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A B S T R A C T

Anti-HIV-1 drug design has been notably challenging due to the virus’ ability to mutate and develop immunity
against commercially available drugs. The aims of this project were to develop a series of fleximer base ana-
logues that not only possess inherent flexibility that can remain active when faced with binding site mutations,
but also target a non-canonical, highly conserved target: the nucleocapsid protein of HIV (NC). The compounds
were predicted by computational studies not to function via zinc ejection, which would endow them with sig-
nificant advantages over non-specific and thus toxic zinc-ejectors. The target fleximer bases were synthesized
using palladium-catalyzed cross-coupling techniques and subsequently tested against NC and HIV-1. The results
of those studies are described herein.

1. Introduction

For some time, the Seley-Radtke group has designed and synthe-
sized various classes of flexible purine nucleos(t)ides, or “flex-
imers”.1–13 These novel nucleosides were designed to investigate how
flexibility in the nucleobase could potentially affect receptor-ligand
recognition and function. In addition, their flexible design allows them
to overcome issues with binding site mutations thus retaining their
activity.

To date, fleximers have shown key advantages over the corre-
sponding purine-base nucleosides.1–13 For example, the distal guanosine
fleximer (Flex-G, Fig. 1) proved to be an inhibitor of S-adenosyl-L-
homocysteine hydrolase by adapting a syn conformation, thereby pla-
cing the exocyclic amino group such that it mimicked the amino group
from an adenosine nucleobase.3,4 Moreover, the guanosine fleximer
triphosphate (Flex-GTP) was shown to be a superior substrate of human
GDP-L-fucose pyrophosphorylase compared to the natural substrate
GTP,5 likely due to the fleximer’s ability to interact with amino acids in
the active site not accessible by GTP.6 This also allowed Flex-GTP to
retain all activity when essential catalytic residues needed for GTP
binding were mutated.5,6 Recently, a series of fleximers possessing
acyclic sugars exhibited broad spectrum antiviral activities against

coronaviruses, flaviviruses and filoviruses, further supporting their
significance.10,11

In an effort to explore the fleximer approach to other viruses such as
HIV-1, a virus with the ability to readily mutate and develop antiviral
resistance, a series of fleximers were designed and studied in silico for
their ability to inhibit the virus’ nucleocapsid protein, NC.14–17

NC plays several key roles in HIV-1 replication. Through non-spe-
cific binding, it acts as a chaperone protein, partially protecting the
viral nucleic acids (NAs).18 During reverse transcription, NC directs the
annealing of cellular tRNA(Lys,3) primer to the HIV-1 primer binding
site, thus initiating the synthesis of the (−)-strong stop DNA.19,20 NC
then facilitates the two strand transfers required for (−) and (+) strand
synthesis. It is also implicated to be a vital element in vDNA integra-
tion.21,22 Prior to encapsidation, NC discriminates viral from host NA by
selectively binding to the HIV-1 Ψ-encapsidation signal sequence.23–25

In addition, in vitro studies have shown that NC may chaperone the
dimerization of the two copies of HIV-1 viral genomic RNA by re-
arranging the kissing complex into an extended duplex through a series
of stabilizing and destabilizing events, an important step prior to en-
capsidation.26,27

Because of NC’s interaction with multiple highly conserved se-
quences of the HIV-1 genome, and being essential in all HIV-1 subtypes,
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NC represents a powerful drug target for developing novel anti-
virals.28–31 More importantly, it is thought to be highly resistant to
mutation due to its multifunctional role, thus providing a significant
advantage over other protein targets.26,32 Thus, inhibitors of the in-
teraction between NC and the viral nucleic acids could provide a new
approach to antiretroviral therapy.14,33 For this purpose, a series of
fleximers were computationally designed with that goal in mind. Herein
we report the synthesis and biological results for a series of compounds
that were predicted to interact with NC.

2. Computational studies

In many structural studies done to date on NC,16,17,34–36 a guanosine
residue was shown to consistently stack with the W37 residue, whether
bound to DNA (PBS-DNA) or RNA (Ψ-RNA). As such, the inherent
flexibility of the fleximer guanine analogue was predicted to affect
binding and potentially result in inhibition.

Based on this hypothesis, a number of fleximer nucleosides were
initially designed, however the early results showed that the sugar
moiety on the fleximer nucleoside provided no benefit over the fleximer
base itself. As a result, the corresponding fleximer base analogues were
therefore pursued, since this would signfiicantly shorten the synthetic
route. Thus, the fleximer bases were then tested computationally
against the NMR structure of the NC in complex with a small molecule
inhibitor (Figs. 2 and 3).37 To this end, a computational protocol was
established and refined in the group of Botta.14,33,38 Several NC binding
small molecules have already been discovered through this protocol,
supporting its validity.14,15,33,38

The docking results of the fleximer bases on NC revealed several key
advantages for the proposed target compounds. The docking con-
formation of fleximer bases 1–4 (Fig. 3) within the hydrophobic pocket
that is located in correspondence of W37 showed an excellent structural
overlay with respect to the guanine base. Moreover, all of the fleximer
bases were able to establish a network of H-bond interactions with the
backbone atoms of key residues in the hydrophobic pocket (i.e. K33,
G35, W37, and M46, Fig. 3A–D) that is highly comparable to that es-
tablished by the guanine base (Fig. 3E). Additionally, 1–4 adopted a
similar stacking conformation to W37 as is observed with the natural
guanine. However the additional rotatable bond allowed for the pyr-
imidine moiety to extend and interact with the neighboring residues
(i.e. K47 in the binding mode of 4, Fig. 3D) into the solvent area.

The distal guanine fleximer base (1) was predicted to bind stronger

than the proximal base (2) and, notably, slightly stronger than the
guanine base (Table 1), although scoring values calculated by the FRED
docking program with the Chemgauss4 function were highly compar-
able to each other.39,40 Thus, the observed differences between gua-
nine, 1 and 2 may not be significant.

In addition, the docking study surprisingly showed that the bipyr-
imidine scaffold (3 and 4, Fig. 2), would also be highly advantageous,
although to a slightly lesser extent than the parent imidazole-pyr-
imidine scaffold (Table 1), thus those targets were pursued as well.

As a result of this molecular modeling analysis, compounds 1–4
(Fig. 2) were selected as the best starting candidates as proof of concept.

3. Chemistry

The intended route to achieve both sets of flexible purine and bi-
pyrimidine bases utilized palladium-catalyzed cross-coupling, with the
pyrimidine as the organometallic coupling partner and the imidazole as
the halogenated coupling partner. The goal was to achieve two products
from one reaction as the organometallic moiety has been shown to
undergo homocoupling during cross-coupling reactions.41–45

As the distal compounds were predicted to be better binders to NC,
the first goal was to install the organometal on the C-6 of 5 to avoid
protecting the exocyclic amine. To obtain the iodinated intermediate,
commercially available 2-amino-6-chloro-4-methoxypyrimidine was

Fig. 1. Guanosine distal and proximal Fleximers.

Fig. 2. Target guanine fleximer bases and bipyrimidines.

Fig. 3. Docking-based predicted binding conformation of 1–4 and guanine
within the hydrophobic pocket of the NC.14,33,38 A) distal fleximer guanine base
(1), B) proximal fleximer guanine base (2), C) distal guanine bipyrimidine (3),
D) proximal guanine bipyrimidine (4) and E) guanine bound to NC. The protein
is shown as green cartoon and lines (residues within 4 Å from each ligand are
shown and labelled). H-bonds are highlighted by black dashed lines. Zn ions are
shown as grey spheres.

Table 1
FRED scores.

Compound FRED score (Chemgauss4 function)a

Guanine −6.36
1 −6.77
2 −6.26
3 −6.08
4 −6.14

a Adimensional, the lower the score, the stronger affinity.
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iodinated using hydroiodic acid (Scheme 1). The reaction was then
neutralized and filtered, and the precipitate recrystallized in ethanol to
obtain 5.

Since the proximal intermediate 2-amino-4-methoxy-5-tributyl-
stannylpyrimidine was easily achievable starting with 2-amino-5-iodo-
4-methoxypyrimidine,9–11 similar methodologies were applied to ob-
tain the 2-amino-4-methoxy-6-tributylstannylpyrimidine intermediate
6, using various palladium catalysts as well as a range of temperatures,
but none of the conditions yielded the desired organostannane 6
(Scheme 2).

The organoborane 7 was then considered for subsequent Suzuki
coupling (Scheme 3), however, the boronic ester could not be generated
under any conditions.

Because the cross-coupling intermediates could not be obtained
through palladium catalysis, harsher conditions were used to achieve
the desired coupling partners. The exocyclic amine was protected
(Scheme 4) with TMS as it is immune to Grignard and lithium reagents
but can be cleaved easily in mildly acidic conditions.46 Each TMS group
was added sequentially as opposed to simultaneously to form 8 in situ.
Lithium halogen exchange using n-BuLi, followed by metalation with
tributyltin chloride finally produced deprotected organostannane 6.
Characterization through 1H and 13C NMR in addition to MS confirmed
the presence of the product however 6 proved highly unstable and
decomposed rapidly.

As installation of the metal on the pyrimidine proved to be difficult,
and literature showed that an organozinc intermediate could be gen-
erated in situ with the imidazole moiety for subsequent Negishi cou-
pling, the previous methodology was abandoned.47

A benzyl (Bn) protecting group was initially chosen as Bn’s are ro-
bust against many conditions.46 The organozinc 10 was generated in
situ and subsequent Negishi coupling with 5 (Scheme 5) yielded the
protected distal fleximer 11, albeit in poor yield (24%).

Moreover, the Bn and methyl groups were extremely difficult to
deprotect (Scheme 6). Hydrogenation using Pd/C in the presence of H2

at room temperature was thought to be sufficient to remove the Bn
group, however no reaction occurred. This was ultimately achieved by
heating the reaction mixture of 11 with ammonium formate and Pd/C
in EtOH to 120 °C. Boron tribromide (BBr3) was employed to depro-
tected the methyl, however, a solubility problem arose when at-
tempting to demethylate 13 in DCM, and therefore deprotection of the
methyl was more efficient when performed prior to deprotection of the
Bn (Scheme 6).

Unfortunately, these molecules proved difficult to purify via column
chromatography, likely due to either their polar nature or their ability
to stack efficiently from the presence of two heteroaromatic moieties
and multiple hydrogen bonding elements. To bypass these challenges, a
trityl protecting group was employed to protect the imidazole, and the
exocyclic amine of the pyrimidine was protected with tert-butylox-
ycarbonyl (Boc, Schemes 7 and 8).

Negishi coupling using these two heterocycles proved more facile
and the cross-coupling reaction proceeded at room temperature
(Scheme 8).47 Trityl deprotection was accomplished using acetic acid
while Boc deprotection required trifluoroacetic acid. As previously
mentioned, the methyl protected fleximer guanine 12 was insoluble in
DCM, however, it was soluble in EtOAc, and final deprotection using
BBr3 in EtOAc was successful.

Since 1 was ultimately obtained through Negishi coupling, a similar
strategy was employed to obtain the analogous bipyrimidine (Scheme
9). Unexpectedly, the amine-linked compound 23 was produced in-
stead. The compound was then subjected to aminolysis to convert the
chloro group to an exocyclic amine, however, no starting material or
product was recovered (Scheme 9).

Scheme 1. Reagents and conditions: a. HI (57%), 0 °C to rt, 72 h.

Scheme 2. Attempted synthesis of 6.

Scheme 3. Attempted synthesis of 7.

Scheme 4. Reagents and conditions: a. EtMgBr, TMSCl, THF, −78 °C; b. (i) n-
BuLi, THF, −78 °C, 10 min, (ii) SnBu3Cl, −78 °C-rt, 18 h.

Scheme 5. Reagents and conditions: a. NaH (95%), BnBr, TBAI, THF, reflux,
18 h; b. (i) EtMgBr, THF, −78 °C, (ii) ZnCl2, 2 h, rt; c. 5, Pd(PPh3)4, CuI, THF,
reflux, 18 h.

Scheme 6. Reagents and conditions: a. ammonium formate, Pd/C, EtOH,
120 °C, 48 h; b. BBr3, CH2Cl2, rt, 72 h.

Scheme 7. Reagents and conditions: a. Di-tert-butyl dicarbonate, DMAP,
CH2Cl2, rt, 18 h.
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In hindsight, the presence of a palladium catalyst likely induced a
Buchwald-Hartwig amination,48 leading to the synthesis of 22 and the
absence of compound 21.

Because the correct cross-couplings procedures could not be easily
performed on the C-6 of 5, 6-bromo-2,4-dimethoxypyrimidine (25,
Scheme 10) was pursued instead, which which was envisioned by first
brominating barbituric acid with POBr3 followed by nucleophilic sub-
stitution using sodium methoxide to afford compound 25.

To achieve the targeted bipyrimidine 3 through Stille coupling, 25
was first converted to stannane 26. Interestingly, 26 was never syn-
thesized, however the bipyrimidine 27 was recovered at good yields
(80%, Scheme 11). From there, two strategies were attempted to attain
the desired bipyrimidine 3. First, removal of the methyl protecting
groups followed by chlorination via POCl3 was tried, and intermediate
28 was used crude as it was insoluble in various purification solvents.
The tetrachlorinated intermediate 29 could not be isolated as the crude
reaction mixture was difficult to purify. The next approach was to di-
rectly convert the methoxy groups to amines (30) and enzymatically
convert the C4-NH2 group to an eOH using adenosine deaminase.
Neither the starting material nor product were recovered, likely due to
the harsh conditions used.

Since homocoupling of the pyrimidines had occurred with the

dimethoxypyrimidines, it was speculated that the same conditions
would likely produce a homocoupled product for the 2-amino-4-meth-
oxypyrimidines as well, which fortuitously proved true (Scheme 12).
Unfortunately, the product 21 proved to be highly insoluble, and im-
possible to purify, and was only observed via MS.

As achieving the distal analogues proved challenging, the focus then
turned to synthesizing the proximal analogues. Considering the synth-
esis of compound 31 was facile, a straightforward Stille with the ha-
logenated pyrimidine produced the bipyrimidine 33 (Scheme 13),
however, similar purification and solubility issues as 21 occurred.

To complete this series, the proximal fleximer guanine 2 was also
pursued. Instead of using Stille cross-coupling techniques, the Negishi
method used for achieving the distal fleximer guanine was employed
(Scheme 14).47 Surprisingly, no product was observed when the reac-
tion was allowed to stir at room temperature, and poor yields were
found even after reflux.

Scheme 8. Reagents and conditions: a. (i) EtMgBr, THF, −78 °C, (ii) ZnCl2, 2 h,
rt; b. 14, Pd(PPh3)4, CuI, THF, rt, 18 h; c. acetic acid, rt, 18 h; d. TFA, rt, 18 h; e.
BBr3, EtOAc, rt, 72 h.

Scheme 9. Reagents and conditions: a. (i) EtMgBr, THF, −78 °C, 10 min (ii)
ZnCl2, 2 h, rt; b. 2-amino-4-chloro-6-methoxypyrimidine, PdCl2(PPh3)2, CuI,
THF, reflux, 18 h; c. NH3, CH3OH, 120 °C, Parr bomb, 48 h.

Scheme 10. Reagents and conditions: a. POBr3, N,N-dimethylaniline, toluene,
110 °C, 3 h; b. sodium methoxide, methanol, 0 °C to rt, 18 h.

Scheme 11. Reagents and conditions: a. bis(tributyltin), Pd(PPh3)2Cl2, 1,4-di-
oxane, 120 °C, 18 h; b. BBr3, CH2Cl2, rt, 48 h; c. NH3, CH3OH, 120 °C, 72 h; d.
POCl3, reflux, 18 h; e. ADA.

Scheme 12. Reagents and conditions: a. bis(tributyltin), Pd(PPh3)2Cl2, 1,4-di-
oxane, 130 °C, 48 h; b. BBr3, CH2Cl2, rt, 48 h.

Scheme 13. Reagents and conditions: a. Pd(PPh3)4, DMF, 90 °C, 18 h; b. BBr3,
−78 °C-rt, CH2Cl2, 48 h.
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The failure of the reaction was speculated to be due to the place-
ment of the halogen on the electron-rich carbon of the C-5 position of
the pyrimidine. As palladium prefers to react with electron-deficient
carbons, the oxidative addition reaction between the electron-rich ha-
logenated coupling partner and palladium likely did not occur, which
led to the absence of the desired coupled product.49 Hence, the orga-
nozinc was placed on the pyrimidine in subsequent reactions.

As predicted, the organozinc on the pyrimidine was successfully
synthesized in situ, and Negishi cross-coupling followed by deprotection
of the trityl group was accomplished to yield 37 (Scheme 15).47 Re-
grettably, methyl deprotection to produce the proximal fleximer gua-
nine 2 was unsuccessful using BBr3 in either CH2Cl2 or EtOAc as the
intermediate was insoluble in both. Deprotection using catalytic sul-
furic acid and TMSCl in acetic anhydride also did not produce 2 (con-
firmed through MS). The hypothesis to explain this phenomenon ties
into the in silico results by Bardon et al. that showed that the most
thermodynamically stable conformation of the proximal fleximer bases
is in a planar form.50 This conformation could be promoting the
stacking of the bases that consequently does not allow 37 to solubilize
in usual solvents.

The dimethoxypyrimidine series was also pursued and proved more
facile to obtain as no additional protection steps were required.
Following the approach to realize the 2-amino-4-methoxy series, the
dimethoxy proximal compounds were synthesized using the pyrimidine

as the organometallic moiety (Scheme 16). Deprotection of the methyl
groups were attempted, however, the resulting crude mixture was in-
soluble and thus purification was not possible.

Similar conditions were used to synthesize the dimethyl protected
distal fleximer xanthosine as Scheme 8 (Scheme 17). The yield of 42
(68%) was higher than that of 18 (43%), with the major structural
difference being the C-2 substitution (OMe versus NHBoc).

4. Results

With compound 1 in hand, a 1H NMR experiment was performed
with NC. If the fleximer did bind to the NA binding site of NC where
W37 resides, a shift should be observed in the aromatic region of the
protein, similar to that shown in Goudreau et al.37 After recording the
1H NMR spectra of NC in D2O without 1, a one equivalent molar ratio of
1 was added to the sample (dissolved in DMSO-d6). Both the aliphatic
region and aromatic region (Fig. 4) were recorded but no significant
changes in the NC signals were detected. This study does not necessarily
exclude 1 as an NC binder, but does prove that the interaction is at most
very weak, thus undetectable via NMR experiments.

Unfortunately, none of the other products that were successfully
purified would dissolve in the NMR solvent or in the presence of the
protein, therefore the NMR studies were abandoned.

Finally, all of the target compounds were sent to the National
Cancer Institute (NCI) to be tested against HIV-1 by Dr. Eric Freed.
Disappointingly, none of the analogues exhibited any meaningful an-
tiviral activity.

5. Conclusion

A number of fleximer bases were successfully synthesized via pal-
ladium-catalysed cross-couplings in this study, albeit with more diffi-
culty than anticipated, especially during purification. The synthetic
routes developed for the distal fleximer base bypassed the classic tri-
cyclic route that has been used in the Seley-Radtke group for over a
decade. If yields could be improved, this would potentially be useful for
synthesis of distal fleximer nucleosides in the future. Biologically
however, these molecules were not recognized by NC based on the NMR

Scheme 14. Reagents and conditions: a. (i) EtMgBr, THF, −78 °C, (ii) ZnCl2,
2 h, rt, (iii) 32, Pd(PPh3)4, CuI, THF, rt and reflux, 18 h.

Scheme 15. Reagents and conditions: a. EtMgBr, TMSCl, THF, −78 °C; b. (i)
EtMgBr, (ii) ZnCl2, 2 h, rt; c. 16, Pd(PPh3)4, CuI, THF, 40 °C, 18 h; d. AcOH, rt,
48 h; e. BBr3, CH2Cl2/EtOAc, or TMSCl, cat. H2SO4, Ac2O, rt, 48 h.

Scheme 16. Reagents and conditions: a. (i) EtMgBr, THF, −78 °C, (ii) ZnCl2,
2 h, rt; b. 4(5)-iodoimidazole, Pd(PPh3)4, CuI, THF, 60 °C, 18 h; c. bis(pinaco-
lato)diboron, KOAc, PdCl2(dppf)2·CH2Cl2, 100 °C, 1 h; d. 5-bromo-2,4-di-
methoxypyrimidine, PdCl2(dppf)2·CH2Cl2, Cs2CO3, 105 °C, 1 h.

Scheme 17. Reagents and conditions: a. 25, Pd(PPh3)4, CuI, THF, 6 h; b. AcOH,
rt, 48 h.

Fig. 4. 1H NMR of NC (red) and NC with 1 (blue), aromatic region.
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experiment performed, and were inactive against HIV-1.
While the biological results were disappointing, the project did

provide a better understanding of palladium-catalysed cross-coupling
strategies for fleximer bases in terms of choosing the optimum cross-
coupling partners. This which has proven advantageous for other pro-
jects ongoing in our group and others, the results of which will be
published as they become available.

6. Experimental section

All chemicals were obtained from commercial sources and used
without further purification unless otherwise noted. Anhydrous DMF,
CH3OH, DMSO and EtOH were purchased from Fisher Scientific.
Anhydrous THF, acetone, CH2Cl2, CH3CN, and ether were obtained
using a solvent purification system (mBraun Labmaster 130). NMR
solvents were purchased from Cambridge Isotope Laboratories
(Andover, MA). All 1H and 13C NMR spectra were obtained either on a
JEOL ECX 400 MHz NMR, operated at 400 and 100 MHz, respectively,
or a Bruker AVANCE III HD 500 MHz NMR, operated at 500 and
125 MHz, respectively, and referenced to internal tetramethylsilane
(TMS) at 0.0 ppm. The spin multiplicities are indicated by the symbols s
(singlet), d (doublet), dd (doublet of doublets), t (triplet), q (quartet), m
(multiplet), and br (broad). Reactions were monitored by thin-layer
chromatography (TLC) using 0.25 mm Whatman Diamond silica gel 60-
F254 pre-coated plates. Purification was performed on a Teledyne Isco
CombiFlash Rf 200, and eluted with the indicated solvent system.
Yields refer to chromatographically and spectroscopically (1H and 13C
NMR) homogeneous materials. Mass Spectra were recorded at the
UMBC MCAC for nominal using Bruker APOLLO™ II ESI/APCI - MALDI
Dual Source for apex(R)-Qe FTMS or Johns Hopkins Mass Spectrometry
Facility for high resolution using VG Analytical VG-70SE Magnetic
Sector Mass Spectrometer.

6.1. Synthesis of 2-amino-4-iodo-6-methoxypyrimidine (5)

Commercially available 2-amino-4-chloro-6-methoxypyrimidine
(5.0 g, 31.3 mmol) was suspended in 20 mL of 57 wt% HI in H2O at 0 °C.
The mixture was stirred at room temperature for 72 h. The resulting
sludge was diluted in 20 mL H2O and neutralized to pH 7–8 using sat.
Na2CO3. The precipitate was filtered and recrystallized in EtOH to yield
a white solid (4.1 g, 16.3 mmol, 52%). 1H NMR (400 MHz, DMSO-d6) δ
3.78 (s, 3H), 6.07 (s, 1H), 7.15 (br, 2H). 13C NMR (100 MHz, DMSO-d6)
δ 40.7, 94.7, 160.3, 163.4, 171.5. MS (ESI, pos, CH3OH) calculated for
C5H6IN3O [M+H]+ 251.96, found 251.96.

6.2. Synthesis of 2-amino-4-methoxy-6-tributylstannylpyrimidine (6)

5 (139 mg, 0.55 mmol) was dissolved under N2 in 20 mL of anhy-
drous THF and cooled to −78 °C. EtMgBr (3.0 M, 0.20 mL, 0.61 mmol)
was added dropwise and allowed to stir for 2 min. TMSCl (0.08 mL,
0.61 mmol) was added and allowed to stir for 5 min. Again, EtMgBr (3.
0 M, 0.20 mL, 0.61 mmol) was added dropwise and allowed to stir for
2 min, then TMSCl (0.08 mL, 0.61 mmol) was added and allowed to stir
for 5 min. n-Butyllithium (1.6 M, 0.4 mL, 0.61 mmol) was added drop-
wise and allowed warm to room temperature and stirred for 3.5 h.
Tributyltin chloride (0.3 mL, 1.11 mmol) was added and the mixture
was stirred for 18 min. The reaction was quenched using 10 mL NH4Cl
and the solvent was removed in vacuo. The crude material was ex-
tracted into CH2Cl2 (20 mL × 3), washed with brine (10 mL × 2) and
the organic layer was dried over MgSO4. The crude material was pur-
ified using silica gel column chromatography (hexanes/
EtOAc = 9:1–3:1) to yield a yellow oil (126 mg, 0.30 mmol, 55 %
yield). Rf = 0.80, (hexanes/EtOAc = 4:1). Compound decomposed ra-
pidly. 1H NMR (400 MHz, CDCl3) δ 0.85–0.93 (m, 9H), 1.04–1.08 (m,
6H), 1.25–1.39 (m, 6H), 1.50–1.67 (m, 6H), 3.84 (s, 3H), 4.93 (br, 2H),
6.26 (s, 1H). 13C NMR (100 MHz, CDCl3) δ 9.8, 13.7, 27.4, 29.0, 52.9,

107.6, 161.9, 168.4, 183.8. MS (APCI, pos, CH3CN) calculated for
C17H34N3OSn [M+H]+ 416.17, found 416.17.

6.3. Synthesis of 4-(1-benzyl-1H-imidazol-4-yl)-6-methoxy-2-
pyrimidinylamine (11)

1-Benzyl-4-iodo-1H-imidazole 9 (118 mg, 0.42 mmol)51 was dis-
solved under N2 in 25 mL of anhydrous THF and cooled to −78 °C.
EtMgBr (3.0 M, 0.15 mL, 0.44 mmol) was added dropwise and allowed
to stir for 10 min. ZnCl2 (0.7 M in THF, 1.2 mL, 0.84 mmol) was sub-
sequently added dropwise, stirred at −78 °C for 10 min, warmed to
room temperature and stirred for 2 h. The organozinc was added
dropwise to a mixture of 5 (105 mg, 0.42 mmol), Pd(PPh3)4 (48 mg,
0.04 mmol), CuI (19 mg, 0.1 mmol) in 40 mL of anhydrous THF and
allowed to stir at room temperature for 24 h. The reaction was quen-
ched using 10 mL sat. EDTA solution and THF was removed in vacuo.
The crude material was extracted into CH2Cl2 (50 mL × 3), washed
with brine (10 mL × 2) and the organic layer was dried over MgSO4.
The crude material was purified using silica gel column chromato-
graphy (hexanes/EtOAc = 1:1–0:1) to yield a white solid (25 mg,
0.10 mmol, 24% yield). Rf = 0.35, (EtOAc). 1H NMR (400 MHz, DMSO-
d6) δ 3.78 (s, 3H), 5.23 (s, 2H), 6.41 (s, 1H), 6.46 (br, 2H), 7.29–7.37
(m, 5H), 7.66 (s, 1H), 7.89 (s, 1H). 13C NMR (100 MHz, DMSO-d6) δ
51.4, 53.8, 92.2, 120.3, 127.6, 128.6, 129.2, 135.5, 138.0, 140.6,
160.6, 162.6, 171.9. HRMS (FAB) calculated for C15H15N5O [M+H]+

282.1355, found 282.1351.

6.4. Synthesis of 4-(3H-imidazol-4-yl)-6-methoxy-2-pyrimidinylamine
(12)

Synthetic procedure related to of Scheme 8 reported. 19 (100 mg,
0.34 mmol) was dissolved in 20 mL trifluoroacetic acid and stirred for
48 h. The solvent was removed and the crude material was purified
using silica gel column chromatography (CH2Cl2/CH3OH = 19:1–4:1)
to yield a white solid (59 mg, 0.31 mmol, 91% yield). Rf = 0.50,
(CH2Cl2/CH3OH = 4:1). 1H NMR (400 MHz, CF3COOD) δ 3.81 (s, 3H),
6.59 (s, 1H), 8.18 (s, 1H), 8.72 (s, 1H). 13C NMR (100 MHz, CF3COOD)
δ 55.7, 97.4, 121.6, 123.8, 136.8, 141.5, 156.4, 172.8. 1H NMR
(400 MHz, DMSO-d6) δ 3.77 (s, 3H), 6.44 (s, 1H), 7.56 (s, 1H), 7.70 (s,
1H), 10.62 (br, 1H). 13C NMR (100 MHz, DMSO-d6) δ 53.3, 90.3, 119.6
(m), 136.9, 137.7 (m), 160.9, 163.7, 171.2043. MS (APCI, pos, CH3OH)
calculated for C8H9N5O [M+H]+ 192.09, found 192.1.

6.5. 2-Amino-6-(1-benzyl-1H-imidazol-4-yl)-3H-pyrimidin-4-one (13)

11 (25 mg, 0.10 mmol) was dissolved in 15 mL anhydrous CH2Cl2
under N2 and cooled to −78 °C. BBr3 (3 M, 0.4 mL, 1.2 mmol) was
added dropwise and the reaction was allowed to warm to room tem-
perature and stirred for 72 h. The mixture was dripped slowly into
20 mL iced water and stirred for 30 min. The solvent was removed in
vacuo and the crude material was purified using silica gel column
chromatography (CH2Cl2/CH3OH = 9:1–4:1) to yield a white solid
(16 mg, 0.06 mmol, 60% yield). Rf = 0.70, (CH2Cl2/CH3OH = 9:1). 1H
NMR (400 MHz, CD3OD) δ 5.29 (s, 2H), 6.23 (s, 1H), 7.32–7.38 (m,
5H), 7.74 (s, 1H), 7.96 (s, 1H). MS (APCI, pos, CH3OH) calculated for
C14H14N5O [M+H]+ 268.12, found 268.11.

6.6. Synthesis of 2-(di-tert-butoxycarbonylamino)-4-iodo-6-
methoxypyrimidine (14) & 4-iodo-6-methoxy-2-(tert-
butoxycarbonylamino)pyrimidine (15)

2-amino-4-iodo-6-methoxypyrimidine 5 (4.1 g, 16.3 mmol) was
suspended in 50 mL CH2Cl2 under N2. Di-tert-butyl decarbonate (8.9 g,
40.8 mmol) and 4-dimethylaminopyridine (5.0 g, 40.9 mmol) were
added. The reaction was allowed to stir at room temperature for 18 h.
TLC showed absence of starting material and two products. The solvent
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was removed under pressure and crude material was purified using
silica gel column chromatography (hexanes/EtOAc = 4:1–3:2) to yield
14 as a colorless oil (2.9 g, 6.5 mmol, 40% yield). Rf = 0.85, (hexanes/
EtOAc = 4:1). 1H NMR (400 MHz, CDCl3) δ 1.39 (s, 18H), 3.85 (s, 3H),
7.01 (s, 1H). 13C NMR (100 MHz, CDCl3) 27.9, 54.5, 83.6, 116.4, 126.8,
150.2, 156.4, 169.8. MS (APCI, pos) calculated for C15H23IN3O5 [M
+H]+ 452.07, found 452.05, and 15 as a white solid (2.8 g, 8.0 mmol,
49%). Rf = 0.70, (hexanes/EtOAc = 4:1). 1H NMR (400 MHz, CDCl3) δ
1.47 (s, 9H), 3.93 (s, 3H), 6.35 (s, 1H), 7.68 (s, 1H). 13C NMR
(100 MHz, CDCl3) δ 28.2, 54.6, 81.8, 101.5, 150.0, 157.0, 161.0, 171.4.
MS (APCI, pos, CH3CN) calculated for C10H15IN3O3 [M+H]+ 352.02,
found 351.98.

6.7. Synthesis of 6-methoxy-2-(tert-butoxycarbonylamino)-4-(1-trityl-1H-
imidazol-4-yl)pyrimidine (18)

Commercially available 4-iodo-1-trityl-1H-imidazole (500 mg,
1.15 mmol) was dissolved under N2 in 25 mL of anhydrous THF and
cooled to −78 °C. EtMgBr (3.0 M, 0.4 mL, 1.20 mmol) was added
dropwise and allowed to stir for 10 min. ZnCl2 (0.7 M in THF, 3.3 mL,
2.3 mmol) was subsequently added dropwise, stirred at −78 °C for
10 min, warmed to room temperature, and stirred for 2 h. The orga-
nozinc was added dropwise to a mixture of 15 (451 mg, 1.0 mmol), Pd
(PPh3)4 (115 mg, 0.1 mmol) and CuI (10 mg, 0.05 mmol) in 40 mL of
anhydrous THF and allowed to stir at room temperature for 24 h. The
reaction was quenched using 10 mL sat. EDTA solution and THF was
removed in vacuo. The crude material was extracted into CH2Cl2
(50 mL × 3), washed with brine (10 mL × 2) and the organic layer was
dried over MgSO4. The crude material was purified using silica gel
column chromatography (hexanes/EtOAc = 1:1–0:1) to yield a yellow
oil (267 mg, 0.5 mmol, 43% yield). Rf = 0.60, (hexanes/EtOAc = 1:2).
1H NMR (500 MHz, CDCl3) δ 1.45 (s, 9H), 3.98 (s, 3H), 6.99 (s, 1H),
7.14–7.16 (m, 6H), 7.32–7.33 (m, 9H), 7.47 (br, 1H), 7.60 (s, 1H), 7.61
(s, 1H). 13C NMR (125 MHz, CDCl3) δ 28.2, 53.9, 75.8, 80.8, 95.9,
122.2, 128.2, 128.2, 129.8, 139.0, 139.9, 142.0, 150.7, 157.3, 161.4,
171.5. MS (APCI, pos, CH3CN) calculated for C32H32N5O3 [M+H]+

534.25, found 534.24.

6.8. Synthesis of 4-(3H-imidazol-4-yl)-6-methoxy-2-(tert-
butoxycarbonylamino)-pyrimidine (19)

18 (267 mg, 0.50 mmol) was dissolved in 20 mL acetic acid and
stirred for 48 h. The solvent was removed and the crude material was
purified using silica gel column chromatography (CH2Cl2/
CH3OH = 19:1–4:1) to yield an off-white solid (140 mg, 0.48 mmol,
96% yield). Rf = 0.85, (CH2Cl2/CH3OH = 9:1). 1H NMR (400 MHz,
DMSO-d6) δ 1.43 (s, 9H), 3.87 (s, 3H), 6.80 (s, 1H), 7.27 (br, 1H), 7.64
(s, 1H), 7.76 (s, 1H), 9.67 (br, 1H). 13C NMR (100 MHz, DMSO-d6) δ
28.52, 54.02, 79.82, 95.05, 119.68, 128.94, 133.60, 137.51, 151.56,
158.09, 171.01. MS (APCI, pos, CH3OH) calculated for C13H18N5O3 [M
+H]+ 292.14, found 292.12.

6.9. Synthesis of 2-amino-6-(3H-imidazol-4-yl)-3H-pyrimidin-4-one (1)

12 (41 mg, 0.21 mmol) was dissolved in 20 mL anhydrous EtOAc
under N2 and cooled to −78 °C. Boron tribromide (1.0 M, 0.6 mL,
0.6 mmol) was added dropwise. The reaction was allowed to warm to
room temperature and stirred for 36 h. The mixture was dripped slowly
into 20 mL iced water and stirred for 30 min. The solvent was removed
in vacuo and the crude material was purified using silica gel column
chromatography (CH2Cl2/CH3OH = 9:1–2:1) to yield a white solid
(32 mg, 0.18 mmol, 86% yield). Rf = 0.25, (CH2Cl2/CH3OH = 2:1). 1H
NMR (400 MHz, CD3COOD) δ 6.42 (s, 1H), 8.12 (s, 1H), 8.61 (s, 1H).
13C NMR (100 MHz, CD3COOD) δ 97.6, 120.1, 131.0, 137.0, 150.7,
155.1, 164.4. HRMS (FAB) calculated for C7H7N5O [M+H]+ 178.0729,
found 178.0727.

6.10. Synthesis of 6,6′-dimethoxy-4,4′-bipyrimidine-2,2′-diamine (21)

5 (101.3 mg, 0.40 mmol) was dissolved in 30 mL degassed 1,4-di-
oxane in a glass tube. Bis(tributyltin) (0.2 mL, 0.4 mmol) was added,
followed by Pd(PPh3)2Cl2 (28.3 mg, 0.04 mmol). The glass tube was
sealed and heated to 130 °C for 48 h. The tube was cooled to 0 °C,
opened and warmed to room temperature. The crude content was fil-
tered over a pad of Celite and the solvent was removed. The crude
material was purified using silica gel column chromatography (CH2Cl2/
CH3OH = 9:1–2:1) to yield an impure mixture. Another attempt at
purification with silica gel column chromatography using the
Pharmasset conditions (EtOAc/CH3OH/acetone/H2O = 6:1:1:0.5) still
yielded impure mixture. Rf = 0.15, (EtOAc/CH3OH/acetone/
H2O = 6:1:1:0.5). MS (APCI, pos, DMSO/CH3OH = 1:1) calculated for
C12H14N4O4 249.11 (M+H+), found: 249.1.

6.11. Synthesis of 4-(4-chloro-6-methoxy-2-pyrimidinylamino)-6-methoxy-
2-pyrimidinamine (22)

5 (212 mg, 0.84 mmol) was dissolved under N2 in 20 mL of anhy-
drous THF and cooled to −78 °C. EtMgBr (3.0 M, 0.3 mL, 0.93 mmol)
was added dropwise and allowed to stir for 2 min. TMSCl (0.1 mL,
0.93 mmol) was added and allowed to stir for 5 min. Again, EtMgBr
(3.0 M, 0.3 mL, 0.93 mmol) was added dropwise and allowed to stir for
2 min, then TMSCl (0.1 mL, 0.93 mmol) was added and allowed to stir
for 5 min. EtMgBr (3.0 M, 0.3 mL, 0.93 mmol) was added dropwise and
allowed to stir for 10 min followed by addition of ZnCl2 (1 M in THF,
1.7 mL, 1.7 mmol) dropwise, stirred at −78 °C for 10 min, warmed to
room temperature and stirred for 2 h. The organozinc was added
dropwise to a mixture of 2-amino-6-chloro-4-methoxypyrimidine
(80 mg, 0.50 mmol), PdCl2(PPh3)2 (59 mg, 0.08 mmol) and CuI (16 mg,
0.08 mmol) in 30 mL of anhydrous THF and allowed to stir at reflux for
24 h. The reaction was quenched using 20 mL sat. EDTA solution and
THF was removed in vacuo. The crude material was extracted into
CH2Cl2 (30 mL × 3), washed with brine (10 mL × 2) and the organic
layer was dried over MgSO4. The crude material was purified using
silica gel column chromatography (hexanes/EtOAc = 1:3) to yield a
white solid (107 mg, 0.38 mmol, 76% yield). Rf = 0.50, (hexanes/
EtOAc = 1:3). 1H NMR (400 MHz, DMSO-d6) δ 3.76 (s, 3H), 3.91 (s,
3H), 6.30 (br, 2H), 6.56 (s, 1H), 6.85 (s, 1H), 9.80 (br, 1H). 13C NMR
(100 MHz, DMSO-d6) δ 53.7, 54.8, 84.7, 99.7, 158.2, 159.5, 160.6,
162.4, 171.2, 172.2. HRMS (FAB) calculated for C10H11ClN6O2 [M
+H]+ 283.0710, found 283.0788.

6.12. Synthesis of 2,4,6-tribromopyrimidine (24)

Commercially available barbituric acid (2.0 g, 15.6 mmol) was
suspended in 30 mL of anhydrous toluene under N2 and cooled to 0 °C.
Phosphorus (V) oxybromide (17.9 g, 62.4 mmol) was added and N,N-
dimethylaniline (3.6 mL, 28.4 mmol) was added dropwise. The mixture
was heated to 110 °C and stirred vigorously for 3 h. The reaction was
cooled to room temperature and quenched with 30 mL iced water. The
mixture was transferred to a separatory funnel and the remaining in-
soluble gum was washed with EtOAc (10 mL × 3). All organic layers
were combined and washed with sat. NaHCO3 (10 mL × 3), then brine
(10 mL × 2), and the organic layer was dried over MgSO4. The crude
material was purified using silica gel column chromatography (hex-
anes/EtOAc = 99:1–9:1) to yield 25 as a while solid (3.6 g, 11.4 mmol,
73% yield). Rf = 0.80, (hexanes/Et2O = 4:1). 1H NMR (400 MHz,
CDCl3) δ 7.73 (s, 1H). 13C NMR (100 MHz, CDCl3) δ 128.2, 150.8,
153.2. Agrees with literature values.9

6.13. Synthesis of 4-bromo-2,6-dimethoxypyrimidine (25)

2,4,6-Tribromopyrimidine 24 (1.04 g, 3.28 mmol) was dissolved in
50 mL methanol and cooled to 0 °C. A sodium methoxide solution
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(0.5 M, 13.2 mL, 6.60 mmol) was added dropwise and the mixture was
warmed to room temperature and stirred for 18 h. The reaction was
quenched using 20 mL NH4Cl and the solvent was removed. The crude
material was extracted into CH2Cl2 (50 mL × 3), washed with brine
(10 mL × 2) and the organic layer was dried over MgSO4. The crude
material was purified using silica gel column chromatography (hex-
anes/EtOAc = 19:1–4:1) to yield a white solid (575 mg, 2.62 mmol,
80% yield). Rf = 0.75, (hexanes/Et2O = 4:1). 1H NMR (400 MHz,
CDCl3) δ 3.8900 (s, 3H), 3.9244 (s, 3H), 6.51 (s, 1H). 13C NMR
(100 MHz, CDCl3) δ 54.4, 55.4, 105.0, 152.0, 164.5, 171.7. MS (APCI,
pos, CH3CN) calculated for C6H7BrN2O2 [M+H]+ 218.98 and 220.97,
found 218.94 and 220.93.

6.14. Synthesis of 2,2′,6,6′-tetramethoxy-4,4′-bipyrimidine (27)

25 (157 mg, 0.72 mmol) was dissolved in 20 mL degassed 1,4-di-
oxane in a glass tube. Bis(tributyltin) (0.4 mL, 0.72 mmol) was added,
followed by Pd(PPh3)4 (83 mg, 0.07 mmol). The glass tube was sealed
and heated to 120 °C for 18 h. The tube was cooled to 0 °C, opened and
warmed to room temperature. The crude content was filtered over a
pad of Celite and the solvent was removed. The crude material was
purified using silica gel column chromatography (hexanes/
EtOAc = 1:0–9:1) to yield a white fluffy solid (81 mg, 0.29 mmol, 80%
yield). Rf = 0.80, (hexanes/EtOAc = 9:1). 1H NMR (400 MHz, CDCl3) δ
4.01 (s, 6H), 4.06 (s, 6H), 7.41 (s, 2H). 13C NMR (100 MHz, CDCl3) δ
54.3, 55.0, 99.4, 162.8, 165.5, 173.1. MS (ESI, pos, CH3CN) calculated
for C12H14N4O4 [M+H]+ 279.11, found 279.1.

6.15. Synthesis of 4,4′-dimethoxy-5,5′-bipyrimidine-2,2′-diamine (33)

31 (206 mg, 0.5 mmol)9 and 32 (124 mg, 0.5 mmol) were dissolved
in 50 mL degassed DMF. Pd(PPh3)4 (57 mg, 0.05 mmol), CuI (19 mg,
0.1 mmol) and CsF (150 mg, 0.99 mmol) were added. The reaction was
allowed to stir at 90 °C for 18 h. The contents were cooled and filtered
over Celite. The solvent was removed, and the crude material was
purified using silica gel column chromatography (CH2Cl2/
CH3OH = 4:1–2:1) to yield contaminated 33. The contaminated sample
was recrystallized in EtOAc, followed by ethanol, followed by methanol
and finally DMSO to obtain a white solid (15 mg, 0.06 mmol, 12 %
yield). 1H NMR (400 MHz, DMSO-d6) δ 3.73 (s, 6H), 6.54 (br, 4H), 7.78
(s, 1H). 13C NMR (100 MHz, DMSO-d6) δ 53.5, 103.9, 158.9, 163.3,
167.4. MS (APCI, pos, DMSO/CH3OH = 1:1) calculated for C10H12N6O2

[M+H]+ 249.11, found 249.0.

6.16. Synthesis of 4-methoxy-5-(1-trityl-1H-imidazol-4-yl)-2-
pyrimidinylamine (34)

32 (500 mg, 1.99 mmol) was dissolved under N2 in 50 mL of THF
and cooled to −78 °C. EtMgBr (3.0 M, 0.7 mL, 2.10 mmol) was added
dropwise and allowed to stir for 2 min. TMSCl (0.3 mL, 2.19 mmol) was
added and allowed to stir for 5 min. Again, EtMgBr (3. 0 M, 0.7 mL,
2.10 mmol) was added dropwise and allowed to stir for 2 min, then
TMSCl (0.3 mL, 2.19 mmol) was added and allowed to stir for 5 min.
EtMgBr (3.0 M, 0.7 mL, 2.10 mmol) was added dropwise and allowed to
stir for 10 min followed by addition of ZnCl2 (0.7 M in THF, 5.7 mL,
3.98 mmol) dropwise, stirred at −78 °C for 10 min, warmed to room
temperature and stirred for 2 h. The organozinc was added dropwise to
a mixture of 16 (850 mg, 1.95 mmol), Pd(PPh3)4 (230 mg, 0.2 mmol),
CuI (20 mg, 0.1 mmol) in 80 mL of THF and allowed to stir at room
temperature for 24 h. The reaction was quenched using 10 mL sat.
EDTA solution and THF was removed in vacuo. The crude material was
extracted into CH2Cl2 (50 mL × 3), washed with brine (10 mL × 2) and
the organic layer was dried over MgSO4. The crude material was pur-
ified using silica gel column chromatography (hexanes/
EtOAc = 1:1–0:1) to yield a yellow solid (252 mg, 0.58 mmol, 29%
yield). Rf = 0.45, (EtOAc). 1H NMR (500 MHz, CDCl3) δ 3.86 (s, 3H),

4.92 (br, 2H), 7.28 (s, 1H), 7.33–7.37 (m, 15H), 7.46 (s, 1H), 8.86 (s,
1H). 13C NMR (125 MHz, CDCl3) δ 53.4, 75.4, 106.5, 119.9, 128.0,
129.9, 135.0, 138.5, 142.5, 155.3, 161.0, 166.1.

6.17. Synthesis of 5-(1H-imidazol-4-yl)-4-methoxy-2-pyrimidinylamine
(37)

34 (252 mg, 0.58 mmol) was dissolved in 20 mL acetic acid and
stirred for 48 h. The solvent was removed and the crude material was
purified using silica gel column chromatography (CH2Cl2/
CH3OH = 19:1–4:1) to yield an off-white solid (108 mg, 0.56 mmol,
97% yield). Rf = 0.60, (CH2Cl2/CH3OH = 4:1). 1H NMR (500 MHz,
CD3OD) δ 4.04 (s, 3H), 7.36 (d, 1H, J = 1.10 Hz), 7.70 (d, 1H,
J = 1.15 Hz), 8.50 (s, 1H). 13C NMR (125 MHz, CD3OD) δ 52.7, 104.4,
116.8, 134.9, 147.1, 153.6, 161.7, 166.3. MS (APCI, pos, DMSO/
CH3OH = 1:5) calculated for C8H9N5O [M+H]+ 192.09, found 192.04.

6.18. Synthesis of 5-(1H-imidazol-4-yl)-2,4-dimethoxypyrimidine (39)

Commercially available 5-bromo-2,4-dimethoxypyrimidine
(200 mg, 0.91 mmol) was dissolved under N2 in 20 mL of anhydrous
THF and cooled to −78 °C. EtMgBr (3.0 M, 0.3 mL, 0.96 mmol) was
added dropwise and allowed to stir for 10 min. ZnCl2 (0.7 M in THF,
2.6 mL, 1.83 mmol) was subsequently added dropwise, stirred at
−78 °C for 10 min, warmed to room temperature and stirred for 2 h.
The organozinc was added dropwise to a mixture of 4(5)-iodo-1H-
imidazole (155 mg, 0.8 mmol), Pd(PPh3)4 (92 mg, 0.08 mmol) and CuI
(8 mg, 0.04 mmol) in 30 mL of THF and allowed to stir at reflux for
18 h. The reaction was quenched using 10 mL sat. EDTA solution and
THF was removed in vacuo. The crude material was extracted into
CH2Cl2 (50 mL × 3), washed with brine (10 mL × 2) and the organic
layer was dried over MgSO4. The crude material was purified using
silica gel column chromatography (CH2Cl2/CH3OH = 1:0–9:1) to yield
a white solid (72 mg, 0.35 mmol, 44% yield). Rf = 0.75, (CH2Cl2/
CH3OH = 9:1). 1H NMR (400 MHz, DMSO-d6) δ 3.87 (s, 3H), 4.00 (s,
3H), 7.41 (s, 1H), 7.72 (s, 1H), 8.81 (s, 1H), 12.25 (br, 1H). 13C NMR
(100 MHz, DMSO-d6) δ 54.5, 54.9, 110.1, 117.0, 131.3, 136.2, 154.9,
163.3, 166.7. MS (APCI, pos, CH3OH) calculated for C9H10N4O2

[M + H]+ 207.09, found 207.03.

6.19. Synthesis of 2-(2,4-dimethoxy-5-pyrimidinyl)-4,4,5,5-tetramethyl-
1,3,2-dioxaborolane (40)

Commercially available 5-bromo-2,4-dimethoxypyrimidine
(578 mg, 2.64 mmol) was suspended in 30 mL degassed DMF under N2,
followed by addition of bis(pinacolato)diboron (804 mg, 3.17 mmol),
potassium acetate (777 mg, 7.92 mmol) and PdCl2(dppf)2·CHCl3
(108 mg, 0.13 mmol). The mixture was heated to 100 °C and stirred for
1 h. The reaction was cooled and transferred to 50 mL dH2O. The
mixture was extracted in EtOAc/toluene (1:1, 20 mL × 3), washed with
brine (10 mL × 2) and the organic layer was dried over MgSO4. The
solvent was removed in vacuo and the crude product was used without
further purification.

6.20. Synthesis of 2,2′,4,4′-tetramethoxy-5,5′-bipyrimidine (41)

Commercially available 5-bromo-2,4-dimethoxypyrimidine
(250 mg, 1.14 mmol) and crude 40 (2.64 mmol) were suspended in
25 mL degassed 1,4-dioxane/dH2O (4:1) under N2 in a sealed glass
flask. Cs2CO3 (1.12 g, 3.44 mmol) and PdCl2(dppf)2·CHCl3 (46 mg,
0.06 mmol). The glass flask was sealed, heated to 105 °C and stirred for
1 h. The flask was chilled to 0 °C, opened, and warmed to room tem-
perature. The crude content was filtered over a pad of Celite and the
solvent was evaporated in vacuo. The crude material was purified using
silica gel column chromatography (hexanes/EtOAc = 2:1–3:7) to yield
a white solid (212 mg, 0.76 mmol, 67% yield). Rf = 0.40, (hexanes/

T. Ku, et al. Bioorganic & Medicinal Chemistry 27 (2019) 2883–2892

2890



EtOAc = 2:1). 1H NMR (400 MHz, CDCl3) δ 3.96 (s, 6H), 4.02 (s, 6H),
8.18 (s, 2H). 13C NMR (100 MHz, CDCl3) δ 54.2, 55.0, 108.2, 158.8,
165.1, 168.6. MS (ESI, pos, CH3CN) calculated for C12H14N4O4 [M
+H]+ 279.11, found 279.19.

6.21. Synthesis of 2,4-dimethoxy-6-(1-trityl-1H-imidazol-4-yl)pyrimidine
(42)

4-iodo-1-trityl-1H-imidazole (500 mg, 1.15 mmol) was dissolved
under N2 in 25 mL of THF and cooled to −78 °C. EtMgBr (3.0 M,
0.4 mL, 1.20 mmol) was added dropwise and allowed to stir for 10 min.
ZnCl2 (0.7 M in THF, 3.3 mL, 2.3 mmol) was subsequently added
dropwise, stirred at −78 °C for 10 min, warmed to room temperature
and stirred for 2 h. The organozinc was added dropwise to a mixture of
26 (219 mg, 1.0 mmol), Pd(PPh3)4 (115 mg, 0.1 mmol), CuI (10 mg,
0.05 mmol) in 40 mL of THF and allowed to stir at room temperature
for 6 h. The reaction was quenched using 10 mL sat. EDTA solution and
THF was removed in vacuo. The crude material was extracted into
CH2Cl2 (50 mL × 3), washed with brine (10 mL × 2) and the organic
layer was dried over MgSO4. The crude material was purified using
silica gel column chromatography (hexanes/EtOAc = 2:1–1:4) to yield
a white solid (307 mg, 0.68 mmol, 68% yield). Rf = 0.50, (hexanes/
EtOAc = 1:1). 1H NMR (400 MHz, CDCl3) δ 3.89 (s, 3H), 3.91 (s, 3H),
6.98 (s, 1H), 7.12–7.13 (m, 6H), 7.27–7.28 (m, 9H), 7.46 (d, 1H,
J = 1.36 Hz), 7.6518 (d, 1H, J = 1.84 Hz). 13C NMR (100 MHz, CDCl3)
δ 53.9, 54.6, 75.9, 95.0, 122.6, 128.3, 129.8, 139.3, 139.8, 142.1,
162.4, 165.4, 171.1, 172.5.

6.22. Synthesis of 4-(1H-imidazol-4-yl)-2,6-dimethoxypyrimidine (43)

42 (307 mg, 0.68 mmol) was dissolved in 30 mL acetic acid and
stirred for 48 h. The solvent was removed and the crude material was
purified using silica gel column chromatography (CH2Cl2/
CH3OH = 1:0–9:1) to yield a white solid (133 mg, 0.64 mmol, 95%
yield). Rf = 0.80, (CH2Cl2/CH3OH = 9:1). 1H NMR (400 MHz,
CD3COOD) δ 4.00 (s, 3H), 4.03 (s, 3H), 6.95 (s, 1H), 8.22 (s, 1H), 9.03
(s, 1H). 13C NMR (100 MHz, CD3COOD) δ 54.0, 54.7, 97.0, 119.6 (m),
130.7, 136.0, 154.2, 165.8, 172.9. MS (APCI, pos, CH3OH) calculated
for C9H10N4O2 [M+H]+ 207.09, found 207.04.

7. Computational and modelling studies

Molecular modeling study was performed as described in previous
studies.14,38 Briefly, the NMR structure of the NC in complex with a
small molecule inhibitor was used as rigid receptor in molecular
docking simulations,37 which were carried out by the FRED docking
program from OpenEye, version 3.0.1.39,40 Ligand conformational
analysis was performed with OMEGA from OpenEye.52,53

8. Nucleocapsid NMR studies

8.1. Expression and purification of recombinant HIV-1 NC protein54

The HIV-1 NC coding region in pNL4-355 was PCR amplified using
the 5′-primer CCAGCTACCATACATATGCAGAAAGGC (NdeI site un-
derlined) and the 3′-primer GGCCGGATCCTCCCTAACTAATTAGCCT
GTC-TCTC (BamHI and stop codon underlined). The expression vector
pET-3a (Novagen, Madison, WI) was doubly digested with NdeI and
BamHI and treated with calf intestinal alkaline phosphate. The PCR
product was purified by phenol-extraction and ethanol-precipitation
and doubly digested with NdeI and BamHI. The insert and vector were
ligated using phage T4 DNA ligase at 16 °C for five hours and trans-
formed into competent HMS174. DNA from transformants were se-
quenced and found to be identical with the HIV-1 NC coding sequence
in pNL4-3. A clone, designated as pRD2, overexpressed the 55-residue
NC protein with the sequence M Q K G N F R N Q R K T V K C F N C G K

E G H I A K N C R A P R K K G C W K C G K E G H Q M K D C T E R Q A N
(the two zinc knuckles are underlined). Ion-spray mass spectrometry
confirmed the mass of the apoprotein to be 6369( ± 2) Da (calculated
6369 Da) and 6501( ± 2) Da (calculated 6500 Da) for the Zn-bound
protein.

For protein expression of HIV-1 NC in Escherichia coli, pRD2 was
transformed into BL21(DE3) pLysE. The purification scheme for the
recombinant HIV-1 NC was adapted from Ji et al.56 and You &
McHenry.57 Culture media were supplemented with 100 μg/l ampicillin
and 34 μg/L chloramphenicol. A starter culture of 20 ml of ZB58 in-
oculated from a single colony was grown at 37 °C overnight. The starter
culture was added to 2 l of M9ZB58 supplemented with 0.1 mM ZnCl2
and grown at 37 °C to an absorbance at 600 nm of 0.5 to 0.6 before
induction with 1 mM IPTG (isopropyl-β-D-thiogalactopyranoside). After
three hours, the cells were harvested by centrifugation, resuspended in
30 ml of lysis buffer (50 mM Tris-HCl (pH 8.0), 10% (v/v) glycerol,
0.1 M NaCl, 0.1 mM ZnCl2, 5 mM dithiothreitol, 2 mM EDTA), and
stored at 70 °C. To lyse the cells, the cells were thawed in ice-water, and
172 ml of 10 mM PMSF (phenylmethylsulfonyl fluoride), 30 ml of 1 mg/
ml pepstatin A, and 2.1 ml of 1% (w/v) sodium deoxycholate were
added. The cells were sonicated by five bursts of 20 seconds to reduce
the viscosity. The nucleic acids were precipitated by adding 4% (w/v)
polyethyleneimine (pH 7.9) dropwise to a final concentration of 0.4%
and stirred for 15 minutes before centrifugation at 23,000 g for 30
minutes at 4 °C. The supernatant was collected (42 ml), filtered
(0.45 μm pore size), and loaded at 1 ml/minute onto a 20 mL Q-Se-
pharose and a 20 ml SP-Sepharose column (Pharmacia) connected in
series and previously equilibrated with 200 ml of buffer A (50 mM Tris-
HCl (pH 8.0), 10% glycerol, 0.1 M NaCl, 0.1 mM ZnCl2, 10 mM BME (β-
mercaptoethanol)). After washing with 60 ml of buffer A, the Q-Se-
pharose column was detached, and the SP-Sepharose column was wa-
shed with 1.5 column volumes of buffer A. A ten column volume linear
gradient from 40% to 50% buffer B (50 mM Tris-HCl (pH 8.0), 10%
glycerol, 1.0 M NaCl, 0.1 mM ZnCl2, 10 mM BME) was applied to elute
the HIV-1 NC protein. The protein fractions were pooled (15 ml) and
loaded at 0.5 ml/minute onto a 320 ml Sephadex G-50 column (Phar-
macia) pre-equilibrated with two volumes of buffer C (50 mM Tris-HCl
(pH 7.0), 10% glycerol, 0.1 M NaCl, 0.1 mM ZnCl2, 10 mM BME). The
NC protein eluted at 175 ml and fractions were pooled (35 ml) for
concentration and dialysis into NMR buffer (see below).

8.2. Sample preparation54

NMR buffer (10 mM Tris-HCl, pH 7.0, 140 mM KCl, 10 mM NaCl,
1 mM MgCl2) was deoxygenated by sparging with argon for 15 minutes
and filter-sterilized (0.2 μm pore size). The protein sample was dialyzed
using Centricon-3 by adding NMR buffer five or six times (total volume
40–50 ml). The buffered protein sample was lyophilized for ease of
storage.

8.3. NMR data collection and analysis

25 μM protein samples were made in 500 μl of D2O and loaded into
a 5 mm NMR tube. After taking the blank 1H spectrum, the test com-
pound was titrated into the protein sample such that 1:1 ratio of
compound/protein could be established. Data for 1H NMR signal as-
signments were collected at a sample temperature of 10 °C with a
Bruker DMX 600 MHz (1H) NMR and Bruker AVANCE III HD 500 MHz
NMR spectrometers.
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