersion metrics calcu-
lated from phylogenetic distances between species are often
used to infer local ecological processes that have contributed
to community structure (Kembel et al., 2010; Kraft et al., 2007;
Webb et al., 2002, 2008). The nonneutral processes inferred are
generally habitat filtering (Bazzaz, 1991), which is inferred when
species within a community are phylogenetically closely related,
and competitive exclusion (MacArthur & Levins, 1967), which is
inferred from a community of species encompassing high phylo-
genetic variation (Webb et al., 2008). The justification for these
inferences relies on the assumption that most functional traits,
especially those important in surviving habitat conditions or local
competition for resources, are conserved so that closely related
species tend to share similar functional traits. Thus, if many spe-
cies require similar functional traits to survive in an environment,
we then expect these species to be more closely related to one
another than by chance, that is, would observe low phylogenetic
dispersion. Likewise, if species are competing for a similar niche
space, species with traits that are dissimilar are those that exist
in the community because they have not outcompeted one an-
other, resulting in species that are not as closely related, and sub-
sequently large phylogenetic dispersion is observed.

In addition to phylogenetic information, morphological, phys-
iological, behavioral, or ecological traits can also be incorporated
directly to understand community assembly processes (Cornwell
et al., 2006; Kraft et al., 2007, 2015). Traits are often assumed to cor-
relate with phylogenetic information, but this is not always the case
(Mazel et al., 2018) and thus sometimes using the traits themselves,
rather than the phylogeny as a proxy, can provide a more accurate
depiction of community assembly processes (de Bello et al., 2009;
Kraft et al., 2007). Specifically, functional trait diversity can, perhaps
more directly, provide information about how competition between
members in a community might promote or hinder their coexistence
(MacArthur & Levins, 1967; McGill et al., 2006; Weiher & Keddy,
1999). Thus, incorporating both phylogenetic and functional trait di-
versity within a single community can help infer the processes that
have led to the assembly of that community, and ultimately what
contributes to the maintenance or loss of biodiversity (Cadotte et al.,
2013; Webb, 2000).

Utilizing both traits and phylogenies presents challenges, as in-
corporating both traditional metrics in community ecology is not
straightforward. Additionally, the use of phylogenetic dispersion
metrics to infer processes of community assembly has presented
its own concerns. One of which is the assumption that functional
traits important for assembly are conserved across, or correlated
with, the phylogeny as this does not always hold (Cavender-Bares
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et al., 2009; Mayfield & Levine, 2010) However, limiting analyses
to functional traits does not necessarily solve the problem because
then the phylogenetic information is not incorporated, meaning in-
formation inherent in evolutionary relationships is not accounted
for. Additionally, a conclusion based on hypothesis testing and in-
terpretation of processes when a significance threshold is passed is
arguably problematic for biological inferences when we know the in-
ference itself exists on a continuum, rather than on a binary thresh-
old (i.e., yes/no). Therefore, we also use an alternative approach,
Community Assembly Model Inference (CAMI; Ruffley et al., 2019).
This approach attempts to address the aforementioned problems by
inferring a model of community assembly using both phylogenetic
information and information on a single continuous trait. The ad-
vantages of this approach include the avoidance of assumptions as
to how traits evolved along a phylogeny and the uncertainty in the
community assembly inferences to be quantified, avoiding a signif-
icance threshold for inference. In utilizing this new approach, along
with traditional dispersion metric approaches, we seek to learn more
about the ecological processes at play in naturally fragmented sys-
tems by incorporating phylogenetic information and functional traits
together.

We ultimately combine the phylogenetic and functional trait
data for use in CAMI, a novel machine-learning model selection
approach (Ruffley et al., 2019), to infer the probability associated
with different models of community assembly given the data.
With CAMI, we also go one step further than testing for non-
neutrality by quantifying the strength of proposed nonneutral
models associated with inferred processes of community assem-
bly. Finally, with the probabilities associated with the predicted
models and their relationship to island meta-data, such as area
and proximity to the outer edge of lava flow, we are able to fur-
ther quantify the effect of fragmentation on assembly processes.
With this information we can ask whether these methods, hy-
pothesis testing with dispersion metrics, and CAMI, are corrob-
orative of each other and whether simultaneously considering
phylogenetic and trait information changes the inferences made
by dispersion metrics that consider the two methods alone. This
work investigates phylogenetic and functional diversity within
a naturally fragmented system and ultimately, we assess the ef-
fects of fragmentation on kipuka plant communities at Craters
of the Moon National Monument and Preserve by (1) measur-
ing species richness, phylogenetic, and phenotypic diversity of
species found in the kipuka community and those found in the
greater shrub-steppe region, and (2) quantifying the contribution
of different ecological processes to the assembly of communities
in the fragmented landscape with both phylogenetic and ecolog-
ical information. Given the harsh landscape and the isolation of
the kipukas, we predict that the assembly of the plant communi-
ties in kipukas will be shaped by nonneutral processes, predom-
inantly by environmental conditions and less so by competitive
interactions due to the combination of climatic extremes in the
availability of water, temperature variation, and high wind expe-
rienced in the region.

2 | METHODS

2.1 | Studysystem

Craters of the Moon National Monument and Preserve (CRMO)
located in south central Idaho, USA is a naturally fragmented sys-
tem ideal to explore these questions because the lava-flow islands
of vegetation within the preserve have been formed relatively
recently, within the last 15,000 years. The islands are young in
age, and there are many of them, thus offering many replicates to
detect the impacts of natural fragmentation. Additionally, within
CRMO, the plants that exist in the lava-flow islands experience
harsh environmental conditions that have further shaped the as-
sembly of species within the communities. Between 15,000 years
ago (kya) and as recently as 2 kya, the eruptive periods at CRMO
have resulted in 60 overlapping flows that encompass nearly
1900 km? (Kuntz et al., 1982; National Park Service, 2011). After
each eruption, islands of vegetation surrounded by lava flows were
formed. These vegetation-filled lava-flow islands are known as
kipukas, a Hawaiian term used for an area of older land that is com-
pletely surrounded by an area of younger lava flows (Vandergast &
Gillespie, 2004). There are over 500 kipukas at CRMO creating a
vegetated archipelago of islands within an “ocean” of basaltic lava.
The size of the kipukas ranges from substantially less than one km?
up to a privately owned kipuka that is over 341 km? (National Park
Service, 2018). The plant communities at CRMO differ depending
on successional stage and location, for example whether on lava
flows, in cinder areas, or within kipukas.

Plant communities in kipukas are dominated by shrubs like sage-
brush (Artemisia tridentata) and perennial bunchgrasses such as Idaho
Fescue (Festuca idahoensis) (Link et al., 2006). Shrubs and perennial
bunchgrasses dominate the shrub steppe ecoregion, which covers
about 6,450,000 km? of western North America (Daubenmire, 1970;
Link et al., 2006; Rickard & Vaughan, 1988). Typical of the semi-arid
shrub steppe ecosystem, the dry climate of CRMO is characterized
by a combination of high temperature, low precipitation, and strong
winds. Air temperatures approach 30°C in summer months and
the surface of the lava can reach 77°C, whereas in the winter the
air temperature can get as low as -17°C (NPS Contributors, 1991;
Western Regional Climate Center, n.d.). Average annual precipita-
tion ranges throughout the monument from southern portions to
northern portions accumulating 38-51 cm, respectively, and most
of the precipitation comes in the form of snow (NPS Contributors,
1991). Strong daily afternoon winds are between 24 and 48 km/h
(National Park Service, 2016). Individually, these harsh conditions,
and the combination of them, limit the possible plant diversity that
could persist at CRMO to those species that can deal with these
physiological stresses.

For this study, we used data from floristic surveys of vascular
plants in 19 kipukas at CRMO. We used the collections, along with
a Flora of the shrub-steppe ecoregion, to describe the phylogenetic
diversity in and around the naturally fragmented landscape. We used
an existing phylogeny of Spermatophyta (Smith & Brown, 2018) to
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construct a community-wide phylogeny of the species in the kipukas
and around the region. With these regional and kipuka phylogenies,
we used traditional dispersion metrics and hypothesis testing (Webb
et al., 2002, 2008) to infer processes of community assembly in the
kipukas. As we are interested in the effects of fragmentation on
plant communities, we focused on plants collected within kipukas
and not on the lava fields.

Plant traits are important for resource acquisition, seed disper-
sal, reproductive systems, and might be specific adaptations to low
water availability. Adaptations include for example, modifications to
increase photosynthesis efficiency (e.g., relative abundance of CAM,
C3, and C4 species) (Cavagnaro, 1988), a reduction in size of sto-
mata (Sundberg, 1985), and an overall decrease in height to minimize
conduit diameter for water transport as a wider diameter makes the
species more vulnerable to conduction-blocking embolisms from
drought or cold (Olson et al., 2018). We chose the functional trait of
maximum vegetative height to generate phenotypic dispersion metrics
as height is a proxy for resource allocation and competitive ability in
plants (Cornwell et al., 2014; Weiher & Keddy, 1999; Westoby, 1998).
Additionally, it is consistently noted in species descriptions and as such,

the amount of missing data would be minimal (Cornwell et al., 2014).

FIGURE 1 Map of Craters of the
Moon National Monument and Preserve,
Idaho, USA. Colored outline of map inlays
corresponds to organizational scheme of
northern, central, and southern regions
(yellow, blue, and gray, respectively). The
19 locations of kipukas with vascular
plants surveyed are referenced with a
letter. Photo at top right is of kipuka “A”
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2.2 | Sampling

We obtained a permit for specimen collection from the National
Park Service. Floristic surveys were conducted in 27 kipukas at
CRMO during May-July 2016 and May 2017 (Figure 1). Kipukas
were accessed by foot and surveys targeted smaller kipukas that
were generally less than 0.02 km? in size where we were confident
that the habitat could be thoroughly inventoried by two people
in the field by searching within the lava boundary of the kipuka.
For each species encountered in a given kipuka, we collected two
or three representatives in florescence. Collected plants were
pressed, brought back to the University of Idaho for identification,
and are stored in the Stillinger Herbarium and publicly available
online (www.pnwherbaria.org). The surveys resulted in a total of
66 species, which we use here as the kipuka community species
list, and thus used in the kipuka community phylogeny. Nineteen
of the 27 kipukas contained nine or more species and were used
for subsequent analysis and categorized as northern, central, or
southern kipukas (as indicated in Figure 1). We chose that cutoff

to keep as many kipukas as possible in our dataset to maximize sta-

tistical power while balancing the fact that communities with less

N
A
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than 10 species tend to have error rates in model identification of
over 30% (see Ruffley et al., 2019). Identifying and using a compre-
hensive regional pool is important as this determines the species
located within the region that could disperse into the communi-
ties of interest. Plant species located up to 17 km away have been
demonstrated to have a role in the colonization process after the
large-scale destruction of an ecosystem has occurred (Kirmer et al.,
2008). For this study, a regional species pool was compiled by using
the kipuka community list and adding the 621 other species listed
on existing checklists for vascular plants at CRMO (Popovich, 2006)
and the shrub-steppe ecoregion (Link et al., 2006), resulting in a
regional pool, and the regional community phylogeny, consisting of
687 species (Appendix S1). Thus, the kipuka phylogeny is a subset
of the regional phylogeny.

2.3 | Community phylogenetics

We constructed two community phylogenies: one from the species
list stemming from all of the kipukas sampled, and one for the re-
gional species pool. This was accomplished by using the drop.tip and

» o«

keep.tip functions in the R package “ape,” “phytools,” and also the
grepl function (Paradis et al., 2004; Revell, 2012). The complete re-
gional species pool included all vascular plant species documented
within CRMO and the shrub-steppe ecoregion, as these species
are potentially able to colonize the kipukas and thereby play an im-
portant role in the colonization process of the kipuka community
(Kirmer et al., 2008). We chose to prune from an existing seed plant
megaphylogeny (Smith & Brown, 2018) to create a single kipuka phy-

logeny, as opposed to creating individual community phylogenies for
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FIGURE 2 Local community phylogeny of species found in the kipukas sampled at Craters of the Moon National Monument and
Preserve, Idaho, USA. Colors shading taxon names correspond to Family listed at right
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each kipuka, as the approach we chose has been shown to result
in a more consistent estimate of evolutionary relationships and dis-
tances between taxa (Erickson et al., 2014). We constructed the re-
gional phylogeny in a similar way, by dropping species not included
in the regional checklists off of an the seed plant megaphylogeny
(Smith & Brown, 2018). This subsampling of the megaphylogeny has
the advantage of having no impact on the branch lengths already
estimated and recent studies suggest these are reliable trees for
community phylogenetic inference (Li et al., 2019). The megaphy-
logeny we used, which consists of 79,881 vascular plant species with
molecular data available from GenBank, is the largest dated phylog-
eny currently available for seed plants and has broad taxon sampling
(Jantzen et al., 2019).

If a species was present in the community but absent in the

megaphylogeny, a “replacement” species that is a close relative

Open Access,

in the same genus with a similar ecological distribution present
in the megaphylogeny was retained in the phylogeny (Qian & Jin,
2016). We acknowledge that using replacement species could im-
pact our calculation for community dispersion, though this is un-
likely to be significant as a majority of the species relationships are
rather distant (Jantzen et al., 2019). Species present in the kipuka
and regional communities but for which the genus was not repre-
sented in the megaphylogeny and/or no suitable replacement was
available (e.g., only one species was present in the megaphylogeny
and there were multiple species in the regional species list) were
not included in the community phylogenies. The resulting two
community phylogenetic trees, after dropping species not pres-
ent in the checklists and adding replacements, contained 65 and
641 species for the kipukas and regional pool of CRMO, respec-
tively (Figures 2 and 3).
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2.4 | Functional trait

Maximum vegetative height data for all species in the kipuka and
regional communities were gathered using a combination of her-
barium records, species descriptions, and Floras (Hitchcock &
Cronquist, 2018). Maximum vegetative height values were log-
transformed because the data were strongly right skewed. Though
it made the data more normal, log transformation was performed
primarily for ease of biological interpretation of maximum vegeta-
tive height. Notably, a very small number of tree species in the
kipukas have very large maximum height values compared to the
rest of the species in the kipukas thereby inflating the impact the
maximum vegetative height of these species has on the analyses
of ecological process. Transforming the data allows us to consider
the differences in height at a small scale as equally important as
the large differences in height presented by the species of trees
within the kipukas.

2.5 | Community dispersion metrics

We measured the amount of phylogenetic dispersion among spe-
cies in the kipuka community and tested for significance of the
difference between the observed patterns and neutrality by
calculating the standardized effect sizes (SES) of two different
dispersion metrics (Webb, 2000; Webb et al., 2002) using the R
package “picante” (Kembel et al., 2010). First, we calculated mean
pairwise distance (MPD) between all species in the kipuka com-
munity phylogeny. We also calculated the mean nearest taxon
distance (MNTD) as the mean distance separating each species in
a community from its closest relative, this metric captures how
clumped the species in the community are on the phylogenetic
tree and the prevalence of short-branched clusters of species sep-
arated by longer branches. We then compared the observed val-
ues to the null expectations of these metrics that were produced
by generating 1000 replicate metrics. Each of these replicates was
made from shuffling the species present in the regional commu-
nity randomly, resampling the same number of species, and then
recalculating the metrics.

If the observed values for MPD or MNTD are significantly
under-dispersed or clustered, the test statistic fell in the lower
2.5% of the values obtained in the null distribution (p-value < .025).
A community assembly process of habitat filtering is inferred in
this case because the species in the local community are more
closely related than is expected by chance (Gotelli & Colwell,
2001; Kembel et al., 2010; Webb, 2000; Webb et al., 2002, 2008).
Alternatively, if the observed metrics are significantly over-
dispersed, meaning the test statistic fell within the upper 97.5%
of the null distribution (p-value > .0975). In this case, a commu-
nity assembly process of competitive exclusion is inferred because
the species in the local community are more distantly related than
you would expect by chance. As these tests are done separately,
if neither metric fell in either tail of the null distribution, a neutral

process of community assembly was inferred. Though if one met-
ric, either MPD or MNTD was found to be significant and the other
not significant, we still considered the significant result.

Mean pairwise distance and MNTD can be calculated using
phylogenetic branch lengths, the number of nodal distances, or
phenotypic/functional trait differences (Gotelli & Colwell, 2001;
Kembel et al., 2010; Webb, 2000; Webb et al., 2002, 2008). Thus,
we measured the phenotypic dispersion the same way we cal-
culated the phylogenetic dispersion metrics. We calculated each
metric, MPD and MNTD, then performed 1000 random shuffles
of the regional and local communities to get the null distribution
and to see if the observed metrics fell within either tail. We first
ran a comparison between the kipuka and regional communities
and then also looked at the kipukas separately by further pruning
the phylogeny to represent only species present in a given kipuka.
We then repeated this process for each of the remaining kipukas
individually.

2.6 | CAMI

To integrate phenotypic and phylogenetic data while inferring com-
munity assembly processes, we used a novel simulation software and
inference procedure for community assembly models implemented in
the R package “CAMI” (Ruffley et al., 2019). This approach works by
first simulating many datasets of phylogenetic and phenotypic data
under various community assembly processes such as habitat filter-
ing, competitive exclusion, and neutrality. We then use a set of sum-
mary statistics that capture information in the phylogeny and traits to
compare the simulations with the observed data. Approximate model
selection and parameter estimation methods of random forests (RF;
Breiman, 2001) and Approximate Bayesian Computation (ABC; Csilléry
et al., 2010) are then used for inference. The simulations used in model
selection and the parameter estimation must match the empirical data
conditions as much as possible, as described below.

To establish what model under which to simulate data, we
first determined the model of trait evolution that best fits the re-
gional phylogeny and regional trait information prior to simulation
of phylogenetic and phenotypic data in CAMI. We fit the empir-
ical data to two models of trait evolution, Brownian Motion (BM;
Felsenstein, 1985) and Orstein Uhlenbeck (OU; Butler & King,
2004; Hansen, 1997) using the fitcontinuous() function in the R
package ‘Geiger’ (Pennell et al., 2014). BM models mimic the pro-
cess of evolutionary drift over macroevolutionary time, t, with a
single parameter, &2, that controls the rate of phenotypic change
through time such that the expected distribution of trait values
should be normal with the variance ¢’t. OU does the same, only
it includes a selective regime in which traits are “pulled” toward
a phenotypic optimum at a rate of a. Using AIC, the best fitting
model was found to be OU, which meant both parameters &2 and
a needed to be estimated. To fit an OU model, we maximized the
likelihood of the parameters of the OU model given the kipuka
data. However, OU model parameters are notoriously hard to
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estimate as 62 and « are confounded and data can be fit using vari-
ous combinations of these parameters where the likelihood always
gets better with an increasing a and smaller o2, though increasing
a values become more and more unrealistic the larger they get
(Uyeda & Harmon, 2014). Therefore, we fit several OU models
to the empirical data, varying the bounds of a from 0.01 to 1, to
determine at what values of 62 and « the likelihood stopped get-
ting dramatically better. This was at an estimated 62 of 0.92 with
a corresponding estimate of « at 0.2; we used these estimates to
simulate the trait data in CAMI (Appendix S2).

We simulated 10,000 community assembly datasets for each
assembly model, for competitive exclusion, habitat filtering, and
neutral, all under an OU model of trait evolution with the above es-
timated parameters. The other parameters such as the strength of
filtering/competition t and the phylogenetic parameters, the specia-
tion rate 1 and the extinction rate u, were drawn from their default
uniform prior distributions as implemented in CAMI. The resulting
simulated data, along with the empirical data, were summarized into
30 different summary statistics (Appendix S3) to be used for model
selection in RF and parameter estimation in ABC.

For community assembly model selection, we constructed a
classification forest consisting of 1000 decision trees using the
30,000 simulated datasets and the 30 summary statistics. RF works
by using many decision trees to partition out the variation in the
summary statistics and uses these differences to distinguish be-
tween the three community assembly models. As the decision trees
are being constructed, they are also simultaneously being validated
by a portion of the data that is withheld from the construction. This
enables the calculation of the out-of-bag (OOB) error rate, or the
proportion of misclassified simulations. This OOB error rate details
how accurate the classifier is overall and also for each model, as some
models are easier to distinguish than others. The resulting classifica-
tion forest was then used to determine which model of community
assembly structured the kipuka plant communities at CRMO. Here,
we inferred the probability of each community assembly model for
each of the 19 kipukas surveyed.

We performed parameter estimation using ABC following
Ruffley et al. (2019). For ABC, we scaled the summary statistics
by their standard deviation and then used the top 10 informative
summary statistics from the RF classifier to estimate the posterior
probability of t, the strength of habitat filtering (Appendix S4). We
only considered the simulations under the community assembly
model that best fit the data given the RF model selection, (i.e., the
habitat filtering simulations). From those, we accepted 100 simula-
tions from the posterior distribution for the parameter t. We used
these estimates to generate 95% high density confidence intervals
(Kruschke, 2011).

2.7 | Factors influencing community assembly

To understand whether the model probabilities were explained by the
fragmented nature of the kipukas, we constructed linear regression
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models using the Im() function in R 3.6.1 and tested whether any
significant relationship existed. Specifically, we tested for whether
any of the following independent variables; species richness, area
of kipuka, distance to the edge of lava flow (isolation), and kipuka
elevation, explained the variation in support for community assem-
bly models associated with the 19 kipukas in our study (dependent
variable). One may expect the combination of isolation and area, or
isolation and elevation to better capture “fragmentation” than just
one of the variables alone. Thus, we also tested whether the interac-
tion between any of these variables resulted in a significant relation-
ship with model support. This analysis aimed to understand whether
these metrics of fragmentation explained variation in the ecological

processes inferred from the phylogenetic and functional trait data.

3 | RESULTS

3.1 | Kipuka community diversity and
biogeographical attributes

The 66 plant species collected in the 19 kipukas sampled at CRMO
represent 24 families and 51 genera. Species richness ranged from
nine to 20 species per kipuka. The phylogenies created using an ex-
isting seed plant megaphylogeny consisted of 65 and 641 species in
the kipuka and in the regional community phylogenies, respectively.
Mean maximum vegetative height was 126 cm for the regional com-
munity and 77 cm for the kipuka community (Table 1). There was
no missing data for the height data for species used in the analysis.
The mean area of kipukas sampled was 13,670 m?, mean kipuka
isolation, that is the distance from the edge of a kipuka to the outer

lava flow, was 348.5 m, and mean kipuka elevation was 1574 m.

3.2 | Community dispersion metrics

The observed values of MPD and MNTD for the kipuka community
as a whole (all 66 species observed in kipukas) suggest that neutral
processes are dominant as neither dispersion metric was significantly

under- or over-dispersed (Appendix S5). Although not significant,

TABLE 1 Summary of vegetative height data for the regional
community (n = 641 species) and the kipuka community

(n = 65 species) and the biogeographical factors of kipukas that
were included in the analyses

Regional Kipuka
community community
Mean (range) minimum 45 (0.3-4054) 23 (1.3-100)
vegetative height (cm)
Mean (range) maximum 126 (1.5-9144) 77 (6-300)

vegetative height (cm)

1.37(700-114,100)
348.5 (17.65-2137)
1574 (1358-1678)

Kipuka mean area (m?)
Kipuka mean isolation (m)

Kipuka mean elevation (m)
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the lower rank of the standardized effect size of the observed MPD
(156 out of the 1000 randomizations) shows a tendency to the lower
25% of values (p-value .156) and thus toward an under-dispersion or
clustering signal. The rank of the standardized effect size of the ob-
served MNTD tends toward the middle of randomizations and thus
for neutral processes (406 out of 1000). The SES are calculated by
standardizing the raw phenotypic and phylogenetic dispersion met-
rics relative to the total variation observed. The empirically calcu-
lated SES is then considered the test statistic when compared to a
null distribution of SES and the p-value is where that test statistic
falls within the null distribution. In Figure 4, the p-values reported in
each cell are as follows, for example, kipuka A received a SES rank of
10 out of 1000 randomizations for phylogenetic data using the MPD
metric and has a p-value of .01 listed and thus significant support
for clustering. In sum, neither process of habitat filtering nor com-
petitive exclusion were inferred with these traditional phylogenetic
dispersion metrics.

When considered individually across kipukas, none of the
19 kipukas showed significant support for over-dispersion with ei-
ther the MPD or MNTD metric using phylogenetic data (Figure 4).
Using the MPD metric based on phylogenetic data, five kipukas
showed significant support for phylogenetic clustering and with
the MNTD metric based on phylogenetic data, two kipukas showed
significant support for phylogenetic clustering. Two kipukas (G and
P) showed significant support for clustering with each metric, MPD,
and MNTD. Thus, we found more individual kipukas at CRMO to be
phylogenetically clustered than over-dispersed.

Among the remaining 14 kipukas that did not significantly sup-
port either clustering or over-dispersion using the MPD metric and
phylogenetic data, eleven trended toward phylogenetic clustering
(p =.5-.25), and only one (kipuka S) trended toward over-dispersion
(p = .75-.95). Using the MNTD metric and phylogenetic data, nine
kipukas trended toward clustering. None of the kipukas had signifi-
cant support for over-dispersion based on the phylogenetic MNTD
metric.

In regard to phenotypic dispersion based on maximum vege-
tative height and the MPD metric, no kipuka showed significant
support for either clustering or over-dispersion using MPD. Six
kipukas had ranks above 50 but less than 250, indicating a trend
toward phenotypic clustering. Only two kipukas tended toward
over-dispersion indicating possible competition (kipukas | and G
had ranks above 750 but below 950). Nine kipukas trended toward
clustering.

3.3 | Selection of community assembly model

In general, most kipukas had very similar summary statistics, many
with an expected amount of deviation given the varying species’
pools across kipukas (Appendix Sé and available at https://github.
com/ruffleymr/Peterson_Data/blob/master/KipSummaryStats.
csv). Notably, the variance of vegetative height among kipuka spe-
cies was almost always, except in four kipukas, smaller than that of

the regional species pool trait variance. This is somewhat indicative

MPD with MNTD with MPD with MNTD with
phylogenetic phylogenetic phenotypic phenotypic
information information information information
A
B 0.75
¢ 0.50 FIGURE 4 Heatmap of p-values for
D the 19 kipukas sampled at Craters of the
E 0.25 Moon National Monument and Preserve,
g Idaho, USA for each phylogenetic and
phenotypic diversity metric. The header
G of each column is the test that the p-value
H in the cells refers to (mean pairwise
| distance, MPD and mean nearest taxon
distance, MNTD). Colored squares at the
Ju left of the heatmap denote the kipuka
KN letter and region (northern, central, and
Ll southern) as indicated in Figure 1. Darker
gray colors represent lower p-values
vl and lighter gray colors represent higher
N p-values. The standardized p-value is
ol noted in each cell. Additionally, a black
P circle within an individual cell represents
a p-value of less than .025 indicating
Q significant support for phylogenetic or
R phenotypic clustering. A p-value of more
» than .975 would indicate significant

support for over-dispersion
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of environmental filtering because the trait variance is decreased
in the local community. Specifically, for the sampled kipukas,
Blomberg's K, which measures phylogenetic signal, showed there
was weak evidence for a phylogenetic signal of the trait maximum
vegetative height as the value was generally very low (mean = 0.27,
Appendix S5).

The classification forest constructed using RF had an overall
error rate of 20.23%, meaning that about 20% of the time the classi-
fier is misclassifying simulations into the wrong model of community
assembly. More specifically though, with an error rate of 3.1%, the
competitive exclusion model was found to have the lowest classifi-
cation error rate. The other two models, habitat filtering and neutral
assembly, had higher error rates of 34% and 25%, respectively, indi-
cating these two models are harder to distinguish from one another
but both are easily distinguished from the competition assembly
model. Using the classification forest, we were able to infer which
model of community assembly structured the kipuka plant commu-
nity at CRMO by our trait of interest, maximum vegetative height
(Figure 5). In general, the competition model had the least support
with an average probability of 11% across all kipukas, while the neu-
tral and the filtering models on average had probabilities of 43% and
46%, respectively.

When estimating the t parameter, which in this case is the
strength of filtering, we simulated under a range of values from one
to 60. Counterintuitively, the values closer to 1 indicate strong fil-
tering, while larger values indicate weak filtering. When the values
are smaller, the filtering effect is stronger because species are heav-
ily penalized for phenotypes dissimilar to the optimum. The aver-
age median estimate of t across the kipuka communities was 30.82,
ranging from 16.23 to 39.34 (Appendix S7). The 90% high density
confidence intervals for the t posterior distribution for each of the
communities was quite broad, with many of the confidence intervals

spanning a majority of the prior distribution.
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FIGURE 5 Stacked bar plot of percent model support values
for the 19 kipukas. Model support values indicated at left. Colored
squares at bottom denote kipuka region (northern, central, and
southern as indicated in Figure 1) at Craters of the Moon National
Monument and Preserve, Idaho, USA. Shade of bar denotes
community assembly model
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3.4 | Factors influencing community assembly

Of all the linear regression models tested to evaluate the effect of
kipuka properties on the support for community assembly models,
few resulted in significant relationships (a¢ = 0.05). The only models
with significant prediction ability were species richness predicting
model support for competition, as well as species richness predict-
ing model support for the neutral model (Figure 6, Appendix S8).
Specifically, as species richness for a kipuka increased, the model
support for competition decreases (p-value .018) and the model
support for the neutral model of assembly increased (p-value .019).
Likewise, elevation was nearly a significant predictor of the model
support for habitat filtering (p-value .052), where low elevation kipu-
kas showed higher support for the habitat filtering model (Figure 6).
All other models, including those with interaction terms and multiple
predictors did not increase the predictability of any of the response
variables.

4 | DISCUSSION

While traditional phylogenetic community approaches based on
trait and phylogenetic dispersion suggest neutral assembly dynam-
ics, overall, we do find some support for phylogenetic clustering, and
ultimately habitat filtering. Importantly, we find that recently devel-
oped approaches utilizing machine learning and model choice in as-
sembly reveal there are joint influences of both neutral dynamics,
involving colonization and drift, as well as nonneutral dynamics such
as habitat filtering influencing the kipuka plant communities. In com-
bination, these two processes together could be interpreted as mild
filtering pressure on the species in the community that are generally
under neutral processes. Likewise, we explored the relationships be-
tween model support for the various community assembly models,
and various factors of fragmentation. Together these analyses allow
us to describe the phylogenetic and functional trait diversity across
the kipukas and interpret the influence of fragmentation.

D

.1 | Phylogenetic and functional trait diversity

Using traditional dispersion metrics alone, such as MPD and MNTD,
and hypothesis testing, our analyses mainly support the role of neu-
tral processes forming the community as very few kipukas resulted
in significantly over or under-dispersed phylogenetic or functional
trait metrics. Under a neutral model of assembly, all species present
in a regional community pool have an equal probability of coloniz-
ing and persisting in that local community (Hubbell, 2001; Rosindell
et al., 2012). This neutrality implies that species differences (e.g.,
in traits) do not impact their presence or absence in the local com-
munity. Species neutrality is a main component of the founda-
tional Theory of Island Biogeography (MacArthur & Wilson, 1967),
whereas most island systems are a result of who can colonize the
open habitat. This may be the case for the kipukas, given their very
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(a) FIGURE 6 Significant linear regression
Regression model results (a = 0.05). Top panel (a)
Model Intercepts Coefficient Adjusted R? P-value includes significant (**) results for the
model support (dependent variable) and
Competition factor of kipuka (independent variable).
Model Support ~ Split panels demonstrate (b) nearly
! 0.375494 -0.017366 0.244 0.01832
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e | relationship between elevation and model
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Rigﬁness richness and model support for neutrality.
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young age (~15 kya) and the harsh habitat that mimics true island dy-
namics. Support for neutral processes of community assembly have
been found in a variety of isolated and/or fragmented organismal
systems including aquatic bacteria communities in tree holes in the
same area (Woodcock et al., 2007), farmland birds that exist in a
fragmented agricultural landscape (Henckel et al., 2019), and cichlids
in Lake Tanganyika (Janzen et al., 2017).

Given that no phylogenetic signal, or Blomberg's K in this case,
for our trait of interest was estimated to be of 0.27 across all kipukas,
the approaches above were not completely reliable. This is because
the use of phylogenetic and functional trait dispersion metrics for
community assembly relies on high phylogenetic signal in the trait(s)
of interest. Rather an approach that does not assume phylogenetic
signal in traits, such as CAMI, is justifiable to use (Cavender-Bares
et al., 2009; Kraft et al., 2007). In CAMI, in all models of community
assembly the species in the regional pool have an equal probability
of colonizing a community thus, support for neutral and filtering sug-
gests that the trait of maximum vegetative height reflects a barrier
for some species inhabiting the kipukas. Perhaps the true functional
trait barrier is the height of the plants, or perhaps it is related to the
shared resource allocation that the plant trait height is a proxy for.
Either way, there is evidence that there is an environmental limita-
tion or barrier to some species existing in the kipukas.

Support for multiple process of community assembly could
mean processes of community assembly are operating at differ-
ent scales. For example, previous work has found multiple mecha-
nisms of community assembly operating in early plant communities
(Marteinsdottir et al., 2018). Assembly from the regional pool to
local communities was mostly neutral, and within communities,
nonrandom assembly occurred related to various traits important in

a plant species ability to disperse, establish, and persist in a local

community. Additionally, others have found that different commu-
nity assembly processes operate at different life stages of plants (Hu
et al., 2016). It is important to note that all environments, or each
individual kipuka in this case, may not select for the same variant
in traits (Lowe & McPeek, 2014). The kipuka community as a whole
is then comprised of a set of species that are expressing different
traits based on selective pressures at different scales (e.g., spatial,
temporal, and phenological) (Hu et al., 2016; Lowe & McPeek, 2014;
Marteinsdottir et al., 2018). Support for both neutral and filtering
processes operating in the assembly of the kipuka communities at
CRMO may highlight processes impacting at different scales, differ-
ent life stages, and the differences in selective pressures between
kipukas. We may be observing and measuring the initial impacts of
fragmentation on the kipuka communities and the long-term effects
of these processes over a macroevolutionary timescale might not
yet be realized.

Various traits in plants are important for resource acquisition,
seed dispersal, and specific adaptations to the stress of low water
availability exist. One of these, a reduction in overall plant height
to minimize the diameter of vascular tissue in order to decrease
occurrence of embolisms (Olson et al., 2018) would be particularly
beneficial in habitats that experience temperature and precipita-
tion extremes, such as at CRMO. We chose the single trait of plant
height because of its impact on overall water movement in a plant,
as susceptibility to stress due to low water availability and cold
would impact a plants ability to persist at CRMO. Water stress in
plants has been shown to be an important primary filter in restricting
which species present in a regional pool were available to establish
via community assembly (Luzuriaga et al., 2012). Future studies in-
cluding several ecologically relevant traits could reveal a more com-
plete picture of the role of phenotypic variation across species in
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constraining or promoting the assembly of fragmented communities.
Although one quantitative trait can be used at a time in CAMI, multi-
ple analyses could be done to compare across traits.

Qualitative traits, for example seed dispersal mechanisms may
vary between plants found within the local kipuka community and
those in the regional community (Lowe & McPeek, 2014). Perhaps
gravity seed dispersal is more prevalent for the kipuka species than
for the regional species, however this was outside of the scope of
this study.

In our efforts to measure the strength of filtering through the t
parameter, we find that we do not have much confidence to estimate
this parameter with our current techniques and data. The data are
limited by small communities, and we know small communities lead
to a lack of power in estimating this parameter (Ruffley et al., 2019).
However, we also know that these data support both filtering and
neutral models of assembly, which could also be why estimating a
parameter only from the filtering model is unsuccessful.

The topography of the kipukas at CRMO could in part explain
the support for filtering with our trait of interest, maximum vege-
tative height, in these fragmented plant communities. In addition to
the influence of vegetative height on water conduction in vascular
tissue and sensitivity to environmental stressors, susceptibility to
wind damage can also determine species presence and persistence
in a community. Most of the kipukas are bowl-shaped with the outer
lava flow forming a higher, almost ridge-like edge and the vegeta-
tion within. It might be additionally disadvantageous for plants to
be taller than the ridge around the kipuka as high winds could be
damaging to the plant. Plants do have the ability to acclimate to wind
at multiple scales from cellular to the entire organism, but root or
stem failure is still possible (Gardiner et al., 2016). Increased suscep-
tibility and negative impacts of wind damage has been found to be
exacerbated when surrounding areas lack vegetation (e.g., denuded)
such as those of the lava matrix at CRMO (Laurance & Curran, 2008).
Thus, plants with a maximum vegetative height shorter than the lava
boundary would be able to withstand the strong winds experienced
at CRMO better as they are partially protected within the “bowl!”

shape.

4.2 | A fragmented landscape

Within the fragmented landscape of kipukas at CRMO, the trait of
maximum vegetative height may be particularly influential in the
ability of a species to establish and thrive in the kipukas as height
may be especially costly in this environment due to environmental
stressors caused by fluctuations of temperature and precipitation
that occur. How wind acts as a selective force for plants is of inter-
est in other fragmented landscapes as well, as abiotic factors greatly
influence the successful establishment and persistence of a species
within a community. The fact that lower elevation kipukas show
more support for habitat filtering models compared to the kipuka
community as a whole is interesting and could be due to a finer scale
filtering pressure along an elevational gradient, in addition to the
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already mentioned environmental stresses operating on the com-
munity as whole.

The impacts of fragmentation can be hard to measure at the
phylogenetic scale which broadly characterizes diversity at a mac-
roevolutionary scale. One way to obtain a finer perspective of local
diversity within and between kipukas at CRMO for future work
could be to incorporate genetic sequencing of individuals from each
species collected. Producing species-specific population genetic
data would then allow for quantification of diversity within species
and comparisons among species. This proposed population genetic
approach would allow us to quantify contemporary migration (i.e.,
dispersal) occurring within the local community between kipukas.
Although outside of the scope of this study, leaf tissue samples were
obtained (and stored in silica) from each individual species collected
and these could be used in the future in such a proposed population
genetic study.

The fragmented landscape due to the lava matrix in which the
archipelago of kipukas are situated makes CRMO a particularly
useful system in which to ask questions related to functional trait
diversity and phylogenetic diversity. Although this system is natu-
rally fragmented, the intervening matrix in many ways is similar to
anthropogenic alterations of landscape occurring elsewhere (e.g.,
asphalt, concrete). By understanding the ecological processes at
play in natural fragmented systems and traits that may impact
community assembly we can then use this information to guide
our conservation and restoration efforts in future fragmented

ecosystems.

5 | CONCLUSION

With the continued alteration to natural landscapes, there is a
persistent and pressing need to investigate the consequences of
habitat fragmentation and how these consequences may impact
phylogenetic and functional trait diversity. The incorporation of
both phylogenetic and functional trait diversity within a single
community can help infer the processes that have led to the as-
sembly and formation of that community, and ultimately what
contributes to the maintenance or loss of biodiversity. Using a
new approach that infers a model of community assembly using
both phylogenetic and trait information, along with measuring the
strength of the inferred ecological process, we find that for the
kipuka plant community at CRMO dual processes of neutrality and
filtering based on maximum vegetative height have contributed to
community formation. Additionally, we find there is evidence that
environmental pressures are indeed prohibiting some species from
inhabiting some or all of the kipukas, and these pressures may be
more severe at lower elevations. When data for more than one trait
are available, multiple CAMI analyses could be performed to com-
pare the role of different traits and their impact on community for-
mation. This type of comparative trait-based analysis could help to
predict how community assembly might respond to changes such
as fragmentation.
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