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Abstract

Restoration of tissue homeostasis by controlling stem cell aging is a promising therapeutic approach for
geriatric disorders. The molecular mechanisms underlying age-related dysfunctions of specific types of adult
tissue stem cells (TSCs) have been studied, and various microRNAs were recently reported to be involved.
However, the central roles of microRNAs in stem cell aging remain unclear. Interest in this area was sparked
by murine heterochronic parabiosis experiments, which demonstrated that systemic factors can restore the
functions of TSCs. Age-related changes in secretion profiles, termed the senescence-associated secretory
phenotype, have attracted attention, and several pro- and anti-aging factors have been identified. On the
other hand, many microRNAs are linked with the age-dependent dysregulations of various physiological
processes, including “stem cell aging.” This review summarizes microRNAs that appear to play common
roles in stem cell aging.
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Background
Overcoming age-related diseases and elongating the
healthy lifespan are emerging issues for aging soci-
eties. Dysfunctions of aged tissue stem cells (TSCs)
contribute to loss of tissue homeostasis, including re-
ductions in lymphopoiesis and the long-term repopu-
lating abilities of hematopoietic stem/progenitor cells
(HSCs) [1, 2], the muscle repair capacity of skeletal
muscle satellite cells [3], and the multipotency of
mesenchymal stem/stromal cells (MSCs) [4]. The res-
toration of TSC functions in murine heterochronic
parabiosis experiments triggered interest in the reju-
venation of aged TSCs [5]. Thereafter, several pro-
aging [6–12] and anti-aging [13–16] systemic factors
were identified, although some of the findings are
conflicting [17]. Senescent cells secrete a myriad of
inflammatory factors, referred to as the senescence-
associated secretory phenotype (SASP) [18]. Clearance
of senescent cells delays the induction of various geri-
atric pathologies, supporting the concept that the
SASP promotes aging in a non-cell-autonomous

fashion [19, 20]. Several lines of evidence indicated
that age-related TSC dysfunctions and tissue-level
pathologies can be improved by manipulating (reversing)
cell-extrinsic/systemic conditions, at least in part.
We previously identified growth differentiation factor

6 (Gdf6; also known as Bmp13 and CDMP-2) as a regen-
erative factor secreted by young MSCs [21, 22]. Upregu-
lation of human GDF6 restores the differentiation
potential of old MSCs in vitro and reverses multiple age-
related pathologies in vivo. miR-17 and its paralogues
miR-106a and 106b (miR-17/106) regulate not only dif-
ferentiation potential but also expression of some
secretory factors, including Gdf6, and are implicated in
the decline of these functions with age. Many micro-
RNAs are associated with age-related dysfunctions of
several types of TSCs. Here, we review microRNAs,
which are commonly downregulated with age and in-
duced dysregulation of cytogenesis, proliferation, and in-
flammation in multiple TSCs, and discuss functional
similarities of microRNAs across different types of TSCs
in aging.
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miR-17 family (miR-17-92a, 106b-25, and 106a-363
clusters)
miR-17 family members play essential and pleiotropic
roles in development, metabolism, diseases, tumorigen-
esis, and aging [23, 24]. We first identified miR-17/106
family members as key regulators of the neurogenic-to-
gliogenic switch in developing neural stem/progenitor
cells (NSCs) by controlling the “competence” necessary
for NSCs to respond to gliogenic cell-extrinsic signals
[25, 26]. Next, we found that downregulation of miR-17/
106 induces a decline in differentiation potential and
dysregulated expression of secretory factors in old MSCs
[22]. Another group also reported a relationship between
miR-17/106 and an age-dependent decrease in the osteo-
genic potential of MSCs [27]. miR-17/106 also regulate
the proliferation and development of HSCs [28–30].
Other reports studied the impact of miR-17 overexpres-
sion in vivo. Transgenic mice expressing miR-17 exhibit
delayed tissue growth and have an elongated lifespan
[31, 32]. Epidemiologic studies reported that miR-17
family members are upregulated in centenarians, which
supports the hypothesis that these microRNAs are im-
portant for the young healthy conditions and involved in
human aging [33, 34].

miR-125b
A myeloid skewing phenotype and a decline in engraft-
ment capability have long been recognized as age-related
dysfunctions of old HSCs [1]. miR-125b is expressed in
HSCs, and overexpression of miR-125b predominantly
expands lymphoid-biased HSCs [35]. In addition, miR-
125b can increase the level of myeloid progenitors [36].
Both reports showed that miR-125b overexpression in-
creases the engraftment capabilities of HSCs and pro-
genitors in transplantation assays into irradiated mice.
Moreover, reduction of miR-125b increases expression
levels of the chemokine CCL4 with age [37]. miR-125b

activates and is activated by the NF-κB pathway [38, 39]
is sometimes regarded as an “inflamma-miR,” which is
implicated in the regulation of immune and inflamma-
tory responses [40]. miR-125b directly suppresses p53
expression in developing NSCs. miR-125b is expressed
throughout zebrafish embryos and is enriched in the
brain, while loss of miR-125b elevates p53 expression
and triggers p53-dependent apoptosis in these embryos
[41]. miR-125b is also expressed in MSCs [42], epider-
mal stem cells [43], and some types of tumor cells [44–
48]. Interestingly, lin-4, a Caenorhabditis elegans homo-
log of miR-125b, is a heterochronic gene and generates
the temporal pattern of many cell lineages during devel-
opment [49], and is related to lifespan and tissue aging
via its control of the insulin/insulin-like growth factor–1
pathway [50]. Overexpression of lin-4 elongates lifespan,
whereas loss-of mutation accelerates tissue aging and
shortens it.

miR-181 family (miR-181a/b/c/d)
Chronic inflammation accelerates systemic aging [10].
miR-181 family members have anti-inflammatory func-
tions and are categorized as inflamma-miRs, together
with miR-125b [40]. miR-181 regulates the differenti-
ation of multiple types of TSCs, such as HSCs [51],
myoblasts (activated progenitor cells) [52], MSCs [53],
and some types of cancer stem cells [54–56]. We con-
firmed that miR-181 family members are downregulated
with age in multiple TSCs (HSCs, MSCs, and intestinal
stem cells). However, they continue to be expressed in
differentiated cells and function pleiotropically. The age-
dependent decline in miR-181a expression induces func-
tional defects in CD4+ T cells [57]. miR-181a is down-
regulated in old pancreatic beta cells and necessary for
their proliferation [58]. Extracellular vesicles derived
from brain metastatic cancer cells contain miR-181c and
can destroy and pass through the blood-brain barrier

Table 1 Functional similarities of microRNAs in different types of TSCs

microRNA
family

Differentiation (specification) Proliferation, survival,
and apoptosis

Secretion and
inflammation

Tumorigenesis Others

miR-17/106 MSCs (↑Ad, ↑Os) [22, 27]
NSCs (↑N, ↓G) [25]
HSCs (↑B, ↑Ly, ↑My) [28–30]

↑HSCs [28–30] MSCs (↑Gdf6 and etc.) [22] Lymphoma [28–30]

miR-125b HSCs (↑Ly, ↑My) [35, 36]MSCs
(↑Ad, ↑Os) [42]
Skin stem cells (↓Epi, ↓Oil, ↓HF)
[43]

↑HSCs [35, 36]↑NSCs
[41]
↑Skin stem cells [43]

HSCs (↓CCL4, ↑NF-κB,
↓TNFAIP3) [37, 39, 40]

Breast cancer [44]
Hepatocellular
carcinoma [45]
Leukemia [46]
Skin tumor [47]
Stomach
adenocarcinoma [48]

↑HSC engraftment [35,
36]

miR-181 HSCs (↑Ly) [51]
Myoblasts (↑Muscle) [52]

↑Beta cells [58] HSCs (↓IL-1α, ↓c-fos, ↓NF-κB)
[40]
MSCs (↑IL-6) [53]

Hepatic cancer stem
cells [54]
Breast cancer [55]
Leukemia [56]

↑T cell receptor
sensitivity [57]
↑Blood-brain barrier
destruction [59]

↑: promotion/positive regulation, ↓: inhibition/negative regulation, Ad: adipocytes, Os: Osteoblasts, N: neurons, G: glial cells, B: B cells, Ly: lymphocytes, My:
myeloid cells, Epi: epidermal cells, Oil: oil-gland cells, HF: hair follicle cells
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[59]. The critical roles of miR-181 in age-related cell-
intrinsic dysfunctions of TSCs are unclear. The old TSCs
with downregulated miR-181 family members would
generate abnormal somatic cells, which have something
dysfunctions, and these cells may contribute to the dis-
turbance of tissue homeostasis.

Commonality of microRNA functions among various types
of TSCs
Recent studies have revealed that a part of microRNAs ap-
pear to play common roles in stem cell aging (Table 1). In
fact, many microRNAs, including miR-17 family, miR-
125b, and miR-181 family members, show similar expres-
sion pattern, namely they are expressed at higher levels dur-
ing proliferating phase and downregulated with age. This is
supported by a report concerning the classification of
tumor cells derived from various tissues based on their
microRNA, not their mRNA, expression profiles, suggest-
ing that the existence of functionally common microRNAs,
at least, for proliferation and undifferentiated states [60].
We have focused on microRNA-mediated “competence
regulation,” which is responsible for the responsiveness to
the various cell-extrinsic signals, as the fundamental ma-
chinery controlling the properties of TSCs, and miR-17
family members are key regulators in this context [22, 25,
61]. In our previous study, we revealed that miR-17/106
switches the usages of JAK-STAT and BMP pathways from
neurogenic to gliogenic signals [25]. In young states, micro-
RNAs regulate signal transduction correctly. Downregula-
tion of microRNAs with age should induce deregulation of

signal transduction and reflect abnormal phenotypes to sig-
nals (Fig. 1). All miR-17, miR-125b, miR-181 family mem-
bers are downregulated various old TSCs and
downregulation of them suppresses cytogenesis, prolifera-
tion, and secretion of homeostatic factors and promotes
inflammation and tumorigenesis (Table 1).

Conclusions
Some microRNAs have similar functions in different
types of TSCs. Downregulation of these specific-
microRNAs induces similar age-related dysfunctions of
TSCs. These microRNAs may define the “young compe-
tence” by specifying the signal pathways with suppres-
sion of their regulon, including signal mediators and
transcription factors. Further investigation of the roles of
the other microRNAs in stem cell aging will help to
elucidate the central molecular machinery of the aging
and develop the next-generation therapeutic methods
for geriatric diseases.
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