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Ischemic thalamus stroke has become a serious cardiovascular and cerebral disease in recent years. To date the existing
researches mostly concentrated on the power spectral density (PSD) in several frequency bands. In this paper, we investigated the
nonlinear features of EEG and brain functional connectivity in patients with acute thalamic ischemic stroke and healthy subjects.
Electroencephalography (EEG) in resting condition with eyes closed was recorded for 12 stroke patients and 11 healthy subjects
as control group. Lempel-Ziv complexity (LZC), Sample Entropy (SampEn), and brain network using partial directed coherence
(PDC) were calculated for feature extraction. Results showed that patients had increased mean LZC and SampEn than the controls,
which implied the stroke group has higher EEG complexity. For the brain network, the stroke group displayed a trend of weaker
cortical connectivity, which suggests a functional impairment of information transmission in cortical connections in stroke patients.
These findings suggest that nonlinear analysis and brain network could provide essential information for better understanding the
brain dysfunction in the stroke and assisting monitoring or prognostication of stroke evolution.

1. Introduction

Stroke is a leading cause of disability with a relatively high
death ratio around theworld, and up to 70%of stroke patients
are left with moderate or severe functional impairment [1],
placing a heavy physical and mental burden on both the
patients and their families. It has been reported that early
rehabilitation after stroke can enhance recovery, minimize
functional disability, and reduce potential costly long-term
care expenditures [1]. Patients with thalamic stroke only show
minor changes on physical examination; thus valid and
objective early diagnosis becomes extremely necessary.

The rapid development of imaging technology, such as
computed tomography (CT), positron emission tomography
(PET), magnetic resonance imaging (MRI), and electroen-
cephalography (EEG), gives researchers an access to an
embedded knowledge of the brain changes during stroke
onset and recovery process [2]. Among these, EEG offers

a continuous, real-time, and noninvasive measure of brain
function, providing new insights into poststroke cerebral
pathophysiology [3–6]. Because of its sensitivity to metabolic
and ionic disturbances related to ischemia, it can be a
potentially useful tool for acute stroke detection and for
monitoring affected tissue [6]. In acute ischemic stroke, the
primary injury has typically occurred prior to presentation,
but EEG may be able to detect patterns to suggest severity,
prognosis, and secondary injury (e.g., reocclusion, edema,
or hemorrhagic transformation) [7]. Several parameters have
been found correlated with initial stroke severity asmeasured
by the National Institutes of Health Stroke Scale (NIHSS)
in both the acute (brain symmetry index) [8, 9] and sub-
acute periods (relative alpha percentage, relative alpha-beta
percentage, relative delta-theta percentage, delta/alpha ratio,
delta-theta/alpha-beta ratio, and global pairwise derived BSI)
[10–12]. In summary, the existing researches mostly con-
centrated on power spectral density (PSD), and the PSD in
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various frequency bands has revealed to be a distinguishable
indicator [13].

It is well accepted that brain is truly a complex system;
therefore nonlinearities and nonlinear measures must be
taken into account in its modeling and analysis [14, 15]. It has
been reported that nonlinear parameters were more sensitive
to both the power spectrum and the temporal amplitude
distribution comparing with conventional spectral analysis
in many other diseases [16–19]. Consequently, nonlinear
analysis of the EEG may shed additional light on analyzing
cortical information processing deficits in acute thalamic
ischemic stroke. The first nonlinear methods that were used
to analyze EEG are the correlation dimension (D2) and the
first Lyapunov exponents (L1). D2was applied byGrassberger
and Procaccia in 1983 to quantify the number of independent
variables that are necessary to describe the dynamic system. It
was used to provide the statistical characteristic of the system.
By contrast, L1 was applied by Wolf in 1985 as a dynamic
measure to gauge the flexibility of the system [20, 21]. Then
several methods of complexity and entropy techniques have
dealt with the complexity or irregularity in the ability of the
system to create information and showed promising results in
detecting EEG abnormalities [14]. On-line use ofD2 and L1 in
a clinical situation is still impractical, since reliable estimation
of them requires a large quantity of data and a long calcu-
lation time. Fortunately, the Lempel-Ziv complexity (LZC)
measure [22] can act as an alternative tool for EEG analysis,
since it is well suited for characterizing the development
of spatiotemporal activity patterns in high-dimensionality
nonlinear systems, like brain and heart. Moreover, the con-
cept of LZC is simpler to understand and its computation
is easier to implement. Entropy is a concept addressing
randomness and predictability, with greater entropy often
associated with more randomness and less system order [23].
Among these, Sample Entropy (SampEn) [24] has stood out
with excellent antinoise and anti-interference performance;
moreover, it could predict stable values with shorter data.
LZC and SampEn have shown encouraging results in dif-
ferentiating patients and healthy controls in some mental
diseases, such as Alzheimer’s disease [25], Schizophrenia and
depression [18], and global Hypoxic-Ischemic brain injury
[26].

More recently, resting-state functional connectivity has a
strong genetic component and shows characteristic changes
in various psychiatric and neurological disorders [27]. Func-
tional connectivity is assumed to reflect functional interac-
tions between the underlying brain regions and has become
very popular in the study of brain mechanisms underlying
disturbed cognition diseases such as Alzheimer’s disease and
Parkinson’s disease [28–30]. For the stroke, loss of neurons,
as well as disturbed synaptic transmission, may lead to
abnormal functional interactions between cortical regions.

In this study, we recorded the resting-state EEGs in
patients with thalamic ischemic stroke from the acute stage
and controls. Nonlinear analysis and functional connectivity
were firstly employed to discriminate between the strokes and
controls, providing a new insight into the brain changes in the
stroke patients. LZC, SampEn, and partial directed coherence
(PDC), which are important but always overlooked methods

in stroke studies, were used to calculate the EEG features in
order to seek and determine the proper and distinguishable
way in the diagnosis of acute thalamic ischemic stroke dis-
ease.

The remainder of this paper is structured as follows.
Section 2 describes the experimental methodology and sys-
tematically details signal processing methods. Contrastive
analysis on EEG features between strokes and controls is
addressed in Section 3. At last, the discussion and conclusion
are stated in Sections 4 and 5, respectively.

2. Materials and Methods

2.1. Subjects. From December 2012 to January 2015, 12
patients (7 females and 5 males; mean age of 65 years) with
ischemic thalamic stroke took part in the study, with 11
healthy subjects (4 females and 7males; mean age of 53 years)
as controls. Independent-samples 𝑡-test were performed on
ages between two groups, and there were no statistical
differences (𝑡 = −1.749, df = 12.828, and 𝑝 = 0.104). The
clinical data were acquired in Tianjin First Central Hos-
pital. Inclusion criteria of the patients consisted of a focal
ischemic lesion of the thalamus and a symptom of hand
numbness. Exclusion criteria were a history of substance
abuse, additional neurological or psychiatric disorders, and
current psychoactive drug treatment. All the patients had
been examined from the acute stage (<7 days).

2.2. EEG Recording. EEG was recorded with the Netlink 40
developed by the Bio-logic company. The 10–20 system of
electrode placement was used with electrodes placed at Fp1,
Fp2, F3, F4, F7, F8, Fz, T3, T4, T5, T6, A1, A2, C3, C4, Cz,
P3, P4, Pz, O1, O2, and Oz.The sampling rate was 256Hz and
impedance was kept below 10 kΩ. The EEG was recorded in
the resting conditionwith eyes closed.The rawEEGdatawere
exported intoMATLAB (TheMathWorks, Natick,MA, USA)
for further analysis.

2.3. Calculation of EEG Features

2.3.1. Preprocessing. Prior to further analysis, a preprocessing
stage of the EEG signals is required. Five-minute data without
apparent artifacts (such as blinks, EMG, and visible drift)
were selected manually from each patient’s EEG recording.
All channels were rereferenced to bilateral mastoid, band
pass filtered at 1–45Hz. EEG data were then split into five-
second, nonoverlapping epochs in the following step of
feature extraction. 60 epochs of artefact-free EEG data per
participant was obtained finally.

2.3.2. Lempel-Ziv Complexity (LZC). An algorithmic com-
plexity measurement introduced by Lempel and Ziv [22] is
a measure reflecting the rate of new pattern generation along
given sequence of symbols. In other words, it characterizes
the structure or, as the name implicates, the complexity of
the signal whether the signal is predictable (has simple struc-
ture) or nonpredictable (has complex, random structure)
[31]. Applications of Lempel-Ziv complexity (LZC) to EEG
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signals include assessment of the depth of anesthesia [32]
and sedation [31] and analysis of the background activity in
Alzheimer’s disease [33].

The calculation algorithm of LZC for the sequence of
symbols𝑋𝑁
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Prior to applying the above described algorithm the signal
𝑠 has to be converted into a sequence of symbols, which can
be done as follows. Depending on the number of different
symbols 𝛼, 𝛼 − 1 thresholds 𝑇

𝑖
have to be selected within the

signal range, 𝑠min < ⋅ ⋅ ⋅ < 𝑇𝑖 < ⋅ ⋅ ⋅ < 𝑠max, where 𝑠min and 𝑠max
are theminimumandmaximumvalues of the signal 𝑠, respec-
tively. For instance, if 𝛼 = 2, that is, two symbols, “0” and “1”
are used, there is only one threshold 𝑇

1
and by comparing

the samples of 𝑠 with this threshold the signal is converted
into the sequence of symbols: if 𝑠(𝑖) < 𝑇

𝑖
then 𝑥

𝑖
= 0;

otherwise 𝑥
𝑖
= 1. For larger 𝛼, the conversion procedure is

analogous. Here, the median voltage was considered as the
threshold.

LZC values were also calculated in different frequency
bands, including delta (1–4Hz), theta (4–8Hz), alpha (8–
13Hz), and beta (13–30Hz).

2.3.3. Sample Entropy (SampEn). Thename of SampEn refers
to the applicability to time series data sampled from a
continuous process [24]. SampEndoes not use a templatewise
approach when estimating conditional probabilities. It only
requires that one template find a match of length 𝑚 + 1 and
then computes the logarithm of a probability associated with
the time series as a whole. It is well known that entropy
is a measure of the rate of information generation; a larger
SampEn presents lower self-resemblance and a higher rate
of information generation of the signal. Mathematically, to
compute SampEn we follow the steps explained as below.
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1
, 𝑥
2
, . . . , 𝑥

𝑁
), where 𝑁 is the total

number of data points, SampEn algorithm [34] can be
summarized as follows.

(1) Form a set of vectors𝑋1
𝑚
, . . . , 𝑋

𝑁−𝑚+1

𝑚
defined by

𝑋
𝑖

𝑚
= (𝑥
𝑖
, 𝑥
𝑖+1
, . . . , 𝑥

𝑖+𝑚−1
) , 𝑖 = 1, . . . , 𝑁 − 𝑚 + 1. (5)

(2) Define the distance between vectors𝑋𝑖
𝑚
and𝑋𝑗

𝑚
as the

maximum absolute difference between their respective scalar
components:

𝑑 [𝑋
𝑖

𝑚
, 𝑋
𝑗

𝑚
] = max
𝑘=0,...,𝑚−1


𝑥
𝑖+𝑘
− 𝑥
𝑗+𝑘


. (6)

(3) For a given 𝑋𝑖
𝑚
, count the number of 𝑗 (1 ≤ 𝑗 ≤ 𝑁 −

𝑚, 𝑗 ̸= 𝑖), denote as 𝐵
𝑖
, such that 𝑑[𝑋𝑖

𝑚
, 𝑋
𝑗

𝑚
] ≤ 𝑟, that is, 𝐵

𝑖
is

the number of 𝑑[𝑋𝑖
𝑚
, 𝑋
𝑗

𝑚
] ≤ 𝑟, 𝑗 ̸= 𝑖. Then, for 1 ≤ 𝑖 ≤ 𝑁−𝑚,

𝐵
𝑚

𝑖
(𝑟) =

1

𝑁 − 𝑚 − 1
× 𝐵
𝑖
. (7)

(4) Define 𝐵𝑚(𝑟) as

𝐵
𝑚

(𝑟) =
1

𝑁 − 𝑚 − 1
𝐵
𝑖
. (8)

(5) Similarly, calculate 𝐴𝑚
𝑖
(𝑟) as 1/(𝑁 − 𝑚 + 1) times the

number of 𝑗 (1 ≤ 𝑗 ≤ 𝑁 − 𝑚, 𝑗 ̸= 𝑖), such that the distance
between𝑋𝑗

𝑚+1
and𝑋𝑖

𝑚+1
is less than or equal to 𝑟:

𝐴
𝑚

𝑖
(𝑟) =

1

𝑁 − 𝑚 − 1
× no. of 𝑑 [𝑋𝑖

𝑚+1
, 𝑋
𝑗

𝑚+1
] ≤ 𝑟,

𝑖 ̸= 𝑗.

(9)

Set 𝐴𝑚(𝑟) as

𝐴
𝑚

(𝑟) =
1

𝑁 − 𝑚

𝑁−𝑚

∑

𝑖=1

𝐴
𝑚

𝑖
(𝑟) . (10)

Thus, 𝐵𝑚(𝑟) is the probability that two sequences will
match for𝑚 points, whereas𝐴𝑚(𝑟) is the probability that two
sequences will match for𝑚 + 1 points.

(6) Finally, define

SampEn (𝑚, 𝑟) = lim
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Which is estimated by the statistic
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As can be seen in the equations described above, 𝑚
and 𝑟 are the two parameters that must be specified for the
calculation of SampEn. Pincus and Goldberger [35] have
suggested that 𝑟 be set between 0.1 and 0.25 times standard
deviation of the signal and 𝑚 be set equal to 1 or 2. In this
work, we set 𝑚 = 2, 𝑟 = 0.2. SampEn values were also
calculated in different frequency bands, including delta (1–
4Hz), theta (4–8Hz), alpha (8–13Hz), and beta (13–30Hz).
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Figure 1: Topographic mapping of the mean LZCs for (a) controls and (b) strokes, as well as (c) the mean value and standard deviation of
LZC at each channel. ∗𝑝 < 0.05.

2.3.4. Partial Directed Coherence. The functional connec-
tivity was estimated with partial directed coherence (PDC)
[36]. PDC is based on the concept of partial coherence, a
technique that quantifies the directed interdependence of
Granger causality between any two signals in a multivariate
set. A detailed description of PDC along with an illustrative
example is given by Baccalá and Sameshima [37]. Hence,
the mean values within 1–45Hz band, referred as mPDC
hereafter, were first compared with the threshold. Then,
significant greater (𝑝 < 0.05) causal interdependence formed
an 𝑀 × 𝑀 (𝑀 = 20 in this study) matrix 𝐵, where each
element 𝐵

𝑖𝑗
contains the value of themPDC from the channel

𝑗 to 𝑖. To display clearly, the weighted digraph is converted
into a binary one by applying a threshold. For example,
when 𝐵

𝑖𝑗
exceeds a threshold value, an edge is considered

to exist from the node 𝑗 to node 𝑖. Here, a surrogate data
approach was used to obtain the threshold. A 10 s epoch was
randomly selected at each channel, and there was no time
overlap between two of those 20 channels.Then surrogate 𝐵

𝑖𝑗

were calculate based on these time-mismatched epochs. This
procedure was repeated 10 times. Mean value of the surrogate
𝐵
𝑖𝑗
was considered as the threshold, which equaled 0.225.

3. Results

3.1. LZC Analysis in Stroke and Control Groups. The mean
values of the LZC are shown for stoke and control groups in

Figure 1. The controls showed lower LZC than the strokes at
almost all electrodes. A larger LZC means a greater occur-
rence chance of new sequence patterns; thus the stroke group
had a higher EEG complexity. An independent-samples 𝑡-
test, following the normal distribution test, was performed
(∗𝑝 < 0.05). Significant statistical differences were found at
channels Fp2, F7, F3, F8, T3, C3, P3, T5, and P4. It should
be noted that similar distributions could be observed in
both groups. Investigating all the electrodes, we could find
higher LZCs at the temporal areas (T4, P4, F4, and C4) in
both groups while lower values at prefrontal (Fp1, Fp2) and
occipital (O2, Oz) areas. Furthermore, LZC values were also
calculated in different EEG frequency bands including delta,
theta, alpha, and beta bands, as depicted in Figure 2. It could
be observed that the stroke group had higher LZC in theta
and beta bands but lower values in delta and alpha bands at all
channels. The independent-samples 𝑡-test showed that both
groups significantly differed from each other (∗𝑝 < 0.05) at
channels P4 and O2 in delta band, T3, C3, C4, T5, Pz, and O2
in theta band, Fp1, Fp2, Fz, Cz, C4, T6, O1, and O2 in alpha
band, and Fp2, F7, F3, F8, Cz, P3, and T5 in beta band.

3.2. SampEn Analysis in Stroke and Control Groups. As
expected, we found similar characteristic distributions
between LZC and SampEn; that is, EEG complexity with
SampEn was also found to be higher in the stroke group at



Computational and Mathematical Methods in Medicine 5

Fp
1

Fp
2 F7 F3 Fz F4 F8 T3 C3 Cz C4 T4 P3 T5 Pz P4 T6 O
1

O
2

O
z

∗

∗

0.1

0.11

0.12

0.13

0.14

0.15

Control
Stroke

(a)

Fp
1

Fp
2 F7 F3 Fz F4 F8 T3 C3 Cz C4 T4 P3 T5 Pz P4 T6 O
1

O
2

O
z

∗ ∗ ∗ ∗ ∗ ∗

0.2

0.22

0.24

0.26

0.28

0.3

Control
Stroke

(b)

Fp
1

Fp
2 F7 F3 Fz F4 F8 T3 C3 Cz C4 T4 P3 T5 Pz P4 T6 O
1

O
2

O
z

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0.2

0.25

0.3

0.35

Control
Stroke

(c)

Fp
1

Fp
2 F7 F3 Fz F4 F8 T3 C3 Cz C4 T4 P3 T5 Pz P4 T6 O
1

O
2

O
z

∗

∗ ∗

∗

∗
∗

∗

∗

0.4

0.42

0.44

0.46

0.48

0.5

Control
Stroke

(d)

Figure 2: Mean values and standard deviation of LZC in the (a) delta band (1–4Hz), (b) theta band (4–8Hz), (c) alpha band (8–13Hz), and
(d) beta band (13–30Hz). ∗𝑝 < 0.05.

all electrodes, as shown in Figure 3. SampEn values were
computed in delta, theta, alpha, and beta bands, as depicted
in Figure 4. Obviously, similar distributions were observed
in different bands as LZC.

3.3. PDC Analysis in Both Groups. Figure 5 illustrates the
significant cortical functional connectivity (connections with
mPDC values greater than 0.225 were shown) for controls
(a) and strokes (b), respectively. Compared with the con-
trol group, the stroke group displayed a trend of weaker
cortical connectivity and a symmetric pattern of functional
connectivity; that is, information transmission was found to
be lower between electrodes over the brain. This suggests
a functional impairment of information transmission in
cortical connections in stroke patients.

4. Discussions

Stroke is a major cause of adult-onset disability and depen-
dency. Quantified electroencephalography (qEEG) has not
been extensively evaluated for its predictive value in stroke
recovery, perhaps due to some early disappointing results
[38, 39]. More recent reports, however, do suggest a signif-
icant predictive value of qEEG for stroke recovery [10, 40].

Finnigan et al. have reported that qEEG measures from
acute cortical stroke patients can aid monitoring of brain
pathophysiology and perhaps prediction of stroke evolution
[13]. The thalamic stroke, however, has not been taken
seriously up to now.

In previous studies, power spectrum density within sev-
eral frequency bands was widely used to analyze the EEGs
of patients with stroke, especially in theta and alpha bands,
and got some encouraging results [10].Nonlinear features and
functional connectivity of the brain, however, have not been
applied to study this disease. In existing studies, LZChas been
applied to some cognitive disorders, such as schizophrenia,
depression, mild cognitive impairment, and Alzheimer’s [18,
19]. Their results showed that both the schizophrenia and the
depression groups had a higher LZC (𝑝 < 0.05) than the
controls, while patients with Alzheimer’s had a lower LZC. In
this paper, results using LZC showed that the stroke patients
had higher EEG complexity than that of the controls at all
the electrodes. For the SampEn, our results showed higher
SampEn values in stroke patients. In previous studies, AD
patients were reported to have lower SampEn values than
control subjects [41]. Additionally, alpha wave was proven to
have a distinct SampEn decrease during the early recovery
period after Hypoxic-Ischemic brain injury [26]. In a certain
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Figure 3: Characteristic distribution of mean SampEn of (a) controls and (b) strokes, as well as (c) the mean value and standard deviation of
SampEn in each channel, ∗𝑝 < 0.05.

sense, acute thalamic ischemic stroke could be a part of
the Hypoxic-Ischemic brain injury, and SampEn values in
alpha band were lower in the patients than that in controls
as expected in this study. On the other hand, functional
connectivity of the brain was well studied in Alzheimer’s
disease, and the patients displayed a lower connectivity than
controls [29]. Similarly, a loss of resting-state functional
connectivity was found in patients with thalamic stroke in
the acute stage in this study. This is partly because the
thalamic stroke was accompanied by loss of neurons, as
well as disturbed synaptic transmission. These may lead to
abnormal information transmission over the brain.

The progression from ischemia to infarction is a dynamic,
rapidly evolving process with irreversible changes occurring
within a fewminutes to a few hours. EEGmay reflect changes
in cerebral blood flow and metabolism within seconds as
these are directly reflected in the neuronal rhythms. Although
the spatial resolution of the EEG is low compared with
structural imaging modalities, the high temporal resolution
of the EEG may permit a rapid, inexpensive, and sensitive
evaluation of instantaneous brain functioning measures for
acute cortical stroke patients. EEG analysis could aid mon-
itoring the brain pathophysiology and perhaps predicting
the stroke evolution. In recent years, the EEG was testified
to carry useful information about the localization of acute

cerebral ischemia, but recording densities of 64 channels or
higher are required for accurate spatial characterization of
focal stroke-related EEG changes.

Although nonlinear EEG analysis and brain network
have not been applied as a diagnostic tool yet, our findings
demonstrate the possibility of using LZC, SampEn, and PDC
to analyze the dynamical behavior and functional connectiv-
ity of the brain in patients with acute thalamic stroke. We
expect that nonlinear analysis and brain network analysis
will provide deeper understandings of the brain function in
patients with acute thalamic stroke.

5. Conclusion

This study indicates the LZC and SampEn of EEG, as
well as the brain functional connectivity, were abnormal in
patients with acute thalamic stroke. A higher EEG complexity
and weaker brain functional connectivity were obtained in
the patients through analysis of LZC, SampEn, and PDC.
Additionally, the stroke group had a lower SampEn than the
control group in alpha band. These findings show that the
nonlinear analysis and brain network analysis may provide
a new potential tool to diagnose and monitor the acute
thalamic stroke.
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Figure 4: Characteristic distribution of the SampEn in (a) delta, (b) theta, (c) alpha, and (d) beta bands for both groups, ∗𝑝 < 0.05.

Fp1 Fp2

F7
F3 Fz F4

F8

T3 C3 Cz C4 T4

P3
T5

Pz
P4

T6

O1 O2Oz

(a)

Fp1 Fp2

F7
F3 Fz F4

F8

T3 C3 Cz C4 T4

P3
T5

Pz
P4

T6

O1 O2Oz

(b)

Figure 5: Cortical functional connectivity in the aspect of PDC. Causal interactions with significant causality (connections with mPDC >
0.225 were shown) are presented for controls (a) and strokes (b) under conscious resting conditions.
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