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Abstract

The vast burden of cryptococcal meningitis occurs in immunosuppressed patients, driven

by HIV, and is caused by Cryptococcus neoformans var. grubii. We previously reported

cryptococcal meningitis in Vietnam arising atypically in HIV uninfected, apparently immuno-

competent patients, caused by a single amplified fragment length polymorphism (AFLP)

cluster of C. neoformans var. grubii (VNIγ). This variant was less common in HIV infected

individuals; it remains unclear why this lineage is associated with apparently immunocompe-

tent patients. To study this host tropism we aimed to further our understanding of clinical

phenotype and genomic variation within Vietnamese C. neoformans var. grubii. After per-

forming MLST on C. neoformans clinical isolates we identified 14 sequence types (STs);

ST5 correlated with the VNIγ cluster. We next compared clinical phenotype by lineage and

found HIV infected patients with cryptococcal meningitis caused by ST5 organisms were

significantly more likely to have lymphadenopathy (11% vs. 4%, p = 0.05 Fisher’s exact test)

and higher blood lymphocyte count (median 0.76 versus 0.55 X109 cells/L, p = 0.001, Krus-

kal-Wallis test). Furthermore, survivors of ST5 infections had evidence of worse disability

outcomes at 70 days (72.7% (40/55) in ST5 infections versus 57.1% (52/91) non-ST5 infec-

tions (OR 2.11, 95%CI 1.01 to 4.41), p = 0.046). To further investigate the relationship

between strain and disease phenotype we performed genome sequencing on eight Viet-

namese C. neoformans var. grubii. Eight genome assemblies exhibited >99% nucleotide

sequence identity and we identified 165 kbp of lineage specific to Vietnamese isolates. ST5

genomes harbored several strain specific regions, incorporating 19 annotated coding

sequences and eight hypothetical proteins. These regions included a phenolic acid decar-

boxylase, a DEAD-box ATP-dependent RNA helicase 26, oxoprolinases, a taurine catabo-

lism dioxygenase, a zinc finger protein, membrane transport proteins and various drug

transporters. Our work outlines the complexity of genomic pathogenicity in cryptococcal
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infections and identifies a number of gene candidates that may aid the disaggregation of the

pathways associated with the pathogenesis of Cryptococcus neoformans var. grubii.

Author summary

Cryptococcal meningitis is a brain infection caused by a yeast, Cryptococcus neoformans,
and results in an estimated 600 000 deaths each year. Disease usually only occurs in

patients who have some problem with their immune systems—most commonly Human

Immunodeficiency Virus (HIV) infection. However, it is increasingly recognized that dis-

ease can occur, particularly in southeast and east Asia, in patients with apparently normal

immune systems (‘immunocompetent’). We previously showed that almost all infections

in immunocompetent patients in Vietnam are due to just one small ‘family’ (or lineage) of

Cryptococcus neoformans var. grubii, which we called VNIγ. This is in contrast to disease

in HIV infected patients, which can be caused by a number of different families. This sug-

gests that VNIγ strains have an increased ability to cause disease. Here, we define the pat-

tern of disease caused by VNIγ infections compared with other strains in HIV infected

patients, and use whole genome sequencing—comparing the entire genetic codes from

different strains—to try and understand which genes give the VNIγ family this special

ability to cause disease in immunocompetent patients.

Introduction

Cryptococcosis is a range of disseminated infections caused by yeasts belonging to the genus

Cryptococcus. Cryptococcosis generally occurs in individuals with cell-mediated immune

defects, particularly those infected with Human Immunodeficiency Virus (HIV). As a result of

this tropism for the immune-compromised, cryptococcal diseases are commonly fatal. Menin-

gitis is the commonest and most severe disease manifestation, leading to an estimated 600,000

deaths from approximately a million cases per year, globally [1].

Human cryptococcal infections are caused almost exclusively by two species: Cryptococcus
neoformans (subdivided into 2 varietal forms, Cryptococcus neoformans var. grubii and C. neo-
formans var. neoformans), and Cryptococcus gattii [2]. The mechanisms that determine the dis-

ease prevalence of the cryptococcal species are unknown but associated with host and

geographical factors [3]. C. gattii can be readily isolated from the environment in the tropics

and subtropics, but despite comparatively high rates of HIV infection in these regions, human

C. gattii disease is uncommon. C. neoformans var. neoformans is largely restricted to Western

Europe, where it accounts for an estimated 25% of cases of cryptococcal meningitis in HIV

infected patients [2, 4]. In contrast to C. gattii and C. neoformans var. neoformans, C. neofor-
mans var. grubii has a global distribution and a devastating impact on the immune-suppressed

population [1, 2]. Driven by the high prevalence of HIV infection, the overwhelming majority

of cryptococcal meningitis cases occurs in the tropics and sub-tropics and is caused by C.

neoformans.
We previously reported a case series of HIV uninfected patients from Vietnam where the

majority of patients did not have a recognized underlying immune suppressive disease [5].

Despite the apparent immune competence of the patients, we found that the majority of infec-

tions were caused by C. neoformans var. grubii. We subsequently demonstrated that most cases

of disease in HIV uninfected patients in Vietnam were caused by a single amplified fragment
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length polymorphism (AFLP) defined cluster of C. neoformans var. grubii that we named

VNIγ [6]. VNIγ was found to be responsible for 84% of the cases of C. neoformans var. grubii
meningitis in HIV uninfected patients and 93% of cases of meningitis in apparently immuno-

competent patients, but only 38% of disease in HIV seropositive patients [6]. Furthermore, in

the HIV uninfected group, additional underlying diseases were more common in those with

non-VNIγ (VNIδ) infections than in those with VNIγ infections.

It is unclear why some C. neoformans lineages are associated with apparently immunocom-

petent patients. We hypothesize that the ability to cause disease in these individuals is depen-

dent either on the exploitation of an unidentified immune deficit, or an increased pathogenic

potential of the specific lineages. This study has two main aims. First, to determine whether

infection with VNIγ strains results in a different clinical phenotype in HIV infected patients,

and second to refine our genomic understanding of the variation between Vietnamese C. neo-
formans var. grubii lineages. We combine MLST profiling of C. neoformans var. grubii with

clinical data to describe the phenotypic differences caused by this genotype in HIV infected

patients [7]. We then perform genome sequencing and comparative genomics on eight C. neo-
formans var. grubii to determine the genetic loci that may facilitate an enhanced pathogenic

phenotype.

Methods

Ethics statement

All clinical studies were approved by the Hospital for Tropical Diseases Ethical Review Board,

and either the Oxford Tropical Ethics Committee, or the ethics committee of the Liverpool

School of Tropical Medicine. All patients, or their responsible next of kin, gave written

informed consent to enter the study.

C. neoformans organisms used in this study

All strains were clinical isolates from HIV infected and uninfected patients from the Hospital

for Tropical Diseases, Ho Chi Minh City, Viet Nam enrolled into either a randomised con-

trolled trial of antifungal therapy or a prospective descriptive study [5, 8]. All patients, or their

responsible next of kin, gave written informed consent to enter the study. All studies were

approved by the Hospital for Tropical Diseases Ethical Review Board, and either the Oxford

Tropical Ethics Committee, or the ethics committee of the Liverpool School of Tropical Medi-

cine. All strains were identified using classical mycological methods, sugar assimilation tests

(API 32C, BioMerieux, France) and were confirmed as C. neoformans var. grubii molecular

group VNI using URA5 RFLP as previously described [9]. Fifty-one strains from HIV unin-

fected patients were collected between 1996 and 2009. 37 of these were C. neoformans var. gru-
bii, all molecular group VNI. 14 strains were C. gattii, 13 molecular group VG1 and 1 VG II.

The clinical characteristics of the HIV uninfected patients have been published previously—

underlying potentially immunosuppressive disease was present in 11 patients [5]. The results

of AFLP typing of these strains have been reported previously [6]. The strains from HIV

infected patients were the same as those for which we have previously reported AFLP typing.

These 100 strains had been randomly selected from the baseline isolates of 238 HIV infected

patients who were enrolled into a randomized controlled trial of antifungal therapy in crypto-

coccal meningitis by 2009 [8]. All 299 strains isolated from patients enrolled in the trial under-

went pyrosequencing of 3 MLST loci to divide them into the VNIγ (ST5) versus non-VNIγ
lineage. Control strains (C. neoformans var. grubii URA5 RFLP types VNI and VNII) were

kindly provided by Associate Professor Wieland Meyer, Westmead Millennium Institute for

Medical Research, Sydney, Australia.
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DNA extraction method

Colonies were revived on Sabouraud’s agar at 30˚C for 72 h. Single colonies were spread for

confluent growth and incubated at 30C for 24 h. Chromosomal DNA was extracted from

approximately 0.5 g (wet weight) of yeast cells according to the method described by Wen

et al. [10]. The DNA pellet was resuspended in 100 uL of Tris-EDTA (TE) buffer containing

100 ug of RNase.

URA5 PCR-RFLP typing, MLST, and TAR1 amplification

RFLP analysis of the URA5 gene was carried out according to the methods of Meyer et al.[9].

The final product was separated by electrophoresis on a 3% agarose gel at 100 V for 3 h. RFLP

patterns were assigned visually by comparison with known standards. Multi-locus sequence

typing was performed according to the ISHAM consensus MLST scheme for the C. neofor-
mans/C. gattii species complex [7]. The seven loci sequenced were: capsule polysaccharide

(CAP59), glycerol 3-phosphate dehydrogenase, (GPD1), laccase (LAC1), phospholipase B1

(PLB1), superoxide dismutase (SOD1), orotidine monophosphate pyrophosphorylase (URA5)

genes and the intergenic spacer (IGS1) region. PCR primers and thermocycling conditions

can be found on the ISHAM website (http://mlst.mycologylab.org). Sequencing was carried

out using a 3130xL Genetic Analyzer (ABI). The seven individual loci sequences from the 136

C. neoformans var. grubii strains were concatenated (4,407bp) and aligned to identify 24 poly-

morphic sites. Allele (AT) and sequence types (ST) were determined using pairwise alignment

through the ISHAM Cryptococcus neoformans MLST database (mlst.mycologylab.org). Vec-

torNTI (Thermo Fisher, MA, USA) was used for multiple alignments, Bionumerics v7

(Applied Maths, Belgium) with MLST add-in was used for MLST phylogenetic analysis, Bioe-

dit [11] and FigTree (http://tree.bio.ed.ac.uk/software/figtree/) were used for building phylo-

genetic trees. Phyloviz with the geoBurst algorithm was used to interrogate sequence type

structure [12]. TAR1 internal PCR was carried out using primer pairs 5’-CACGAATTGGGA-

CAGGAAGT-3’ and 5’-GAAGAGAAGGAGGCGGAACT-3’ (for further details see Support-

ing Information S1 Methods). In order to determine the integrity of the VNIγ genotype

genomic DNA, amplification of VNIγ-specific DNA (s_1_scaffold4325) was carried out

using primer pairs 5’-ATATCAATCGTCGCCTGCTC-3’ and 5’-TTTCTTGGGTTGAGGGT

CAG-3’.

Pyrosequencing method for inferring sequence type

DNA from the MLST alleles IGS1, GPD1 and URA5 were PCR amplified using biotinylated

primer pairs targeting the region containing the SNP distinguishing the ST5 genotype. PCR

amplifications were performed in 60 μl reactions containing 1 × Hotstart PCR buffer, 1.5 mM

of MgCl2, 200 μM of dNTP, 10 pM of each primer, 1.25 Units of Hotstart DNA polymerase

(Qiagen, USA) and 3 μl of template DNA. Reactions were cycled once at 95˚C for 15 min, fol-

lowed by 30 cycles of 94˚C for 1 min, 60˚C for 1 min and 72˚C for 1 min, with a final elonga-

tion of 72˚C for 10 min. All PCR amplifications were visualized on 2% agarose gels prior to

pyrosequencing. A pyromark Q96 ID DNA pyrosequencer (Biotage, Sweden) was used to

detect the SNPs of interest in each allele as per the manufacturer’s recommendations. PCR

amplicons were combined with 56 μl of binding buffer and 4 μl of streptavidin sepharose

beads. The resulting mixture was agitated for 5 min before denaturation in denaturation buffer

and washing with the Vacuum Prep Tool (Biotage, Sweden). DNA fragments were transferred

into a 96-well plate containing 3.5 pmol of sequencing primer in 40 μl of annealing buffer and

the DNA sequencing reaction was performed using the Pyro Gold Kit (Biotage, Sweden). The
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SNP detection mode in the software PyromarkID v1.0 (Biotage, Sweden) was used to analyze

sequence data.

Determining the impact of sequence type on clinical phenotype

All data were from a published randomized controlled trial of combination antifungal therapy

for cryptococcal meningitis, Controlled-Trials.com number, ISRCTN95123928 [8]. All

patients from the trial with available infecting isolate genotype information were included.

Baseline variables (present at study entry) as described in the trial paper were summarized by

genotype and compared between the two groups using the Mann-Whitney U test and Krus-

kal-Wallis test for continuous data and Fisher’s exact test for categorical data.

Early Fungal Activity (EFA), i.e. the rate of clearance of yeast colony forming unit counts

from CSF during the first 14 days of antifungal therapy, was estimated in each arm with a

mixed effects model of log10-transformed longitudinal fungal count measurements. Compari-

sons of EFA between ST5 versus non-ST5 were based on a mixed effects model with the fixed

intercept term depending on the genotype, the fixed slope term depending on genotype and

treatment assignment, and random intercept and slope terms. A Cox regression model was

used to determine the impact of sequence type (ST5 versus non-ST5) on survival until 10

weeks (primary endpoint) and six months following study randomisation after adjusting for

treatment group, and after adjusting for treatment group, Glasgow coma score at baseline and

log10 transformed CSF fungal burden (log10 colony forming units/mL) at baseline. The pro-

portion of patients with disability (defined using the Rankin score and two simple questions as

described previously) was compared amongst survivors using logistic regression adjusted for

the treatment assignment [8]. Statistical analyses were performed with the use of R software,

version 3.1.2 [13].

Genome sequencing, assembly and bioinformatics analyses

1–3 μg genomic DNA from each clinical isolate was used to prepare Illumina paired-end

sequencing libraries with Illumina Nextera, sequenced on a HiSeq2000 to deliver approxi-

mately 260X coverage The sequencing reads were then assembled by SOAPdenovo [14] and

Opera [15]. Genotype-specific DNA sequences, which were found in all the genome assemblies

of only one genotype, were identified by alignment using NUCmer [16]. Blastx analysis of the

genotype-specific DNA sequences using the NCBI non-redundant protein sequences (nr)

database or H99 protein database (Cryptococcus neoformans var. grubii H99 Sequencing Proj-

ect, Broad Institute of Harvard and MIT (http://www.broadinstitute.org/) was carried out with

a cut-off e-value of 1e-10 [17]. Protein homologs in the H99 genome were identified as pro-

teins with BLASTx hits that had e-value> 1e-10. BlastN analysis of the genotype-specific DNA

scaffolds identified the location of these DNA sequences in the H99 genome assembly (Broad

Institute). Repeat elements were identified by RepeatMasker (Smit, AFA, Hubley, R & Green,

P. RepeatMasker Open-3.0.) using fungi retrotransposon database (Repbase 17.01) [18]. SNPs

were identified using a combination of Stampy and SOAP analysis using C. neoformans var
grubii H99 reference genome (22 SNPs identified by this strategy were verified to be 100%

accurate by Sanger sequencing). Indels were identified by Stampy and quality filtered. The

location of the SNPs and indels in the genome were predicted using snpEff [19, 20]. For phylo-

genetic analysis data were mapped to the C. neoformans H99 reference genome (NCBI acces-

sion: NC_026745) using BWA mem v 0.7.13 [21], more than 95% of the genome had high

quality mapping for each strain. SNPs were called with GATK v3.3 [22] and filtered with the

following thresholds: minimum depth� 5x,� 90% consensus, GQ� 30. Genome positions

that had a SNP passing quality thresholds in at least one strain were then extracted using snp-
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sites and RAxML v8.2.8 (GTR GAMMA model and Lewis ascertainment correction) used to

derive a maximum likelihood tree [23]. Data are available at the European Nucleotide Archive

(http://www.ebi.ac.uk/ena) under the study code PRJEB17690.

Results

Multi-locus sequence typing of C. neoformans

Aiming to better define the apparent Vietnamese C. neoformans var. grubii VNIγ tropism for

non-immune compromised individuals we performed MLST on seven loci (CAP59, LAC1,

PLB1, GPD1, SOD1, URA5 and IGS1) on all available (n = 38) C. neoformans var. grubii iso-

lated from the cerebrospinal fluid (CSF) of HIV uninfected patients with cryptococcal menin-

gitis at our hospital in Ho Chi Minh City (HCMC) in Vietnam [7]. We additionally performed

MLST on 96 randomly selected C. neoformans var. grubii strains isolated from HIV infected

patients attending the same hospital over the same time period. Two additional reference

strains (WM148 (VN1) and WM626 (VN2)) were included; all 136 isolates are described in

S1 Table.

The seven loci (4,407 bp in total) from the C. neoformans var. grubii contained 24 polymor-

phic sites (five singletons). We next determined the allele type (AT) and sequence type (ST),

identifying 19 independent ATs, which resulted in 14 STs (S1 Table). ST4 (n = 32), ST5

(n = 65) and ST6 (n = 12) were the most commonly identified. We found two previously unre-

ported ATs at the CAP59 and PLB1 loci in strains BMD1367 and BK55, respectively. Of the 14

STs, five were novel (ST306, ST337, ST338, ST339, and ST340). Each novel ST was comprised

of a single strain, four originating from HIV infected patients and one from an HIV uninfected

patient.

Fig 1 shows a minimum spanning tree of the 14 detected STs and their relative distribution

between HIV infected and HIV uninfected patients. We found that all ST5 strains precisely

correlated with our previously identified AFLP cluster, VNIγ. However, one previously unre-

ported ST (ST337), and one of the eight ST93 strains, was formerly in the VNIγ AFLP cluster.

Fig 1. Population structure of Vietnamese clinical isolates (MLST). Minimum-spanning tree of the 14 detected STs and their relative distribution

between HIV infected and HIV uninfected patients of 136 Vietnamese clinical isolates of C. neoformans var. grubii. Circle sizes are proportional to

the number of isolates; red = isolate from HIV infected patient, grey—isolate from HIV uninfected patient. ST—multi locus sequence type.

https://doi.org/10.1371/journal.pntd.0005628.g001
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After stratification by HIV status, we found that organisms belonging to ST5 (previously

VN1γ) were responsible for 82% (31/38) of the cryptococcal meningitis cases in HIV unin-

fected patients and 35% (34/98) of the cryptococcal meningitis cases in HIV infected patients

(OR 8.2, 95% CI 3.1 to 24.5, p<0.001, Fisher’s exact test).

The clinical phenotype of C. neoformans ST5 in HIV infected patients

C. neoformans ST5 were significantly associated with the immune status of the patient suggest-

ing they may have a different pathogenic potential. Therefore, we aimed to determine whether

this ability to infect apparently immune competent patients was associated with any additional

ability to affect disease presentation or outcome. As clinical disease phenotype in patients with

cryptococcal meningitis is confounded by HIV status we compared the clinical phenotypes of

ST5 C. neoformans var. grubii infections against non-ST5 C. neoformans var. grubii in HIV

infected individuals only. Using four Single Nucleotide Polymorphisms (SNPs) and two inser-

tion/deletion (indel) sequences within the IGS1, URA5 and SOD1 loci we further screened 290

C. neoformans var. grubii from HIV infected patients enrolled into an anti-fungal RCT in Viet-

nam [8]. One hundred and three (35.6%) of the C. neoformans var. grubii from this cohort

were inferred to be ST5, or within the ST5 complex. The remaining 187 (64.4%) isolates were

categorized as non-ST5 strains. The clinical characteristics of patients stratified by ST5 and

non-ST5 infecting strains are shown in Table 1.

The baseline characteristics between HIV patients infected with ST5 versus non-ST5 organ-

isms were largely similar. However, HIV infected patients with cryptococcal meningitis caused

by ST5 organisms were significantly more likely to have lymphadenopathy (11% vs. 4%,

p = 0.05 Fisher’s exact test) and a higher blood lymphocyte count (median 0.76 versus 0.55

X109 cells/L, p = 0.001, Kruskal-Wallis test). CD4 counts tended to be higher in ST5 infected

patients, but this was not of statistically significance (median 22 vs. 14.5 cells/uL, p = 0.053

Kruskal-Wallis test). Conversely, ST5 infected individuals were less likely to have fungi isolated

from blood (61.9% vs. 79.8%, p = 0.02 Kruskal-Wallis test) and had lower yeast burdens in CSF

at baseline (median 5.4 log10 CFU/ml vs. 5.9 log10 CFU/ml, p<0.01 Kruskal-Wallis test).

There was no difference in the rate with which yeast was cleared from CSF, defined as early

Fungicidal Activity (EFA), by genotype (Table 1).

We next investigated the role of ST on disease outcome; the survival curves for cryptococcal

infection were similar between the infecting STs (Fig 2). Formal Cox regression analysis

(adjusted for treatment assignment) further demonstrated no significant differences in survival

up to 70 days or six months post-randomization between patients infected with ST5 or non-

ST5 organisms (Hazard Ratio (HR) 0.94 (95%CI 0.62 to 1.44), p = 0.72, and HR 0.90 (95%CI

0.62 to 1.31), p = 0.57, respectively). These findings were unchanged after further adjustments

for baseline fungal burden and Glasgow Coma Score (GCS). However, survivors of ST5 C. neo-
formans infections had a borderline significant increased rate of disability at 70 days (72.7%

(40/55) in ST5 infections versus 57.1% (52/91) with non-ST5 infections, (OR 2.11 (95%CI

1.01, 4.41), p = 0.046).

Whole genome sequencing of Vietnamese C. neoformans

Our results demonstrated that Vietnamese ST5 C. neoformans organisms are preferentially iso-

lated from HIV non-infected individuals and may induce differing meningitis phenotypes in

HIV infected patients. These data suggest that lineage specific genetic loci may be associated

with host immune status and/or pathogenicity. To test this hypothesis we selected eight Viet-

namese (VN) C. neoformans var. grubii for whole genome sequencing (WGS). The characteris-

tics of the eight strains selected for WGS and the sequencing statistics are shown in Table 2.
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Table 1. Effect of infection with ST5 or non-ST5 Cryptococcus neoformans var. grubii on clinical phenotype of cryptococcal meningitis in HIV

infected patients.

Characteristic ST5 (N = 103) Non-ST5 (N = 187 Comparison

n Summary statistic n Summary statistic (p-value)

History

Duration of symptoms (days) 97 14 (7, 21) 166 13 (7, 20) 0.55

Fever 101 78 (77.2%) 184 138 (75%) 0.78

Headache 102 101 (99.0%) 185 183 (98.9%) 1.00

Neck stiffness 94 64 (68.1%) 176 126 (71.6%) 0.58

Confusion 102 30 (29.4%) 186 54 (29.0%) 1.00

Coma 102 16 (15.7%) 185 16 (8.7%) 0.08

Findings on examination

Weight Kg 101 47.0 (43.0,50.0) 183 47.0 (42.0,50.0) 0.78

Temperature ˚C 101 37.5 (37.0,38.0) 185 37.5 (37.0,38.0) 0.31

Heart Rate bpm 101 92 (80,100) 185 90 (80,100) 0.57

Glasgow coma score 101 185 0.12

15 11 (10.9%) 10 (5.41%)

11–14 16 (5.8%) 43 (23.2%)

�10 11 (10.9%) 10 (5.4%)

Cranial nerve lesions 99 21 (21.2%) 186 44 (23.7%) 0.66

Papilledema 94 19 (20.2%) 165 33 (20.0%) 1.00

Visual impairment 90 22 (24.4%) 162 39 (24.1%) 1.00

Neck stiffness 99 70 (70.7%) 185 138 (74.6%) 0.49

Hemiplegia 101 3 (3.0%) 185 9 (4.9%) 0.55

Urinary retention 101 3 (3.0%) 184 6 (3.3%) 1.00

Skin lesions 99 39 (39.4%) 180 59 (32.8%) 0.30

Lymphadenopathy 100 11 (11.0%) 184 8 (4.4%) 0.045

Hepato/splenomegaly 101 7 (6.9%) 185 9 (4.9%) 0.59

Baseline Investigations

Blood

CD4 count cells/uL 74 22.0 (9.0,38.5) 142 14.5 (8.0,27.0) 0.053

Blood culture positive 63 39 (61.9%) 104 83 (79.8%) 0.019

Haemoglobin 93 12.2 (10.6,13.4) 177 11.8 (10.5,13.2) 0.29

White Cell Count 100 6.3 (4.7,8.8) 181 6.0 (4.3,8.1) 0.19

Lymphocyte count 99 0.8 (0.5,1.0) 181 0.6 (0.4, 0.8) 0.001

Blood glucose 93 5.3 (4.9,6.2) 176 5.8 (4.8,6.7) 0.06

Cerebrospinal fluid

Baseline fungal count Log10CFU/ml 78 5.4 (4.7,6.1) 153 5.9 (5.3,6.5) 0.010

Raised CSF pressure cm/CSF 83 57 (68.7%) 155 111 (71.6%) 0.66

CSF white cell count cells/uL 91 35.0 (12.0, 97.5) 169 22.0 (7.0, 64.0) 0.10

CSF neutrophil count cells/uL 66 15.5 (6.3, 39.3) 106 13.5 (7.0,36.0) 0.76

CSF lymphocyte count cells/uL 71 33.0 (13.5,71.0) 118 30.0 (11.0,67.8) 0.49

Imaging

Abnormal Chest X-ray 83 41 (49.4%) 155 87 (56.1%) 0.34

Abnormal CT brain imaging 32 18 (56.3%) 55 32 (58.2%) 1.00

EFA* (95% CI) [log10 CFU/mL of CSF per day] 103 -0.36 (-0.39,-0.33) 187 -0.35 (-0.37,-0.33) 0.49

*EFA = Early Fungal Activity, i.e. the CSF clearance rate of quantitative yeast culture colony counts during the first 14 days of antifungal therapy.

n refers to the number of subjects with non-missing data for that variable. Continuous variables (other than EFA) are summarized as median (interquartile

range) and compared using the Wilcoxon rank sum test. Categorical variables are summarized as frequency (percentage) and compared using Fisher’s

exact test. EFA was estimated and compared based on mixed effects modeling.

https://doi.org/10.1371/journal.pntd.0005628.t001
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The selected organisms comprised five ST5 organisms, two ST4 organisms and one ST306

organism and were isolated from both HIV infected and uninfected individuals. The sequenc-

ing reads from each of the eight isolates were individually assembled into ~18.3 Mb draft

genome assemblies comprising the 14 chromosomes of C. neoformans var. grubii. The assem-

bled sequences had a median scaffold length of 119 kbp with a maximum scaffold length of

464 kbp.

Fig 2. Effect of infection sequence type on survival of Vietnamese HIV infected patients with

cryptococcal meningitis. Kaplan-Meier survival curves by infecting sequence type (ST5 (solid line) versus

non-ST5 (dashed line)) for 290 HIV infected patients enrolled in a randomized controlled trial of combination

antifungal therapy for cryptococcal meningitis over 6 months following randomization. No significant

difference in the risk of death was detected by either 10 weeks or 6 months following randomization. Figures

below the time axis are the number of patients at risk.

https://doi.org/10.1371/journal.pntd.0005628.g002

Comparative genomics of Vietnamese Cryptococcus neoformans

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0005628 June 14, 2017 9 / 22

https://doi.org/10.1371/journal.pntd.0005628.g002
https://doi.org/10.1371/journal.pntd.0005628


The eight draft genome assemblies exhibited approximately 99.4% nucleotide sequence

identity with the C. neoformans var. grubii H99 reference sequence. We additionally identified

165 kbp of sequence (0.9% of genome assembly, in fragments >500 bp) specific to either H99

or the VN isolates (Table 3), signifying that the VN organisms were more closely related to

each another than to H99. Chromosomal divergence between the eight Vietnamese isolates

and the H99 reference strain is illustrated in S1 Fig.

The absence of genetic rearrangements on chromosome 3 and chromosome 11 in VN iso-

lates, in contrast to H99 [24], further suggests that the VN isolates share a more recent com-

mon ancestor than strain H99. We next analyzed the mating-type locus in the VN isolates and

found that all strains belonged to the most prevalent cryptococcus mating type, MATα.

Table 2. Characteristics of the eight genome sequenced strains of Cryptococcus neoformans var. grubii.

Genomic features BMD700 BMD1338 BMD1646 BK78 BK147 BMD1367 BMD14155 BK80

Characteristics

Underlying Disease None None None HIV HIV Gastric Cancer SLE HIV

MLST Sequence type (ST) 5 5 5 5 5 306 4 4

AFLP Cluster VNIγ VNIγ VNIγ VNIγ VNIγ VNIδ VNIδ VNIδ
Complication/Outcome Blind Died - - - Died - -

Genome assembly

Number of scaffolds 493 506 478 486 503 425 478 466

Total length (Mb) 18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.2

Max length (Kb) 391 391 438 391 391 438 464 438

Min length (Kb) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Scaffold N50 (Kb) 111 113 121 126 126 131 115 111

Number of scaffolds larger than N50 size 49 47 44 45 46 41 47 46

Scaffold N90 (Kb) 32 31 35 33 33 38 35 34

Number of scaffolds larger than N90 size 165 163 150 156 157 138 157 157

GC Content (%) 48.2 48.2 48.2 48.2 48.2 48.2 48.2 48.2

Proportion of repetitive sequences (%) 2.11 2.19 2.25 2.20 2.24 2.27 2.30 2.16

https://doi.org/10.1371/journal.pntd.0005628.t002

Table 3. Alignment of Vietnamese Cryptococcus neoformans var. grubii genome assemblies against the H99 reference genome.

Genomic features BMD700 BMD1338 BMD1646 BK78 BK147 BMD1367 BMD1415 BK80

VN-specific sequences

Number of scaffolds 36 34 33 36 35 37 37 35

Total length (Kb) 82.60 86.84 83.94 88.62 88.74 100.52 104.85 97.47

Max length (Kb) 13.72 15.97 15.97 15.97 16.02 14.43 16.01 16.01

Min length (Kb) 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

H99-specific sequences

Number of scaffolds 39 41 40 38 32 75 51 63

Total length (Kb) 64.6 57.16 55.64 55.21 42.24 114.42 75.64 119.97

Max length (Kb) 7.79 3.79 3.77 4.54 3.85 13.62 13.61 11.81

Min length (Kb) 0.58 0.51 0.54 0.52 0.53 0.51 0.51 0.53

Average sequence identity*

Sequence identity (%) 99.3 99.4 99.4 99.4 99.5 99.3 99.3 99.3

* based on MUMmer show-tiling results

https://doi.org/10.1371/journal.pntd.0005628.t003
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To infer the phylogenetic relationship between the Vietnamese (VN) isolates, using H99 as

a reference, we identified SNPs and indels in the VN strains. We found a mean of 41,290 SNPs

and 6,487 indels in each of the VN C. neoformans var. grubii genome assemblies in comparison

to H99, and 4,364 indels distinguishing ST5 from non-ST5. SNPs were not evenly distributed

throughout the genomes but varied with areas of distinct high frequencies, some shared

between lineages and others uniquely associated with ST5 (Fig 3). A neighbor-joining tree con-

firmed that the ST5 and non-ST5 VN isolates were phylogenetically distinguishable and dis-

tantly related to the reference genome (Fig 4).

Comparative genomics of Vietnamese C. neoformans

We next performed comparative genomics to contrast the genome content of the VN C. neo-
formans var. grubii against H99. The eight VN genomes exhibited approximately 99.7% nucle-

otide sequence identity, with between 45 kbp (non-ST5) and 67 kbp (ST5) of genotype-specific

DNA sequence variation between these genotypes. This was approximately three times less

than the extent of the sequence variation between H99 and the VN isolates.

A blastn comparison demonstrated that VN lineage specific DNA was located on

multiple chromosomes. Rearrangements and gene loss in Cryptococcus are associated with

transposable elements and play an integral role in genomic architecture [25, 26]; centromeres

are “hotspots” for retrotransposons TCN1 and/or TCN6 [27]. We identified several retrotran-

sposons and repeat elements within the sequences from the VN strains (Table 4). These ele-

ments were enriched in chromosomal regions proximal to the telomeres and centromeres.

[26]. We found that repeat elements such as the retrotransposons Ty1/Copia and Ty3/Gypsy

and the Harbinger interspersed repeat subfamily constituted almost 2% of the VN C. neofor-
mans genome sequences. The majority of the repeat elements identified in the VN strains

belonged to the Ty3/gypsy retrotransposons group (Table 4). Notably, with respect to lineage

specific genetic composition, the percentage of repeat elements between ST5/non-ST5 was

comparable, with the exception of MuDR DNA transposon sequences, which were found to be

more than twice as common in the ST5 isolates (average MuDR repeats; 170 vs. 69 in non-

ST5).

To test our hypothesis of lineage-specific genetic variation accounting for phenotypic dis-

tinction in HIV/non-HIV infected patients we performed comparative genomics between the

ST5 and the non-ST5 sequences. The ST5 and non-ST5 specific DNA sequences were de novo
assembled; forming 45 contiguous sequences (25 in ST5, 20 in non-ST5); these are described

in Table 5. These genotype specific sequences ranged from 0.5 to 20 kbp and contained

between one and six predicted coding sequences. The 45 genotype specific regions were sub-

jected to blastx/p to identify homologous and orthologous DNA and protein sequences. The

majority of these genotype-specific sequences encoded cryptococcal proteins with multiple

homologues across the C. neoformans var. grubii genome (S2 Table). As many of these homo-

logues were likely to share functional redundancy we focused on non-redundant lineage spe-

cific coding sequences for further investigation.

The specific sequences found in the ST5 strains encoded 19 predicted proteins with a previ-

ously annotated function and eight hypothetical proteins. Notably, with the exception of a fun-

gal-specific phenolic acid decarboxylase (PAD) previously identified in Meyerozyma
guilliermondii, all ST5 genotype-specific sequences could be found in C. neoformans H99 [28].

ST5-specific genes encoding proteins potentially associated with virulence included a DEAD-

box ATP-dependent RNA helicase 26 (CNAG_07651), oxoprolinases (implicated in host colo-

nization), a taurine catabolism dioxygenase (stress resistance), a zinc finger protein, membrane

transport proteins and drug transporters [29].
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We additionally found that the ST5 specific phenolic acid decarboxylase specific gene

(PAD) was located on a DNA scaffold that could be aligned to the telomeric region of chromo-

some 11. This region was adjacent to a non-LTR retrotransposon Cnl1 (C. neoformans LINE-

1) encoding region; we conclude this was a likely insertion into the ST5 genome. The DNA

Fig 3. BRIG plot showing the relatedness of an ST5 isolate (BMD700) and an ST4 isolate (BMD1415) to the H99 reference genome.

On the inner two rings, the coloured regions represent high pairwise similarity with H99 (>70%) according to BLASTn; lighter regions show

areas of difference with H99. The outer two rings plot the number of SNPs per 1000 base pairs. The bar scale is limited to a maximum

frequency of 10 SNPs per 1000 bp; any window with greater than this frequency is coloured blue. The figure illustrates that SNP density

varies widely across the genome between areas of high and low frequencies; some of these are common to both STs compared with H99,

others are ST4 or ST5 specific.

https://doi.org/10.1371/journal.pntd.0005628.g003
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Fig 4. The phylogenetic relationship of eight ST5 and non-ST5 Vietnamese C. neoformans in

comparison with the H99 reference genome. Genome-wide SNP derived maximum likelihood tree of eight

Vietnamese strains of C. neoformans var. grubii and the H99 reference strain. Scale bar = genetic distance.

All bootstrap values were greater than 0.9.

https://doi.org/10.1371/journal.pntd.0005628.g004

Table 4. Repeat elements in the Vietnamese Cryptococcus neoformans var. grubii genome assemblies.

Genomic feature BMD700 BMD1338 BMD1646 BK78 BK147 BMD1367 BMD1415 BK80

LTR Retrotransposons

Ty1/Copia (bp) 26,115 27,580 26,931 27,172 28,099 25,035 25,382 25,591

Ty3/Gypsy (bp) 191,024 199,833 206,288 201,608 205,351 219,742 223,238 198,448

Others (bp) 37,550 38,648 38,572 38,461 38,170 38,326 38,937 37,663

DNA elements

EnSpm (bp) 373 373 443 443 443 149 97 321

Ginger2/TDD (bp) 54 54 54 54 54 54 54 54

Harbinger (bp) 10,575 10,416 10,448 10,423 10,565 10,481 10,446 103,54

Helitron (bp) 619 619 619 511 619 595 595 595

Mariner/Tc1 (bp) 155 84 155 155 155 146 146 146

MuDR (bp) 158 158 154 158 223 69 69 69

Tcn760 (bp) 101,07 102,09 100,58 101,53 100,53 103,24 103,16 103,93

Others (bp) 365 365 365 365 365 289 289 289

Simple repeats (bp) 86,134 89,912 94,255 90,082 91,273 88,638 89,560 89,625

Low complexity (bp) 6,252 6,332 6,431 6,639 6,687 6,883 7,450 7,074

Non-LTR Retrotransposon

CRE (bp) 16,447 16,784 16,679 17,084 17,576 13,785 14,405 13,728

Tad1 (bp) 130 68 68 68 68 0 0 65

https://doi.org/10.1371/journal.pntd.0005628.t004
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sequence of the PAD gene was found to be sufficiently divergent (blastx E-value = 3e-16) from

that of other fungi PAD genes (Meyerozyma guilliermondii PAD, sequence homology for 30 of

the 168 aa) and overall GC content of the scaffold did not differ substantially from that of the

overall genome sequence. Taken together these data suggest that this insertion event was not

recent [28]. We confirmed the presence of PAD in a publically available ST5 strain from South

Africa (SRA sequence accession ERR1810411).

In the context of the Vietnamese cohort in which they were isolated non-ST5 specific

sequences potentially represent ‘anti-virulence’ encoding regions, since they are not present in

ST5 organisms [30]. The non-ST5 specific DNA sequences (n = 20) included regions encoding

three hypothetical proteins (CNAG_07666, CNAG_00127 and CNAG_07313), a sugar trans-

porter (CNAG_06527), a heat shock protein and TAR1 (temperature associated repressor

gene; CNAG_04934) [31, 32]. CNAG_07666 was found to contain a domain related to the

CAP (cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins) family

and exhibited homology to the pathogenesis-related protein, Pr-1. However, atypically for pro-

teins within the CAP family, CNAG_07666 was found to have only a single cysteine residue,

and at 16 kDa was predicted to be only half the size of other previously described crypotococ-

cal Pr-1 type proteins [33]. CNAG_00127 was predicted to encode a hypothetical protein with

no known homologues and no previously described protein domains or motifs. The region

encoding the CNAG_00127 protein was partially deleted in all of the sequenced ST5 isolates,

and the proportion of gene deleted across the different ST5 isolates was variable [31]. TAR1

inhibits the expression of melanin at 37˚C, and has previously been shown to be a potential vir-

ulence factor for Cryptococcus [32]. We confirmed the presence of TAR1 encoding sequences

in the genome assemblies of non-ST5 isolates by blastn and blastx (sequences exhibited 100%

DNA sequence identity with strain H99). Temperature dependent gene expression may repre-

sent an advantageous host adaptation and therefore such genes are potentially associated with

virulence. Two further regions encoding enzymes with temperature dependent expression

(allantoate permease CNAG_06875 (ST5-specific) and aldo-keto reductase CNAG_01257

(non-ST5 specific)) were also found to be genotype specific [34]. We additionally found that a

region encoding a sodium/bile acid cotransporter (CNAG_01461) protein was partially trun-

cated in the non-ST5 strains (381 aa instead of 515 aa) in comparison to the H99 reference.

The majority of proteins encoded by genotype-specific DNA were predicted to have enzymatic

function, but given their high sequence homology to other homologues and orthologues in the

genome it was difficult to infer their significance and function in genetic variation.

Table 5. Characteristics of the Vietnamese Cryptococcus neoformans var. grubii sequences unique to either ST5 or non-ST5 isolates. Lineage

specific sequence was highly conserved within each lineage.

Genome features Sequences unique to ST5 Sequences unique to non-ST5

BMD700 BMD1338 BMD1646 BK78 BK147 BMD1367 BMD1415 BK80

Number of scaffolds 25 28 25 26 25 21 23 20

Total length (Kb) 63.13 66.44 65.32 66.85 65.29 50.08 53.24 44.56

Max length (Kb) 19.99 19.99 19.99 19.99 19.99 6.09 7.18 5.50

Min length (Kb) 0.51 0.51 0.50 0.51 0.51 0.50 0.52 0.50

Compared with non-ST5 Compared with ST5

Average sequence identity* BMD700 BMD1338 BMD1646 BK78 BK147 BMD1367 BMD1415 BK80

Sequence identity (%) 99.9 99.9 99.3 99.8 99.3 99.9 99.9 99.9

* based on MUMmer show-tiling results

https://doi.org/10.1371/journal.pntd.0005628.t005
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Table 6. Genes containing genotype-specific SNPs and indels specific to the Vietnamese Cryptococcus neoformans var. grubii ST5 or non-ST5

organism.

Gene ID Sequence

type

High impact

mutations (n)

Protein name Pfam Accession

number

Pfam description

CNAG_07704 ST5 32 Conserved hypothetical protein

CNAG_02339 ST5 11 Conserved hypothetical protein

CNAG_05161 ST5 8 Conserved hypothetical protein

CNAG_05185 ST5 5 Conserved hypothetical protein

CNAG_06888 ST5 4 Cytoplasmic protein PF00400.23 WD domain, G-beta repeat. (protein-

protein interaction)

CNAG_04921 ST5 3 Conserved hypothetical protein

CNAG_05987 ST5 3 Conserved hypothetical protein

CNAG_00005 ST5 2 TPR domain-containing protein PF07719.8 Tetratricopeptide repeat. (protein-protein

interaction)

CNAG_01240 ST5 2 Conserved hypothetical protein

CNAG_01964 ST5 2 Oligopeptide transporter PF03169.6 OPT oligopeptide transporter protein

CNAG_02027 ST5 2 Conserved hypothetical protein

CNAG_02968 ST5 2 phospholipase C-2

CNAG_06251 ST5 2 ser/thr protein phosphatase

family protein

PF00149.19 Calcineurin-like phosphoesterase

CNAG_06338 ST5 2 ABC transporter PMR5 PF00005.18 ABC transporter

CNAG_06503 ST5 2 Uridine permease PF02133.6 Permease for cytosine/purines, uracil,

thiamine, allantoin

CNAG_06810 ST5 2 Conserved hypothetical protein

CNAG_04982* ST5 1 Cytosine-purine permease

CNAG_06731* ST5 1 Conserved hypothetical protein

CNAG_03670* ST5 1 Other/IRE protein kinase PF00069.16 Protein kinase domain

CNAG_04773 Non-ST5 23 Conserved hypothetical protein

CNAG_06867 Non-ST5 19 Conserved hypothetical protein

CNAG_03189 Non-ST5 10 DIL and Ankyrin domain-

containing protein

PF00023.21 Ankyrin repeat

CNAG_06934 Non-ST5 10 Hexose transporter protein PF07690.7 Major Facilitator Superfamily

CNAG_07682 Non-ST5 8 Conserved hypothetical protein PF04886.3 PT repeat

CNAG_05328 Non-ST5 7 Conserved hypothetical protein PF00172.9 Fungal Zn(2)-Cys(6) binuclear cluster

domain

CNAG_00174 Non-ST5 5 Conserved hypothetical protein

CNAG_00642 Non-ST5 5 Conserved hypothetical protein

CNAG_01891 Non-ST5 4 RAD57 protein (DNA repair)

CNAG_02475 Non-ST5 3 Flavin-containing

monooxygenase

CNAG_07727 Non-ST5 3 Predicted protein

CNAG_01240 Non-ST5 2 Conserved hypothetical protein

CNAG_01866 Non-ST5 2 Conserved hypothetical protein

CNAG_02478 Non-ST5 2 Glycerol dehydrogenase PF00248.12 Aldo/keto reductase family

CNAG_05064 Non-ST5 2 Conserved hypothetical protein

CNAG_05185 Non-ST5 2 Conserved hypothetical protein

CNAG_06307 Non-ST5 2 Conserved hypothetical protein

CNAG_07312 Non-ST5 2 Conserved hypothetical protein

CNAG_07815 Non-ST5 2 Conserved hypothetical protein

CNAG_07832 Non-ST5 2 Predicted protein

CNAG_07928 Non-ST5 2 Predicted protein

(Continued )

Comparative genomics of Vietnamese Cryptococcus neoformans

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0005628 June 14, 2017 15 / 22

https://doi.org/10.1371/journal.pntd.0005628


In addition to genotype-specific sequence, we identified a number of genotype-specific

SNPs (in relation to the H99 reference genome) likely to significantly impact protein function

because they resulted in premature truncation of translation (Table 6). In the ST5 strains these

SNPs were found to be located in three previously identified virulence associated proteins; a

cytosine-purine permease (CNAG_04982) expressed during macrophage infection, a tempera-

ture dependent hypothetical protein (CNAG_06731) and an Ire1protein kinase

(CNAG_03670) [35–37]. SNPs resulting in premature gene truncation occurred in a further

16 ST5-specific genes included those encoding a calcineurin-like phosphoesterase and nine

hypothetical proteins. Similarly, a number of such SNPs were identified in the non-VNIg

strains. Twenty-five genes were affected, four which have previously been identified as viru-

lence determinants, including two expressed during macrophage infection (CNAG_01464 and

CNAG_01445) and two with temperature dependent ((37˚C) expression (CNAG_01257 and

CNAG_03754) [35, 36]. Thirteen of the 25 affected genes were conserved hypothetical pro-

teins; a further three were predicted proteins.

Discussion

Although cryptococcal meningitis due to infection with C. neoformans var. grubii is predomi-

nantly a disease of immunocompromised patients, disease in the apparently immunocompe-

tent is increasingly recognized in Asia [5, 38, 39]. Our analyses demonstrate that our

previously defined VNIγ cluster, responsible for the vast majority of disease in HIV uninfected

patients in Vietnam, consists of a single MLST type (ST5), and that the divergence of this geno-

type from other Vietnamese strains is not recent [6]. In contrast, clinical isolates from HIV

infected patients in Vietnam appear to be more diverse, with at least 14 different STs found to

cause disease in this group. However, while we have demonstrated clear segregation of strains

according to host immune phenotype, ST5 strains are also the single most frequent cause of

disease in HIV infected patients, accounting for >30% of cases. The dominance of ST5 strains

in HIV infected patients could be explained by increased abundance of this ST in the environ-

ment, leading to more exposure and opportunity for infection. Alternatively, this ST may have

enhanced pathogenic potential compared with other STs, predicting it has a greater inherent

capacity to cause infections in humans. In the latter case, its prevalence in the HIV infected

population would be expected to be more common than its prevalence in the environment.

The dominance of ST5 strains in immunocompetent patients, the relative low incidence of this

disease, together with the low HIV prevalence in Vietnam (1%) is consistent with a hypothesis

of increased pathogenicity and low environmental prevalence. Systematic and sensitive ran-

domized environmental sampling is needed to test this hypothesis.

Despite the differential segregation of strains by host immune status, the clinical data from

HIV patients does not suggest that ST5 strains are more virulent in this patient group.

Although patients with ST5 infections tended to have lower levels of consciousness, which

Table 6. (Continued)

Gene ID Sequence

type

High impact

mutations (n)

Protein name Pfam Accession

number

Pfam description

CNAG_01464* Non-ST5 1 flavohemoglobin PF00175.12 Oxidoreductase NAD-binding domain

CNAG_01445* Non-ST5 1 APG9 PF04109.7 Autophagy protein Apg9

CNAG_01257* Non-ST5 1 aldo-keto reductase PF00248.12 Aldo/keto reductase family

* previously described virulence associated genes

https://doi.org/10.1371/journal.pntd.0005628.t006
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have previously been associated with worse outcomes, we did not find significant differences

in rates of death, and only marginal differences in disability in survivors, by infecting genotype

[8]. This finding is similar to a study from South Africa, which also did not identify statistically

significant differences in outcome in HIV infected patients according to infecting sequence

type [40]. Surprisingly, the burden of fungus in the CSF, which has previously been identified

as an important prognostic factor, was significantly lower in patients infected with ST5 strains

[41]. We found no difference in duration of symptoms between the ST5 induced infections

and the non-ST5 infections. Therefore, the lower fungal burdens associated with ST5 infec-

tions are unlikely to be a consequence of earlier presentation of a more severe illness. An alter-

native interpretation is that ST5 strains are more ‘potent’ on a cell-by-cell basis, leading to

similar clinical outcomes despite lower yeast burdens. Consistent with the previously identified

immune segregation of strains, there was a trend towards higher CD4 counts in HIV patients

infected with ST5. Consequently, while it seems that, in HIV patients at least, the infecting

genotype does not have a major impact on disease course, ST5 strains may have an advantage

in either the colonization or invasion of hosts. Pathogenicity factors that confer these abilities

are not well defined although we did identify differences in genes between strains that have

previously been associated with macrophage infection. The genetic differences between ST5

and the other strains in genes encoding hypothetical and predicted proteins are intriguing

prospects for further study in experimental models with respect to these qualities.

Cryptococcal disease is not transmitted person to person, and humans are a dead-end host.

Therefore, the drivers for genetic divergence must be related to C. neoformans’ (as yet unidenti-

fied) ecological niche in Vietnam. The ability to cause disease is thought to be a by-product of

such adaptations—so called ‘bystander pathogenicity’ [6]. Recognized ecological niches for

Cryptococcus species in other geographic locations include bird guano, soil, rotting wood and

various tree species [2]. The presence of a novel phenolic acid decarboxylase (PAD) gene associ-

ated exclusively with the ST5 strains may provide evidence for the adaptation of these strains to

a particular niche in Vietnam. Phenolic acids are important lignin-related constituents of plant

cell walls, and therefore prevalent in the environment of C. neoformans. Cell wall-bound pheno-

lic acids interfere with cell wall degrading enzymes and mycelia growth of fungi; the acquisition

of this PAD may have been positively selected to combat plant defenses [42]. Of note, depend-

ing on the fungal growth medium, phenolic acid can also be incorporated into melanin, which

is known to be an important Cryptococcus virulence factor [43]. The acquisition of the PAD

gene presumably represents a horizontal gene transfer event, possibly from a closely related

member of the Cryptococcus species or an alternative fungal species inhabiting the same niche.

Notably, we found Cnl1 retrotransposon elements adjacent to this gene, likely indicating their

role in the insertion of this gene [44]. However, the Cnl1 element was incomplete, suggesting

this gene is defunct and the gene is now fused into the genome following transposition. This

scenario resembles a previous report of interspecies gene transfer between fungi [45]. More

studies are necessary to determine whether PAD is functional in ST5 isolates and whether it

plays a significant role in virulence. However, in our isolates, the vast majority of genotype-spe-

cific DNA encoded previously identified known cryptococcal associated proteins, suggesting

that the loss of cryptococcal genes is of greater evolutionary significance for disease than the

acquisition of genes supporting novel functions [46]. Evidently, the loss and acquisition of

genetic material we observed here is limited to those that do not affect survival outside the host.

Gene loss can be tolerated because of functional redundancy between similar proteins. Further,

where there may be only a single copy of a gene, there may be pleiotropic effects such that genes

have both an essential housekeeping function as well as playing a key role in virulence [47].

We found differences in the presence and absence of numerous temperature dependent

genes between the ST5 and non-ST5 isolates. Such genes enable some limited adaptation
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towards the environment in the susceptible human and are important virulence candidates. Of

particular interest was the deletion of the TAR1 gene in the ST5 isolates. TAR1 was initially

reported to inhibit laccase expression in a temperature-associated manner, resulting in

reduced production of melanin at 37˚C [32]. Therefore, this gene could be considered to have

an antivirulence function in humans. TAR1 has been reported to have a small but significant

attenuating effect in a cryptococcal mouse infection model [48]. Such disabled antivirulence

mechanisms are not novel—they have been reported as a mechanism of increased virulence in

several bacterial pathogens, where they may have been acquired for adaptation to the environ-

ment [30]. However, the deletion of TAR1 is unlikely to be sufficient to explain the extent of

the clinical differences between ST5 and other non-ST5 isolates. Moreover, the regulatory

effects of TAR1 seem to vary by strain, indicating that melanin production is controlled

through multiple pathways [48].

Further potential cause of differences in pathogenicity in Cryptococcus are genomic rear-

rangements with consequent gene disruptions or altered expression of adjacent genes due to

transposon insertions, excision events, gene deletions, duplications, inversions and transloca-

tion events due to ectopic recombination [26]. We were unable to explicitly test gene duplica-

tion using our data given the limitations of short read Illumina sequence data. These

limitations also mean large-scale rearrangements would not have been apparent in the draft

genome assemblies. There is a higher probability of DNA rearrangement occurring in fungi

exposed to environmental stresses, the acquisition of which presumably offers an evolutionary

advantage in a specific ill-defined niche [49]. In our isolates, the location of novel genotype-

specific DNA showed a telomeric bias, possibly due to alternative selective constraints at the

telomeres or because of neighboring gene co-expression [50]. DNA rearrangements may also

influence recombination between the various genotypes, which can contribute to the “specia-

tion” of new genotypes [51, 52].

A potential weakness of our study is that we sequenced and typed only single isolates from

our patients. Thus, we may have missed mixed lineage infections. However given the associa-

tion between ST5 strains and HIV uninfected patients is so statistically robust it is unlikely that

the distribution we see is an artefact [6].

In conclusion, we have performed comparative genomics and a clinical comparison of

Cryptococcus neoformans var. grubii isolates and shown that ST5 and non-ST5 strains have a

comparable genetic content, despite significantly different ability to induce disease in non-HIV

infected individuals. Our analysis identified a number of gene candidates for further study to

disaggregate the pathways associated with the pathogenesis of Cryptococcus neoformans. While

we found little difference in the outcome of disease in HIV infected patients according to

infecting sequence type, this is in contrast with the asymmetrical distribution of sequence types

seen in clinical practice according to host immune phenotype. Therefore we postulate that the

genetic differences identified between strains in this study in some way result in different abili-

ties in effecting either host colonization, invasion, or latency. Currently we lack robust models

of disease in immunocompetent patients for these important phases of infection, but ex vivo
gene expression studies, particularly from patients with different immune phenotypes, are

likely to be more revealing and offer the prospect of identifying novel drug targets.
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