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Abstract
Metabolic homeostasis is critical for all biological processes in the brain. The metabolites

are considered the best indicators of cell states and their rapid fluxes are extremely sensi-

tive to cellular changes. While there are a few studies on the metabolomics of Parkinson’s

disease, it lacks longitudinal studies of the brain metabolic pathways affected by aging and

the disease. Using ultra-high performance liquid chromatography and tandem mass spec-

troscopy (UPLC/MS), we generated the metabolomics profiling data from the brains of

young and aged male PD-related α-synuclein A53T transgenic mice as well as the age- and

gender-matched non-transgenic (nTg) controls. Principal component and unsupervised

hierarchical clustering analyses identified distinctive metabolites influenced by aging and

the A53T mutation. The following metabolite set enrichment classification revealed the ala-

nine metabolism, redox and acetyl-CoA biosynthesis pathways were substantially disturbed

in the aged mouse brains regardless of the genotypes, suggesting that aging plays a more

prominent role in the alterations of brain metabolism. Further examination showed that the

interaction effect of aging and genotype only disturbed the guanosine levels. The young

A53T mice exhibited lower levels of guanosine compared to the age-matched nTg controls.

The guanosine levels remained constant between the young and aged nTg mice, whereas

the aged A53T mice showed substantially increased guanosine levels compared to the

young mutant ones. In light of the neuroprotective function of guanosine, our findings sug-

gest that the increase of guanosine metabolism in aged A53T mice likely represents a pro-

tective mechanism against neurodegeneration, while monitoring guanosine levels could be

applicable to the early diagnosis of the disease.

Introduction
Parkinson’s disease (PD) is the most common degenerative movement disorder [1]. Although
the metabolites are very sensitive to cellular changes and serve as the best indicators of cell
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states [2], only a few studies have used metabolomics to evaluate metabolic signatures and
pathways involved in PD. The pentose phosphate pathway has been reported as being affected
the most in the postmortem brains of PD patients [3]. While the urate levels are significantly
reduced, the glutathione is significantly increased in the plasma of PD patients [4–6]. However,
there lack longitudinal studies for monitoring the alterations of metabolites in the brain during
the progression of the disease. In addition, the impact of aging itself on the brain metabolism
remains to be determined.

The A53T missense mutation of α-synuclein is the first genetic causal factor linked to PD
[7]. In a line of α-synuclein transgenic mice [8], overexpression of human α-synuclein A53T
mutation recapitulates two canonical PD-related neuropathological abnormalities, namely pro-
gressive loss of nigrostriatal dopaminergic neurons and formation α-synuclein-positive aggre-
gates [9]. In addition to modeling PD-related neuron loss, these A53T transgenic mice could
be also useful in studying the metabolic pathways affected by PD and aging.

To understand how the PD-related α-synuclein A53T mutation alters brain metabolism
during aging, the brains of 3-month (young) and 18-month-old (aged) A53T transgenic mice
and age-matched non-transgenic (nTg) controls were collected for metabolomics profiling. A
series of statistical analyses of the profiling data revealed multiple metabolic pathways affected
by aging and the disease.

Materials and Methods

Ethics statement
All mouse work follows the guidelines approved by the Institutional Animal Care and Use
Committees of the National Institute of Child Health and Human Development, US National
Institutes of Health.

Transgenic mice
The Pitx3-IRES2-tTA/tetO-A53T bigenic mice were generated as previously described [8].
Mice were housed in a 12h light/dark cycle and fed regular diet libitum. Four groups of mice
were used for this study: 3-month and 18-month-old nTg mice, and 3-month and 18-month-
old A53T bigenic mice. Each group had eight male mice. The forebrain and midbrain tissues
were collected for global untargeted metabolic profiling by Metabolon Inc. (Durham, NC).

Sample preparation
Samples were prepared using the automated MicroLab STAR system from Hamilton Com-
pany. A recovery standard was added prior to the first step in the extraction process for QC
purposes. Sample preparation was conducted using aqueous methanol extraction process to
remove the protein fraction while allowing maximum recovery of small molecules. The result-
ing extract was divided into four fractions: one for analysis by UPLC/MS/MS (positive mode),
one for UPLC/MS/MS (negative mode), one for GC/MS, and one for backup. Samples were
placed briefly on a TurboVap (Zymark) to remove the organic solvent. Each sample was then
frozen and dried under vacuum. Samples were then prepared for the appropriate instrument,
either UPLC/MS/MS or GC/MS.

Ultrahigh performance liquid chromatography/tandemMass
Spectroscopy
The UPLC/MS/MS portion of the platform was based on a Waters ACQUITY ultra-perfor-
mance liquid chromatography (UPLC) and a Thermo-Finnigan linear trap quadrupole (LTQ)
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mass spectrometer, which consisted of an electrospray ionization (ESI) source and linear ion-
trap (LIT) mass analyzer. The sample extract was dried then reconstituted in acidic or basic
LC-compatible solvents, each of which contained 8 or more injection standards at fixed con-
centrations to ensure injection and chromatographic consistency. One aliquot was analyzed
using acidic positive ion optimized conditions and the other using basic negative ion optimized
conditions in two independent injections using separate dedicated columns. Extracts reconsti-
tuted in acidic conditions were gradient eluted using water and methanol containing 0.1% for-
mic acid, while the basic extracts, which also used water/methanol, contained 6.5mM
Ammonium Bicarbonate. The MS analysis alternated between MS and data-dependent MS2
scans using dynamic exclusion. Raw data files are archived and extracted as described below.

Gas chromatography/Mass Spectroscopy
The samples destined for GC/MS analysis were re-dried under vacuum desiccation for a mini-
mum of 24h prior to being derivatized under dried nitrogen using bistrimethyl-silyl-triflouroa-
cetamide (BSTFA). The GC column was 5% phenyl and the temperature ramp was from 40° to
300°C in a 16 minute period. Samples were analyzed on a Thermo-Finnigan Trace DSQ fast-
scanning single-quadrupole mass spectrometer using electron impact ionization. The instru-
ment was tuned and calibrated for mass resolution and mass accuracy on a daily basis. Raw
data files are archived and extracted as described below.

Data extraction and compound identification
Raw data was extracted, peak-identified and QC processed using Metabolon’s hardware and
software. These systems are built on a web-service platform utilizing Microsoft’s.NET technol-
ogies, which run on high-performance application servers and fiber-channel storage arrays in
clusters to provide active failover and load-balancing. Compounds were identified by compari-
son to library entries of purified standards or recurrent unknown entities. More than 3500
commercially available purified standard compounds have been acquired and registered into
LIMS for distribution to both the LC and GC platforms for determination of their analytical
characteristics.

Statistics and bioinformatics
Missing values (if any) are assumed to be below the level of detection. However, metabolites
that were detected in all samples from one or more groups, but not in samples from other
groups were assumed to be near the lower limit of detection in the groups in which they were
not detected. In this case, the lowest detected level of these metabolites was imputed for sam-
ples in which that biochemical was not detected. Following scale normalization and imputation
with minimum observed values for each compound, two-way ANOVA and one-way ANOVA
tests were used to identify metabolites that differed significantly between experimental groups.
Principal component analysis was performed using R, a statistical computing environment
(www.r-project.org). Unsupervised hierarchical clustering was performed using complete link-
age and Pearson rank correlation distance on the normalized metabolites in R. The web-based
metabolomics data processing tool MetaboAnalyst 2.0 was used for pathway and metabolite set
enrichment analysis (MSEA) analysis. See http://www.metaboanalyst.ca for detailed methodol-
ogy [10]. The database MetaboAnalyst 2.0 used for the metabolic pathway analysis is Human
Metabolom database (HMDB), Small Molecule Pathway Database (SMPDB) and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) [10]. Beside two-way ANOVA, Random forest (RF)
classification method in R package was applied to the scaled and imputed metabolite data; the
RF method was implemented with Breiman’s random forest algorithm [11]. RF is a machine
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learning method. Comparing to other methods applied in analyzing metabolomics data, such
as projection to latent structures (PLS), support vector machine (SVM) and linear discriminant
analysis (LDA), RF has simple theory, fast speed and is insensitive to noise. RF is getting more
frequent in metabolomics data analysis [12]. Values of mean decrease in accuracy calculated
from RF classification analysis were used to identify the metabolites that are significantly affected
by aging. Mean Decrease Accuracy is a score used to describe how importantly a compound con-
tributes to the group classification. It measures how much classification error would be reduced
when the certain metabolite was counted in the model. Therefore the metabolites with a higher
mean decrease in accuracy are more important for the classification of the data [11].

Results

Aging exerts more significant impact on the alterations of metabolites
The principal component analysis (PCA) was used to quantitatively compare the global meta-
bolomics profiling data collected from the four groups of mice. Based on the top two principal
components, the aged mice appeared as a separate group from the young ones, whereas the
A53T bigenic groups could not be distinguished from the nTg groups (Fig 1).

We subsequently identified the metabolites with significant changes between young and
aged mice using a false discovery rate (FDR) of q< 0.05 in two-way ANOVA test, a commonly
used filtering criterion for large-scale data analysis [13]. The test allowed us to capture the max-
imum number of compounds that potentially changed between groups. We observed that 58
metabolites were significantly disturbed during aging (Fig 2). Among them, 25 metabolites
(8.7%) were increased, whereas 33 metabolites (11.4%) were decreased in the aged mice. Using
hierarchical clustering on the profile of these 58 metabolites, the mice were strictly separated
into large groups according to age difference and several interesting metabolite clusters became
apparent as well (Fig 2). One of these clusters contained alanine and its products. The alanine
metabolism pathway reflected energy demand in mouse brain [14]. In addition, various inter-
mediates and products of oxidation-reduction pathway were altered, such as oxidized and
reduced glutathione that both decreased in the aged brains (Fig 2).

Fig 1. Principle component analysis (PCA) of brain metabolites influenced by aging and Parkinson’s
disease-related α-synuclein A53Tmutation. PCA plot showing a segregation of the metabolites affected in
all the aged mouse brain samples (colored by dark and light red for A53T and nTg mice) from the young ones
(colored by dark and light blue for A53T and nTg mice). The first principle component (PC1) accounts for 27%
of the overall variability; the second principle component (PC2) accounts for 13% of the overall variability.

doi:10.1371/journal.pone.0136612.g001
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Following hierarchical cluster analysis, we performed metabolite set enrichment analysis
(MSEA) to identify which pathways were affected by those 58 distinguishing metabolites. Our
results indicated that the best metabolites to predict age affect were in redox homeostasis, lipid

Fig 2. Hierarchical clustering of metabolites affected by aging. There are 58 metabolites significantly
affected by aging from a two-way ANOVA test. The unsupervised hierarchical clustering plot shows that an
age-dependent segregation of these metabolites. The scaled intensity of 58 metabolites is relatively depicted
according to the color key shown on the right. Red indicates high intensity levels; blue, low intensity levels.

doi:10.1371/journal.pone.0136612.g002
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synthesis and amino acid metabolism pathways (Fig 3A). In addition, we performed the meta-
bolome view analysis to demonstrate whether a metabolite node was affected. We confirmed
the finding that the β-alanine metabolism, glutathione metabolism and pantothenate and CoA
biosynthesis pathways were disturbed in the aged mouse brains (Fig 3B).

Identification of signature metabolites as biomarkers of aged brains
The metabolic differences between young and aged mice led us to test whether they can be
used as biomarkers to reliably and accurately classify the two age groups. To separate different
groups of samples by selection of a subset of signature metabolites or genes is applied widely
with large-scale data sets, such as metabolomics and gene expression analyses [15, 16]. Accord-
ingly, we first conducted one-way ANOVA test separately with nTg and A53T two genetic sub-
groups. In the nTg subgroup, there were 10 metabolites significantly changed in the aged mice
comparing to the young ones, while in the A53T subgroup 24 metabolites were differentially
altered in the aged animals (Table 1 and S1 Data). After intersecting the set of 10 metabolites
from nTg and 24 metabolites from A53T, we found four overlapping metabolites: carnosine,
N-acetylaspartate (NAA), pantothenate and phosphopantetheine (Table 1). We also did the
Random Forests (RF) analysis to validate the results from one-way ANOVA test. RF is one

Fig 3. Metabolite pathway affected by aging. (A) Summary plot for the metabolite set enrichment analysis (MSEA) are ranked by Holm p-value. Holm p-
value is the p value adjusted by Holm-Bonferroni test that is a method to counteract the problem of multiple comparisons and is widely used for large-scale
data analysis. (B) Metabolome view shows key nodes in metabolic pathways that have been significantly altered with aging. The y-axis represents
unadjusted p value from pathway enrichment analysis. The x-axis represents increasing metabolic pathway impact according to the betweenness centrality
from pathway topology analysis.

doi:10.1371/journal.pone.0136612.g003
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such learning algorithm that can discriminate the two groups by estimating the importance of
each variable to the classification [11]. The “mean decrease accuracy” indicated how much a
certain metabolite contributes to separation of the two test groups [11]. We conducted RF anal-
ysis with the same two genetic subgroups nTg and A53T as one-way ANOVA test. In the nTg
subgroup, there were 19 metabolites significantly changed in the aged mice compared to the
young ones, while for A53T mice, totally 23 metabolites were differentially altered in the aged
animals (Table 2 and S1 Data). We did the intersection as well with the sets of 19 metabolites
and 23 metabolites. Finally eight overlapping metabolites were identified (Fig 4A). Among
them, four metabolites were identified by the ANOVA test as shown above, and the other four
were homocarnosine, anserine, gamma-glutamylglutamate and adenosine. Following one-way
ANOVA test and RF analysis, we performed hierarchical clustering on these eight metabolites.

Table 1. A list of metabolites substantially affected by aging based on the one-way ANOVA test.

Metabolite Name q-value Super-pathway

nTg (18M vs. 3M) Carnosine 0.0004 Amino acid

N-acetylaspartate (NAA) 0.0004 Amino acid

Pantothenate 0.0013 Cofactor

3-(4-hydroxyphenyl) lactate 0.0163 Amino acid

Homocarnosine 0.0163 Amino acid

Phosphopantetheine 0.0176 Cofactor

glutathione, reduced 0.0177 Amino acid

Fructose 0.0276 Carbohydrate

cytidine 5’-diphophocholine 0.0401 Lipid

scyllo-inositol 0.0485 Lipid

A53T (18M vs. 3M) Guanosine 0.0005 Nucleotide

Carnosine 0.0012 Amino acid

Pantothenate 0.0023 Cofactor

Phosphopantetheine 0.0026 Cofactor

Adenosine 0.0030 Nucleotide

Desmosterol 0.0038 Lipid

lignocerate (24:0) 0.0046 Lipid

5-HETE 0.0046 Lipid

stearate, methyl ester 0.0065 Lipid

Putrescine 0.0111 Amino acid

Anserine 0.0155 Amino acid

3-phosphoglycerate 0.0175 Carbohydrate

Cholesterol 0.0209 Lipid

dehydroascorbate 0.0209 Cofactor

chiro-inositol 0.0215 Lipid

threonate 0.0215 Cofactor

glucose-6-phosphate 0.0351 Carbohydrate

caproate (6:0) 0.0363 Lipid

ethyl stearate 0.0388 Lipid

1-myristoylglycerophosphocholine 0.0388 Lipid

2-oleoylglycerophosphoserine 0.0388 Lipid

N-acetylaspartate (NAA) 0.0413 Amino acid

mannose-6-phosphate 0.0461 Carbohydrate

2-aminoadipate 0.0470 Amino acid

doi:10.1371/journal.pone.0136612.t001
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As expected, all mouse samples can be separated reliably based on the age (Fig 4A). Therefore,
these metabolites show strong predictive value on the age factors regardless of genotype
difference.

Table 2. A list of metabolites substantially affected by aging based on the Random Forests test.

Metabolite name Mean decrease accuracy Super-pathway

nTg (18M vs. 3M) glutathione, oxidized 16.27 Amino acid

N-acetylaspartate (NAA) 16.08 Amino acid

carnosine 15.76 Amino acid

glutathione, reduced 15.26 Amino acid

gamma-glutamylglutamate 12.77 Amino acid

glutamine 12.49 Amino acid

3-(4-hydroxyphenyl) lactate 12.35 Amino acid

pantothenate 11.18 Cofactor

cytidine 5’-diphosphocholine 10.38 Lipid

adenosine 5’-monophosphate 9.48 Nucleotide

lanosterol 9.09 Lipid

homocarnosine 8.89 Amino acid

lysine 7.18 Amino acid

2-aminoadipate 6.71 Amino acid

phosphopantetheine 6.34 Cofactor

12-HETE 6.03 Lipid

anserine 5.80 Amino acid

leucine 5.46 Amino acid

adenosine 5.18 Nucleotide

A53T (18M vs. 3M) guanosine 15.76 Nucleotide

phosphopantetheine 15.60 Cofactor

desmosterol 15.38 Lipid

pipecolate 14.19 Amino acid

pantothenate 11.79 Cofactor

carnosine 11.40 Amino acid

sucrose 9.70 Carbohydrate

scyllo-inositol 9.65 Lipid

5-HETE 9.61 Lipid

adenosine 9.60 Nucleotide

ergothioneine 9.59 Xenobiotics

stearate, methyl ester 9.33 Lipid

dehydroascorbate 9.17 Cofactor

lignocerate (24:0) 9.08 Lipid

anserine 8.97 Amino acid

cholesterol 8.92 Lipid

putrescine 5.85 Amino acid

homocarnosine 5.68 Amino acid

Palmitoyl ethanolamide 5.67 Lipid

chiro-inositol 5.63 Lipid

N-acetylaspartate (NAA) 5.61 Amino acid

3-phosphoglycerate 5.03 Carbohydreate

gamma-glutamylglutamate 5.00 Amino acid

doi:10.1371/journal.pone.0136612.t002
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Carnosine is a dipeptide, composed of β-alanine and ι-histidine, an important compound
involved in alanine metabolism [17]. In mammals, carnosine has high concentration in the
skeletal muscle and the olfactory bulb [18]. Comparing to the extensive studies on muscle tis-
sues, the functions of carnosine in brain are poorly understood [17]. Carnosine has been pro-
posed to protect brains mainly through antioxidant, metal chelating, and antiglycative
properties, like what it does in the muscles [19]. Homocarnosine, a carnosine analog, is more
prevalent than carnosine in the mammalian brain [17]. Anserine is the most common variant

Fig 4. Identification of Aging-related metabolite biomarker. (A) Two-way ANOVA test (q value <0.05) and RF analysis (Mean decrease accuracy >5)
identify eight metabolites significantly affected by aging. Unsupervised hierarchical clustering plot shows the segregation between aged and young samples.
The scaled intensity of eight metabolites is relatively depicted according to the color key shown on the top. Red indicates high intensity levels; blue, low
intensity levels. The q-value used here represents the measurement of the proportion of false positives incurred (also called the false discovery rate). (B)
Scatter plots compare the scaled intensity of those eight metabolites from different sample groups.

doi:10.1371/journal.pone.0136612.g004
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of methylated carnosine analogs [17]. Our data showed that carnosine, homocarnosine and
anserine were all highly accumulated in the aged mouse brains (Fig 4B), which may be related
with their antioxidant activities to protect brain from excessive ROS stress during aging.

NAA is localized primarily in neurons and is considered to be a putative neuronal marker
[20]. Consistent with the previous studies [21, 22], we observed reduced NAA in the aged mice
(Fig 4B). In addition, some recent research suggests that there is a strong positive correlation
between concentrations of NAA and glutamate [23]. In our study, the levels of glutamate were
also decreased in the aged mice like NAA (Fig 2). In contrast to glutamate reduction, glutamine
concentration was somewhat increased in the aged mice. Glutamine is localized primarily in
astrocytes, where glutamine synthetase is considered to be a marker of glial activity [24]. There-
fore, the finding of increased glutamine levels could be indicative of glial proliferation (Fig 2),
which often accompanies with neurodegeneration [23].

Metabolite guanosine shows age-dependent alterations in A53T bigenic
mice
In the two-way ANOVA test, no metabolite showed significant alteration between A53T
bigenic and nTg mice depending on genotype effects (S1 Data). We then conducted one-way
ANOVA test with two age subgroups separately to identify the impact of genotypes on metabo-
lites. In the young subgroup, only one metabolite guanosine was significantly altered in the
A53T mice compared to the nTg ones (Fig 5A and 5B). In the aged subgroup, however, no
metabolite showed differential alterations between two genotypes (S1 Data). Further data anal-
yses revealed that guanosine accumulated more in the aged A53T mice compared to the young
ones, whereas, no substantial alterations of guanosine levels were found in the young and aged
nTg subgroups (Fig 5A and 5B). Therefore, guanosine was affected by a combination of geno-
type and age factors, as confirmed by the two-way ANOVA interaction test (S1 Data).

Discussion
Excessive reactive oxygen species (ROS) generated by oxidative reactions within the mitochon-
dria has been implicated in many age-related neurological diseases, such as PD, Alzheimer’s
disease, and amyotrophic lateral sclerosis (ALS) [25, 26]. Reduced glutathione (GSH) is able to
scavenge both ROS and xenobiotics within the cells, which leads to form the oxidized glutathi-
one (GSSG), GSSG can then be returned to GSH by glutathione reductase (GSR) [27]. Here we
found that both GSH and GSSG levels were decreased significantly in the aged mice (Fig 2).
Decreased GSH in aged mice has been reported previously [28, 29]. A high GSH/GSSG ratio
represents a properly functioning glutathione system observed normally in young animals,
while a low GSH/GSSG ratio associates with aging models [30, 31]. In our study, the ratio of
GSH to GSSG was not altered by either age or genotype (S1 Fig). The ratios of GSH to GSSG in
four subgroups were all close to one. By contrast, previous studies show the levels of GSH are
much higher than GSSG in the both young and old mouse brains [28, 32]. We speculate that
the LC/MS platform used in our study cannot accurately detect GSH or some GSH was oxi-
dized into GSSG during the preparation and storage of samples.

β-alanine is the β form of the amino acid alanine, which is intimately linked with glutamate/
glutamine cycling [33]. The ammonia from glutamate/glutamine transition in neurons is car-
ried by alanine and leucine and returned to the astrocyte [34]. After deamination, alanine in
the astrocyte is largely converted into lactate, which is released into the extracellular space and
taken up by neurons [35, 36]. Many studies indicate that lactate is a main energy source for
neurons and its utilization is necessary for long-term memory formation [36, 37]. Our results
showed increased alanine levels in the aged mouse brains compared to the young ones,
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suggesting a possible compensatory mechanism in the aged brains to make up for the less
energy production.

Fig 5. Guanosine metabolism is affected by both aging and A53Tmutation. (A) Scatter plot depicts the alteration of guanosine levels in different age and
genotype groups. One-way ANOVA test, **q value <0.01; ***q value <0.001. (B) Line graph highlights the age-dependent changes of guanosine in A53T
and nTg mice. One-way ANOVA test, ***q value <0.001. (C) Schematic diagram summarizes the alanine metabolic (in yellow shade) and acetyl-CoA
biosynthesis (in blue shade) pathways mainly affected by aging, and the purine metabolic (in pink shade) pathway influenced by both aging and genotypes.
The metabolites highlighted with the bold font represent the ones differentially altered between groups (q value < 0.05 in two-way ANOVA test).

doi:10.1371/journal.pone.0136612.g005
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Two reasons may be considered for the lack of metabolites affected by genotypes according
to two-way ANOVA analysis. One is the large variation of metabolite data sets from different
subgroups. The other is that the metabolic changes mainly occur in a small fraction of neurons,
such as the nigrostriatal dopaminergic neurons, which is likely undetectable when the whole
brain is used for the assay. The in situ studies of brain metabolomics using Magnetic Resonance
Spectroscopy (MRS) and positron emission tomography could be useful in identifying metabo-
lite alterations in small brain regions.

Guanosine is a guanine-based purine and can be phosphorylated to become several different
forms (GMP, GDP and GTP), which affect multiple cellular processes, including cellular growth,
differentiation and survival [38, 39]. Guanosine can exert protective effects against staurosporine-
or β-amyloid-induced apoptosis [40, 41]. Recently the neuroprotective effects of guanosine in the
central nervous system have also been identified in a PD-related cellular model system, which
shows guanosine effectively prevent 1-methyl-4-phenylpyridinium (MPP+)-induced PC12 cell
apoptosis by stabilizing the mitochondrial membrane potential [42]. MPP+ induction can cause
DA neurons damage and result in pathological symptoms similar to PD [43]. Guanosine also
protects 6-hydroxydopamine (6-OHDA) treated SH-SY5Y cells (6-OHDA is widely used to
mimic neuropathology of PD) to promote their survival through the apoptotic signaling path-
way, including p-38, c-Jun N-terminal kinase (JNK) and protein kinase B [41]. In the A53Tmice,
the DA neurodegeneration starts as early as 1 month of age [8], which is correlated with a signifi-
cant reduction of guanosine levels in the young A53Tmice, suggesting that without the sufficient
guanosine protection, the DA neurons are likely more vulnerable to the mutant α-synuclein-
induced cytotoxicity. However, the underlying mechanism for the neuroprotective function of
guanosine in A53T bigenic mice remains to be clarified.

Conclusion
In the present study we identified eight aging-related metabolite biomarkers, which are mainly
involved in the alanine metabolism and acetyl-CoA biosynthesis pathways (Fig 5C). These two
pathways interconnect closely and both contribute to the cellular energy homeostatic [14, 44].
Furthermore, our results demonstrate that purine metabolic pathway was disturbed by a com-
bination of the age and genotype factors (Fig 5C). Urate, the end product of this pathway, has
been considered as a biomarker for PD diagnosis [45]. We therefore suggest the purine path-
way likely contribute to neuroprotection against DA neuron loss in PD.

Supporting Information
S1 Data. The data sheet contains the scaled raw metabolic data.
(XLSX)

S1 Fig. The ratios of GSH to GSSG are presented in four different subgroups.
(TIF)
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