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Abstract

Purpose: To determine the prognostic factors of epidermal growth factor receptor

(EGFR) mutation status in a group of patients with nonsmall cell lung cancer

(NSCLC) by analyzing their clinical and radiological features.

Materials and methods: Patients with NSCLC who underwent EGFR mutation

detection between 2014 and 2017 were included. Clinical features and general

imaging features were collected, and radiomic features were extracted from CT data

by 3D Slicer software. Prognostic factors of EGFR mutation status were selected by

least absolute shrinkage and selection operator (LASSO) logistic regression analysis,

and receiver operating characteristic (ROC) curves were drawn for each prediction

model of EGFR mutation.

Results: A total of 118 patients were enrolled in this study. The smoking index

(P = 0.028), pleural retraction (P = 0.041), and three radiomic features were signifi-

cantly associated with EGFR mutation status. The areas under the ROC curve

(AUCs) for prediction models of clinical features, general imaging features, and

radiomic features were 0.284, 0.703, and 0.815, respectively, and the AUC for the

combined prediction model of the three models was 0.894. Finally, a nomogram

was established for individualized EGFR mutation prediction.

Conclusions: The combination of radiomic features with clinical features and gen-

eral imaging features can enable discrimination of EGFR mutation status better than

the use of any group of features alone. Our study may help develop a noninvasive

biomarker to identify EGFR mutation status by using a combination of the three

group features.
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1 | INTRODUCTION

Lung cancer is the leading cause of cancer-related death worldwide.

Approximately 70% of lung cancer patients were diagnosed after

clinical symptoms caused by local advanced stage or metastasis. The

5-year survival rate of these patients is only approximately 16%.1,2

With the development of targeted therapy, the survival time and

quality of life of some lung cancer patients have greatly improved.

Targeted therapy relies on gene detection, and at present, most of

the tissues used for gene detection are specimens obtained by surgi-

cal excision or biopsy. For some patients, biopsy specimens may be

the only tissue specimens that can be used for gene detection, but
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because of the small or low DNA content of tissue samples, it may

be impossible to carry out gene detection, or incorrect detection

results may be obtained.3 Furthermore, due to tumor heterogeneity,

there may be a positive mutation in the EGFR gene that is negative

at the tissue biopsy site.4–6 Although some clinical studies have sug-

gested that adenocarcinoma, nonsmoking status, female sex, and

Asian race are predictors of EGFR mutations,7–9 studies have also

shown that adenomatous hyperplasia, atypical adenomatous hyper-

plasia, adenocarcinoma in situ, and squamous dominant adenocarci-

noma frequently carry EGFR mutations.10–15 These results provide a

reference for predicting the mutation status of lung cancer genes,

but powerful noninvasive predictive markers are still lacking. Radio-

mics refers to the extraction of sub-visual yet quantitative image

features with the intent of creating mineable databases from radio-

logical images.16 Some features have even been shown to identify

genomic alterations within tumor DNA, a field that is now called “ra-

diogenomics”.17 These features can identify specific driving muta-

tions and changes in biological pathways. Recently, radiomic features

extracted from chest CT have been used to predict EGFR mutation

in NSCLC in some studies,18–21 but most of these studies included

only a few radiomic features in their analyses.19–21 Additionally, in

these studies,18–20 only some clinical features were incorporated to

improve the prediction ability of the EGFR mutation prediction

model, and general imaging features were excluded. Therefore, in

this study, we aimed to use reasonable statistical methods to screen

meaningful features from numerous radiomic features and to estab-

lish a prediction model of EGFR mutation combined with general

imaging features and clinical features.

2 | PATIENTS AND METHODS

2.A | Patient selection

A total of 1292 cases of NSCLC were collected from January 2014

to December 2017. The inclusion criteria were as follows: (1)

patients with detailed clinical data, including gender, age, smoking

index (number of cigarettes per day * number of years of smoking),

family history of lung cancer, pathological type and pathological

stage (classified according to the TNM classification system of the

American Join Committee on Cancer); (2) patients with a clear muta-

tion in the EGFR gene (using the Amplification Refractory Mutation

System (ARMS)), and the tissue used for mutation detection was

obtained from surgical excision specimens; and (3) standard unen-

hanced chest CT data were obtained within 2 months before the

operation, and CT was performed by the same machine under the

same scanning conditions. The exclusion criteria were as follows: (1)

chemotherapy or radiotherapy performed before the detection of

EGFR gene mutation; (2) CT images that did not show clearly

defined boundaries for pulmonary masses or pulmonary masses with

atelectasis or pleural effusion; (3) the presence of EGFR gene muta-

tions combined with other gene mutations, deletions, or rearrange-

ments; and (4) pathological results and gene mutation status

obtained from extrapulmonary metastases.

2.B | Chest CT examination and general imaging
feature acquisition

All preoperative chest CT images were nonenhanced and acquired by

one machine (Sensation Cardiac 64, Siemens Medical Solutions, Forch-

heim, Germany). All CT examinations were performed with the follow-

ing parameters: 120 kVp; pitch, 1.2; 100–200 mAs; a 512 × 512

matrix, a B30f reconstruction kernel, 5-mm reconstruction increments,

and section thicknesses of 5 mm; voxel sizes ranged from 0.54 to

0.79 mm in the X and Y directions. Two radiologists with more than

5 years of experience blinded to the EGFR mutation status interpreted

all CT images. The following characteristics should be identified:

ground glass opacity (GGO), lobulation, spiculation, pleural retraction,

and the air bronchogram sign. If the two radiologists disagreed, the

final decision was made after analysis by another senior radiologist.

2.C | CT texture analysis

2.C.1 | Radiomic feature extraction

CT data in DICOM format were imported into 3D-slicer software

(Version 4.6.2; Surgical Planning Laboratory, Brigham and Women’s

Hospital, MA, USA; http://www.slicer.org). The volume of interest

(VOI) was obtained by semiautomatic segmentation using the Seg-

ment Editor package. The VOI was then normalized by the package

“NormalizeImageFilter.” Before feature extraction by the radiomic

package (version 2.1.0), gray-level discretization and voxel resampling

were performed. All features were calculated with a fixed bin width

of 25 Hounsfield Units (HU), and resampling to a voxel size of

0.6*0.6*5.0 mm3 was applied. The characteristics can be divided into

two groups: original features: (1) shape-based (14 features), (2) gray-

level dependence matrix (14 features), (3) first-order statistics (18

features), (4) gray-level co-occurrence matrix (24 features), (5) gray-

level run-length matrix (16 features), (6) gray-level size zone matrix

(16 features), and (7) neighboring gray tone difference matrix (5 fea-

tures). Wavelet features: Features are calculated from the intensity

and texture features of the original image using a wavelet filter.

Therefore, the features are concentrated in different frequency

ranges within the tumor volume.

2.C.2 | Stable radiomic feature selection

To obtain stable radiomic features, each image data point is sub-

jected to VOI segmentation and radiomic feature extraction twice,

the intraclass correlation coefficient (ICC) for each radiomic feature

is calculated, and ICC > 0.75 is the stable feature.

2.D | Selection of prediction factors and
establishment of prediction model

Patients enrolled in our study were divided into a training cohort

and a validation cohort. To develop a better prediction model, we

used more suitable statistical methods for predictor selection. In

terms of the clinical and general imaging features, we applied a
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backward step-down selection process in a logistic regression analy-

sis to select independent prediction factors. In the radiomics model,

we used minimax concave penalty (MCP)-penalized LASSO regres-

sion analysis and tenfold cross-validation to select predictors, and

before this process the radiomic features normalization were carried

out through scale function in R software (version 3.5.2, http://www.

R-project.org). A previous study showed that for statistical analysis

of high-dimensional data, MCP-penalized LASSO regression analysis

can avoid overfitting in the prediction and identify relevant variables

for subsequent applications.22 During the process of predictor selec-

tion for the combined prediction model, to address the multi-

collinearity problem that may exist among the groups of data, we

did not cluster or combine the radiomic features, as in previous stud-

ies.18,23 After features normalization we performed MCP-penalized

LASSO regression analysis on all factors and ultimately obtained

independent predictors. All predictors were used to develop predic-

tion models. ROC curves were plotted, and AUC values represented

the predictive ability of the models. Finally, all meaningful predictors

were used to build a combined prediction model, which was com-

pared with the radiomic feature prediction model, clinical feature

prediction model, and general image feature prediction model. We

also used the validation cohort to validate the discrimination ability

of the prediction models.

2.E | Statistical analysis

Statistical analysis was performed using SPSS version 22.0 software

(SPSS, Inc., IBM Company, Chicago, Illinois, USA) and R software.

The means of continuous variables were compared using the Mann–-
Whitney U test, and Pearson chi-square test was used for categori-

cal variables between the EGFR (+) group and the EGFR (-) group by

SPSS. ICC was calculated using the “psych” package in R. The

“MASS” package was used for logistic regression in the clinical fea-

tures group and general imaging features group. The LASSO regres-

sion analysis was performed for radiomic features and combined

predictor selection by the “ncvreg” package in R. The ROC curve

was built by the “pROC” package and “ggplot2” package in R. A

nomogram was formulated by using the package “rms” in R, and the

performance of the nomogram was measured by the concordance

index (C-index), which was calculated with the “rcorrcens” package

in “Hmisc” in R. The larger C-index represented an accurate

prediction. Moreover, calibration curves were plotted for the nomo-

gram. P < 0.05 was set as statistically significant. The related com-

puterized programs with R are listed in the Appendix.

3 | RESULTS

3.A | Clinical and general imaging characteristics of
the patients

After selection, a total of 118 patients were enrolled in this study

(Fig. 1). The average age of the patients was 63.82 � 9.41. Among

them, 43 (36.4%) were positive for EGFR mutation, and 75 (63.6%)

were negative for EGFR mutation. There were 96 cases of adenocar-

cinoma (81.4%) and 22 cases of squamous cell carcinoma (18.6%).

The pathological stages were as follows: stage I for 71 patients

(60.2%), stage II for 21 patients (17.8%), and stage III for 26 patients

(22.0%). There was no significant difference in terms of age

(P = 0.420), family history of lung cancer (P = 0.139) or pathological

stage (0.810) between the two groups. However, significant differ-

ences in gender (P = 0.022), pathological type (P < 0.001), and smok-

ing index (P < 0.001) were found between the two groups (Table 1).

As shown in Table 2, of the five general imaging features

obtained from chest CT images, only pleural retraction was signifi-

cantly different between the two groups (P = 0.003).

3.B | Radiomic feature selection

Through texture analysis of each patient’s chest CT, 851 radiomic

features were obtained, including 107 original features and 8 groups

of wavelet features (each group contains 93 wavelet feature factors)

obtained by decomposition of the original features (except 14 shape

features). With ICC > 0.75 as the screening criterion, 638 stable

radiomic features were obtained, including 569 wavelet features and

69 original features (Fig. 2).

3.C | Prediction model development and ROC
analysis

Eighty-eight patients were randomly selected by SPSS as the training

cohort, and the validation cohort consisted of the remaining 30

patients.

F I G . 1 . Flow chart of patient selection.
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3.C.1 | Clinical prediction model

The logistic regression analysis results revealed that smoking index

(P = 0.028) was a predictor of EGFR mutation in the training cohort

of 88 patients. The ROC curve based on this plot was used to repre-

sent the clinical prediction model (clinical_training) of clinical features

for EGFR mutation. As shown in Fig. 3, the smoking_index shown in

the model was negatively correlated with EGFR mutation.

TAB L E 1 Clinical features of all patients.

EGFR (+) EGFR (-) Total p-value* OR (95%CI)

Number of patients 43 75 118

Sex 0.022 2.426 (1.126-5.229)

Male 17 (27.0%) 46 (73.0%) 63

Female 26 (47.3%) 29 (52.7%) 55

Age# 62.72 � 1.54 64.45 � 1.04 0.420 0.184 (−0.192-0.559)

Pathological type <0.001 0.707 (0.611-0.818)

Adenocarcinoma 43 (44.8%) 53 (55.2%) 96

Squamous cell carcinoma 0 (0.0%) 22 (100%) 22

Family history 0.139 3.158 (0.716-13.933)

Yes 5 (62.5%) 3 (37.5%) 8

No 38 (34.5%) 72 (65.5%) 110

Smoking index# 13.95 � 8.04 381.87 � 61.35 <0.001 1.137 (0.733-1.538)

Stage 0.810

IA 21 (39.6%) 32 (60.4%) 53 1.00 (reference)

IB 7 (38.9%) 11 (61.1%) 18 0.97 (0.324-2.901)

IIA 4 (44.4%) 5 (55.6%) 9 1.219 (0.293-5.07)

IIB 4 (33.3%) 8 (66.7%) 12 0.762 (0.203-2.853)

IIIA 7 (26.9%) 19 (73.1%) 26 0.561 (0.201-1.567)

EGFR, epidermal growth factor receptor; OR, odds ratio; CI, confidence interval.

#Mean � standard deviation.

*P-value was based on comparison between EGFR mutation (+) group with EGFR mutation (-) group.

TAB L E 2 General imaging features of all patients.

EGFR (+) EGFR (-) P-value* OR (95%CI)

Lobulation 0.627 1.209 (0.562-2.599)

Yes 28 (60.9%) 18 (39.1%)

No 47 (65.3%) 25 (34.7%)

Pleural retraction 0.003 3.18 (1.458-6.938)

Yes 26 (49.1%) 27 (50.9%)

No 49 (75.4%) 16 (24.6%)

GGO 0.094 2.234 (0.86-5.808)

Yes 10 (47.6%) 11 (52.4%)

No 65 (67.0%) 32 (33.0%)

Air bronchogram 0.733 1.142 (0.532-2.451)

Yes 29 (61.7%) 18 (38.3%)

No 46 (64.8%) 25 (35.2%)

Spiculation 0.981 0.99 (0.451-2.176)

Yes 49 (63.6%) 28 (36.4%)

No 26 (63.4%) 15 (36.6%)

EGFR, epidermal growth factor receptor; GGO, ground glass opacity; OR, odds ratio; CI, confidence interval.

*P-value was based on comparison between EGFR mutation (+) group with EGFR mutation (-) group.
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3.C.2 | General imaging prediction model

In the training cohort of general imaging features, logistic regression

analysis was performed, and the results revealed that GGO (p = 0.015)

and pleural retraction (p = 0.041) were independent predictors of EGFR

gene mutation. The ROC curve prediction model (imaging_training)

based on general imaging features is shown in Fig. 4. The combination

of the two models can significantly improve the predictive ability of

EGFR mutation (imaging_training AUC = 0.703).

3.C.3 | Radiomic prediction model

After MCP-penalized LASSO regression analysis and tenfold

cross-validation of 638 radiomic features in the training cohort

of 88 patients, the relationship between the cross-validation

error and the parameter lambda was determined and is depicted

in Fig. 5. To avoid overfitting the model, the number of features

was as few as possible. The optimal lambda is 0.082 at the mini-

mum cross-validation error (1.19), and the corresponding number

of predictors is 3: wavelet_HHH_glrlm_ ShortRunLowGrayLevel

Emphasis (P < 0.001), wavelet_HHH_glcm_ClusterShade

(P = 0.031) and original_shape_Sphericity (P = 0.001). ROC curves

were drawn based on these radiomic features. In the prediction

model, the AUC of each texture feature ranged from 0.512 to

0.661. The predictive ability of a single texture feature for EGFR

mutation was poor. The combined predictive ability of all texture

features, radiomic_training, was 0.815, indicating improved predic-

tive ability (Fig. 5).

3.C.4 | Combined prediction model

Finally, all 647 factors (including 4 clinical features, 5 general imaging

features, and 638 radiomic features) were analyzed by LASSO

regression and tenfold cross-validation to obtain the significant

F I G . 2 . Wilkinson’s ICC (intraclass
correlation coefficient) for radiomic
features. All radiomic features are divided
into nine groups: the original group
(including 107 features) and eight wavelet
groups (93 features for each).

F I G . 3 . ROC curves for EGFR mutation prediction in the training
group (clinical_training) and in the validation cohort
(clinical_validation).
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predictors for building the combined prediction model. As shown in

Fig. 6, when the minimum cross-validation error is 1.03, the optimal

lambda value is 0.695, and the corresponding number of nonzero

coefficients is 5: smoking_index, pleuralretraction,

original_shape_Sphericity, wavelet_HHH_glcm_ClusterShade and

wavelet_HHH_glrlm_ShortRunLowGray-LevelEmphasis. The ROC

curves in Fig. 6 show that the predictive ability of the combined pre-

diction model was better than that of any single prediction model

F I G . 4 . (a) ROC curves for EGFR
mutation prediction with general imaging
features separately and combined
(imaging_combined). (b) ROC curves for
EGFR mutation prediction in the training
group (imaging_training) and in the
validation cohort (imaging_validation).

F I G . 5 . Radiomic feature selection and the development of the clinical prediction model. (a) The LASSO algorithm and 10-fold cross-
validation for clinical predictor selection. The optimal lambda is 0.082 at the minimum cross-validation error (1.19), and the corresponding
number of predictors is 3. (b) ROC curve for EGFR mutation prediction with radiomic predictors separately and combined in the training
cohort. (c) ROC curve for the training cohort (radiomic_training) and validation cohort (radiomic_validation), and the corresponding AUC was
0.815 and 0.786 (P = 0.762).

F I G . 6 . The development of the combined prediction model. (a) The LASSO algorithm and tenfold cross-validation for combined predictor
selection. When the minimum cross-validation error is 1.03, the optimal lambda value is 0.695, and the corresponding number of nonzero
coefficients is 5. (b) ROC curves of the combined prediction model for the training cohort (combined_training AUC = 0.894) and the validation
cohort (combined_validation AUC = 0.920). (c) ROC curves are depicted to describe the discrimination of the clinical prediction model
(clinical_training), the general imaging prediction model (imaging_training), the radiomic prediction model (radiomic_training) and the combined
prediction model (combined_training).
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developed by clinical features, general imaging features or radiomic

features.

The AUC, 95% CI, and the formula for calculating the score of

the prediction models are shown in Table 3. No significant difference

in AUC values was found between the training cohort and the vali-

dation cohort for any of the four prediction models.

3.D | Establishment and validation of the
nomogram

Based on the five predictors selected in the combined model, a

nomogram was constructed to predict individual EGFR mutations. As

shown in Fig. 7, the sum of points received for each variable value

was located on the total points axis, and a line was drawn downward

to the prediction axis to determine the mutation probability. The C-

index of the nomogram for mutation prediction was 0.894 (95% CI,

0.861 to 0.926) in the training cohort and 0.92 (95% CI, 0.875 to

0.965) in the validation cohort. The nomogram was subjected to

1,000 bootstrap resamples for internal validation, and the calibration

curve was plotted (Fig. 8). The mean absolute error of calibration

curves was 0.06 in the training cohort and 0.09 in the validation

cohort.

4 | DISCUSSION

The aim of this study is to establish a noninvasive predictive model

of EGFR mutation based on clinical, imaging, and radiomic features,

which can provide a basis for targeted therapy with patients who

cannot be pathologically diagnosed with NSCLC and are unable to

undergo EGFR gene mutation detection for various reasons.

Therefore, the pathological types and tumor stages of the patients

were not included in the analyses performed in this study.

Among the four clinical features included in the analysis, gender

and smoking index were significantly different between patients with

EGFR (+) and EGFR (-) mutation status, but only smoking index was

an independent predictor of negative EGFR mutation status. The

AUC of the smoking index was 0.284 in the prediction model of

EGFR mutation in the training cohort and 0.304 in the validation

cohort. Previous studies showed that EGFR gene mutation occurred

mostly in nonsmokers.13,15,24–26 A recent meta-analysis based on 13

studies also suggested that smoking inhibited EGFR mutation in

NSCLC (OR 0.28, 95% CI 0.21-0.36, P < 0.01).27 Most studies have

suggested that EGFR gene mutations were predominant in Asian

nonsmoking women with adenocarcinoma, but gender was not an

independent predictor of EGFR gene mutation in this study. This

result may be related to the small sample size of this study.

Regarding the general imaging features, our study found that

GGO and pleural retraction were independent predictors of a posi-

tive EGFR mutation status. Previous studies have suggested that

GGO is a risk factor for EGFR mutation.28–30 Recent studies by

Wang et al31 found that GGO volume percentages were significantly

higher in patients with primary lung adenocarcinomas and EGFR

mutation than in adenocarcinomas without EGFR mutation. This

result could be related to the fact that EGFR mutation is significantly

more common in lepidic predominant adenocarcinomas, which usu-

ally present as GGO-predominant nodules on CT.10,32 The results of

these studies are consistent with those of our study. Nevertheless,

some studies have drawn different conclusions. One study suggested

that EGFR mutation status similar between GGO and solid adenocar-

cinoma, and the volume and diameter of GGO were related to EGFR

mutation.30 Studies in 201133 and in 201034 found no significant

TAB L E 3 Features of the prediction models.

Prediction
models Cohort AUC 95% CI

p-
value* Formula for calculating the model score

Value range of the models

EGFR+ EGFR-

Clinical

model

training 0.284 0.21-

0.357

0.815 Clinical� score¼�0:225�0:006∗A −0.375 to

−0.225
−1.665 to

−0.225

validation 0.304 0.156-

0.45

Imaging

model

training 0.703 0.594-

0.812

0.731 Imaging� score¼�1:607þ1:028∗Bþ1:437∗C −1.607 to

0.858

−1.607 to

0.858

validation 0.741 0.555-

0.927

Radiomic

model

training 0.815 0.718-

0.913

0.762 Radiomic� score¼2:309�9:413∗D�0:422∗Eþ8:165∗F −2.605 to

4.488

−4.715 to

0.558

validation 0.786 0.621-

0.95

Combined

model

training 0.894 0.829-

0.959

0.653 Combined� score¼1:35�7:088∗D�0:456∗Eþ
7:844∗Fþ1:011∗C�0:005∗A

−1.87 to

5.651

−14.145 to

0.854

validation 0.920 0.828-1

A = smoking_index; B = GGO; C = pleural retraction; D = original_shape_Sphericity; D = wavelet_HHH_glcm_ClusterShade; E = wavelet_HHH_glrlm_

ShortRunLowGrayLevelEmphasis.

*The P-value was based on a comparison of AUCs between the training cohort and the validation cohort.
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correlation between EGFR mutation and GGO (P = 0.07 and

P = 0.44). Zhang et al27 concluded that pleural retraction was a sig-

nificant risk factor for EGFR mutation in NSCLC (OR 1.59, 95% CI

1.31-1.92, P < 0.01) through a meta-analysis of 11 studies including

2321 patients before August 2018. A recent study confirmed pleural

retraction as an independent predictor of EGFR mutation again by

multivariate regression analysis.35 In our study, the AUCs of GGO

and pleural traction from ROC curves was 0.601 and 0.597, respec-

tively, in the prediction model of EGFR mutation established by gen-

eral imaging features. The combined predictive ability of GGO and

pleural retraction was found to be improved (AUC = 0.703).

Texture analysis (TA) is an important means of medical image

processing. In recent years, some studies have begun to apply TA to

the evaluation of NSCLC gene mutations. However, the results of

each study are not the same. Liu et al36 reported that EGFR muta-

tion could be predicted by five radiological features that were

divided into three groups: CT attenuation energy, tumor main direc-

tion, and texture defined by wavelets and laws (AUC 0.647). Another

small sample study (25 EGFR mutations and 20 wild-type EGFRs)

found that contrast, correlation, and inverse difference moment

radiomic features were associated with EGFR mutation status in lung

adenocarcinoma.37 In a study of 298 patients, a radiomic GLSZM

feature termed Size Zone NonUniformity Normalized (OR: 0.010,

95% CI: 0.0001-0.852, P = 0.042) was found to be a risk factor for

EGFR mutation.19 A multicentre study conducted in 201720 found

that 16 radiomic features were significantly correlated with EGFR

mutation. In our study, original_shape_Sphericity, wavelet_HHH_

glcm_ClusterShade and wavelet_HHH_glrlm_ShortRunLowGray

LevelEmphasis were the three radiomic predictors of EGFR mutation.

Original_shape_Sphericity is a measure of the roundness of the

shape of the tumor region relative to a sphere. A given volume in a

sphere with the smallest possible surface area may have a higher

probability of EGFR mutation. Wavelet_HHH_glcm_ClusterShade and

wavelet_HHH_glrlm_ShortRun- LowGrayLevelEmphasis resulted from

directional filtering of glcm_ClusterShade and glrlm_ShortRunLow-

Gray-LevelEmphasis with a high-pass filter along the x-direction, a

high-pass filter along the y-direction, and a high-pass filter along the

z-direction. Wavelet_HHH_glcm_ClusterShade is a measure of the

asymmetry about the mean gray-level intensity in the VOI and a

higher value indicating the greater intratumor heterogeneity.

Wavelet_HHH_glrlm_ShortRunLowGrayLevelEmphasis measures the

joint distribution of shorter run lengths with lower gray-level values

and a greater value indicating more fine structural textures and more

concentration of low gray-level values in the VOI. Unfortunately,

none of the above studies, including our own, have reported a com-

mon factor or model of radiomic features to predict EGFR mutation,

which could be explained as follows: First, it could be due to the

source of CT data; there is no standard requirement of DICOM raw

F I G . 7 . The nomogram that incorporated
all the significant predictors for EGFR
mutation was constructed with the training
cohort. The predictors include RadiomicF1
(originalshapeSphericity), RadiomicF2
(waveletHHHglcmClusterShade),
RadiomicF3 (wavelet-HHHglrlmShort
RunLowGrayLevelEmphasis),
pleuralretraction and smoking_index.

F I G . 8 . The calibration curve of the
nomogram for predicting the probability of
EGFR mutation in the training cohort (a)
and the validation cohort (b). The actual
mutation probability is plotted on the y-
axis; the nomogram-predicted mutation
probability is plotted on the x-axis.
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data for CT texture analysis at present, and different CT machines

and different CT scanning parameters could lead to different results

from radiomic feature extraction. Second, different texture analysis

software programs are used by different research institutes, which

also contributes to the lack of consistency and repeatability in the

final results. 3D Slicer is an open-source software platform for medi-

cal image processing. In our study, we used the free software pack-

age Radiomic to extract radiomic features. We hope that this

software is also used in similar research in the future to obtain more

comparable results.

In the prediction model for EGFR mutation established by radiomic

features, the predictive ability of a single feature is not strong, but the

comprehensive predictive ability is significantly improved (AUC =

0.815). The combined prediction model, which combines the three

groups of features, is much better than any single prediction model

(AUC = 0.894). Limited by the predictive ability of a single prediction

model, most of the related studies in the literature have used a combi-

nation of clinical features and general image features35,36,38 or a com-

bination of clinical features and texture features18–20 to improve the

predictive ability of the EGFR mutation prediction model. Only one

study21 combined clinical features, general image features and radio-

mic features to establish a prediction model (AUC = 0.863) for EGFR

mutation; however, only 11 original radiomic features were included in

that study, and many wavelet transform features were excluded. We

believe that in future research, the incorporation of noninvasive fea-

tures such as pathological features and tumor marker features into the

comprehensive prediction model may be more helpful for improving

the predictive ability for EGFR mutation.

The nomogram established by smoking_index, pleuralretraction

and three radiomic features performed well in predicting EGFR

mutation. It is an intuitive individual prediction model, and its predic-

tion ability is supported by the C-index (0.894 and 0.92 for the train-

ing and validation cohorts, respectively) and the calibration curve.

Limited by the small sample size, patients with EGFR exon 18,

19, 20, and 21 mutations were not analyzed separately in the pre-

sent study. We hope that a large cohort of patients can be enrolled

in future studies for further analysis.

5 | CONCLUSIONS

Smoking index, pleural retraction, and three radiomic features were

identified as independent prognostic factors of EGFR mutation sta-

tus in NSCLC. Radiomic features are better predictors than general

imaging features or clinical features. Our study may help develop a

noninvasive biomarker to identify EGFR mutation status by using a

combination of the three group features.
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