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Abstract: Although the use of synthetic chemicals is the principal method for insect pest management,
their widespread application has led to numerous side effects, including environmental pollution and
threats to human and animal health. Plant essential oils have been introduced as promising natural
substitutes for synthetic insecticides. However, high volatility and/or low durability are the main
limiting factors for essential oil application for control of insect pests. Accordingly, along with an
evaluation of the fumigant toxicity of Eucalyptus largiflorens essential oil against the cowpea weevil,
Callosobruchus maculatus, essential oil was nanoencapsulated by two mesoporous silicates, MCM-
41 and zeolite 3A, to enhance fumigant persistence and toxicity. The chemical profile of essential
oil was also analyzed through gas chromatographic-mass spectrometry. E. largiflorens essential oil
showed significant concentration-dependent toxicity against insect pests; a concentration of 5.16 µL/L
resulted in 100% mortality after 48 h. The toxicity of essential oil could be attributed to the presence
of various insecticidal terpenes, such as spathulenol (15.6%), cryptone (7.0%), and 1,8-cineole (5.8%).
Fumigant persistence was increased from 6 days to 19 and 17 days for pure and capsulated essential
oil with MCM-41 and Zeolite 3A, respectively. The insect mortality also increased from 99 insects
in pure essential oil to 178 and 180 insects in MCM-41 and Zeolite 3A encapsulated formulations,
respectively. Therefore, the encapsulation of E. largiflorens essential oil by MCM- 41 and Zeolite 3A is
a beneficial method for enhancing its persistence and toxicity against C. maculatus.

Keywords: fumigant persistence; mesoporous materials; encapsulation; toxicity

1. Introduction

The cowpea weevil, Callosobruchus maculatus (Fabricius) (Coleoptera: Chrysomeli-
dae), is the damaging field-carry-to storage insect pest of various legumes, such as beans,
chickpea, cowpea, lentil, and soybean [1,2]. A female C. maculatus lays more than 100 eggs
within its 2- to 3-week life span, and larvae penetrate legume grains, causing weight loss,
as well as reduction in seed viability and nutritional quality, making grains unsuitable for
marketing, human, and animal consumption [3,4]. The economic injury of C. maculatus can
reach 100% in untreated legume grains [5].

Although the use of synthetic insecticides is the main strategy for the management
of C. maculatus, they can be toxic to non-target organisms and contaminate the air, crops,
soil, and underground water [6]. Furthermore, the resistance of C. maculatus to several
conventional carbamate, pyrethroid, organophosphate, and organochlorine pesticides
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was reported [7–9]. Accordingly, the introduction of low-risk efficient agents for the
management of such pests is necessary.

The use of essential oils extracted from aromatic plants as low risk materials to man-
age of insect pests from different genera, families, and orders has recently been recom-
mended [10–12]. The essential oils from different parts of aromatic plants, such as leaves,
flowers, and stems, are mixtures of aromatic and aliphatic compounds, including ter-
penoids and phenylpropanoids [13]. Along with significant roles in pollinator attraction
and plant–plant interactions, these secondary metabolites are coevolved in plants against
herbivores [14]. There are also multiple modes of action against insect pests: inhibition
of acetylcholinesterase activity; blockage of octopamine, gamma-amino butyric acid, and
nicotinic acetylcholine receptors; disruption of the function of detoxifying enzymes, es-
terases, and glutathione S-transferases; and adverse effects on digestive enzymes, such as
lipases, proteases, amylases, and glucosidases, as well as energy reservoir protein, glucose,
and triglyceride contents [15]. Therefore, insect pests are less resistant to toxic exposure
to plant essential oils [16]. The essential oils isolated from different species of Eucalyptus
genus (Myrtales: Myrtaceae) are among the promising bioagents for the management
of insect pests [17–20]. For example, the significant fumigant toxicity of two Eucalyptus
essential oils, namely E. lehmanni (Schauer) Benth and E. astringens Maiden, against adults
of C. maculatus, the lesser grain borer (Rhyzopertha dominica (F.)), and the rust-red flour
beetle (Tribolium castaneum (Herbst)) was reported by Hamdi et al. [21]. Complete control
was achieved with a concentration of 50 µL/L air of E. lehmanni essential oil after 48 h,
which was attributed to its main component, 1,8-cineole (34.6%).

Despite the promising insecticidal efficiency of essential oils, their application is
restricted because of high volatility and degradation with light, oxygen, and moderate
temperature [22]. Controlled-release techniques have been recognized as means suitable for
smaller quantities of insecticides, along with protection from environmental factors, which
can be applied more efficiently [23]. Nanoencapsulation is a practical approach to enhance
both durability and insecticidal activity of essential oils or any other active ingredients [24].

Mesoporous silicas with nanoscale dimensions have high specific surface areas (>1000 m2/g)
based on regular arrangements of micropores [25]. For instance, the aluminosilicate crystal
zeolite 3A, with narrow structural pores measuring 3 Å (0.3 nm), enable adsorption of
molecules with a diameter larger than the pore openings [26]. MCM-41 (Mobil Composition
of Matter No. 41) was the first mesoporous solid to be synthesized from aluminosilicate
gels [27]. MCM-41 and zeolites from several mesoporous nanoparticles have been studied
for bioapplications as a matrix for drug-controlled release [28,29]. Recently, there has been
growing interest in the application of mesoporous nanoparticles, such as zeolites and MCM-
41, ranging from adsorption to active ingredient delivery [30]. Nanoencapsulation of highly
volatile fragrances, such as essential oils and their components, in zeolites and MCM-41
for controlled release and enhancement of their durability is one of the recent promising
applications of mesoporous materials [31,32]. For example, the antibacterial activity of film
nanocomposite made from zein film and cinnamon essential oil was significantly prolonged
by loading the essential oil in MCM-41 for application in long-term packaging [33]. In
another study, the fumigation persistence of essential oils isolated from Thymus eriocalyx
(Ronniger) Jalas and Thymus kotschyanus Boiss and Hohen was increased by up to three
times by loading in MCM-41. In addition, the mortality of the pest (two-spotted spider mite:
Tetranychus urticae Koch) exposed to these essential oils was significantly increased [34].

The present study was conducted to evaluate the toxicity of E. largiflorens essential oil
against C. maculatus. The main objective was to achieve encapsulation by two mesoporous
materials, MCM-41 and Zeolite 3A, to intensify fumigant persistence and insecticidal effi-
ciency of essential oil. The essential oil was also analyzed by gas chromatography—mass
spectrometry to clarify its chemical profile.
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2. Results
2.1. Chemical Profile of E. largiflorens Essential Oil

Among 55 identified components, high levels of spathulenol (15.6%), cryptone (7.0%),
1,8-cineole (5.8%), terpinen-4-ol (5.7%), p-cymen-7-ol (5.1%), p-cymene (4.8%), cuminalde-
hyde (4.4%), carvacrol (3.9%), α-pinene (3.2%), and m-cumenol (3.1%) were detected
(Figure 1 and Table 1). E. largiflorens essential oil was found to be rich in terpenic com-
ponents. Different groups of terpenes, including oxygenated monoterpenoids (53.4%),
oxygenated sesquiterpenoids (21.9%), monoterpene hydrocarbons (11.6%), and sesquiter-
pene hydrocarbons (2.5%), were identified in the essential oil. Only 2.5% of the recognized
components were non-terpenes (Table 1).
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Figure 1. Chemical structure of main terpenes and terpenoids (highlighted with red O or OH)
identified in the essential oil of Eucalyptus largiflorens.

2.2. Fumigant Toxicity

Data obtained from the fumigant toxicity of E. largiflorens essential oil against adults of
C. maculatus had a normal distributions based on the result of a Kolmogorov–Smirnov test
(Z = 0.67, 2-tailed significance = 0.75). According to the ANOVA, essential oil concentrations
(F = 106.86, df = 4, and p < 0.001) and exposure times (F = 22.05, df = 1, and p < 0.001) had
statistically significant effects on the mortality of C. maculatus. However, the interaction
between these factors was not significant (F = 0.36, df = 4, and p < 0.833). The essential
oil had prominent fumigant toxicity against C. maculatus; a fumigation concentration of
5.16 µL/L resulted in 100% mortality among the affected adults after 48 h. According to
a comparison of means by Tukey’s test, increasing the concentration of essential oil and
exposure time significantly augmented the mortality of insect pests (Figure 2).
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Table 1. Chemical profile of the essential oil extracted from Eucalyptus largiflorens leaves.

RIdb RIcalc Compound % RIdb RIcalc Compound %

932 932 α-Pinene 3.2 1239 1234 Carvone 0.4
969 970 Sabinene 0.3 1249 1244 Piperitone 1.4
974 974 β-Pinene 0.2 1273 1267 Phellandranal 2.6
988 988 Myrcene 0.1 1282 1277 (E)-Anethole 2.4
988 990 2,3-Dehydro-1,8-cineole 0.1 1289 1294 p-Cymen-7-ol 5.1

1002 1003 α-Phellandrene 0.1 1298 1303 Carvacrol 3.9
1022 1011 m-Cymene 0.4 1314 1325 4-Hydroxycryptone 0.9
1024 1023 p-Cymene 4.8 1346 1347 α-Terpinyl acetate 2.4
1024 1028 Limonene 1.1 1389 1386 β-Elemene 0.2
1026 1032 1,8-Cineole 5.8 1392 1396 (Z)-Jasmone 0.1
1054 1056 γ-Terpinene 0.8 1439 1441 Aromadendrene 0.9
1065 1062 cis-Sabinene hydrate 0.1 1458 1462 allo-Aromadendrene 1.3
1067 1065 cis-Linalool oxide (furanoid) 0.3 1489 1486 β-Selinene 0.1
1083 1083 Diallyl disulfide 0.1 1491 1493 10,11-Epoxycalamenene 0.4
1089 1090 p-Cymenene 0.6 1564 1561 epi-Globulol 0.3
1098 1097 Linalool 0.6 1567 1569 Palustrol 0.6
1101 1102 cis-Thujone (α-Thujone) 0.4 1577 1581 Spathulenol 15.6
1112 1112 trans-Thujone (β-Thujone) 0.3 1590 1614 Globulol 1.7
1118 1119 cis-p-Menth-2-en-1-ol 0.9 1592 1616 Viridiflorol 0.5
1122 1120 α-Campholenal 0.4 1629 1628 iso-Spathulenol 0.9
1137 1137 trans-Sabinol 0.8 1640 1648 Caryophylla-4(12),8(13)-dien-5α-ol 0.3
1141 1141 Camphor 1.6 1652 1653 α-Cadinol 0.2
1148 1149 Menthone 0.9 1668 1670 14-Hydroxy-9-epi-(E)-caryophyllene 0.3
1160 1160 Pinocarvone 1.3 1741 1744 iso-Bicyclogermacrenal 1.0
1174 1175 Terpinen-4-ol 5.7 Monoterpene hydrocarbons 11.6
1183 1189 Cryptone 7.0 Oxygenated monoterpenoids 53.4
1186 1193 α-Terpineol 0.9 Sesquiterpene hydrocarbons 2.5
1204 1202 Verbenone 1.1 Oxygenated sesquiterpenoids 21.9
1215 1212 trans-Carveol 1.0 Others 2.7
1224 1224 m-Cumenol 3.1 Total identified 92.0
1238 1233 Cuminaldehyde 4.4

RIcalc = retention index determined with respect to a homologous series of n-alkanes on a HP-5ms column;
RIdb = retention index from the databases [35–37].
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Figure 2. Mean mortality percentage (±SE) of C. maculatus adults exposed to fumigation with
Eucalyptus largiflorens essential oil. Different letters indicate statistically significant differences accord-
ing to Tukey’s test at p ≤ 0.05.

The results of probit analyses of the data obtained from a fumigant toxicity assay of
E. largiflorens essential oil against the adults of C. maculatus, including LC (lethal concentra-
tion) values, χ2, and regression lines, are presented in Table 2. The LC50 (lethal concentration
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to kill 50% of tested insects) value of E. largiflorens essential oil on C. maculatus adults was
2.85 µL/L air after 24 h, which was decreased to 2.35 µL/L air after 48 h. However, this
decrease was not statistically significant based on the overlapping of confidence limits.
High values of r2 (correlation coefficients) also indicated a positive and direct correlation
between essential oil concentrations and the mortality of C. maculatus for both exposure
times (Table 2).

Table 2. Results of probit analyses of the data obtained from a fumigant toxicity assay of Eucalyptus
largiflorens essential oil against the adults of Callosobruchus maculatus.

Time (h) N LC50 with 95% Confidence Limit
(µL/L Air)

LC90 with 95% Confidence Limit
(µL/L Air)

χ2

(df = 3) Slope Intercept Significance r2

24 480 2.85 (2.65–3.07) 6.25 (5.43–7.64) 3.07 3.76 −1.71 0.38 * 0.97
48 480 2.35 (1.15–3.19) 4.82 (3.46–36.18) 18.57 4.15 −1.55 0.0003 ** 0.95

N is the number of tested insects at each time point. * Because the significance level is greater than 0.05, no
heterogeneity factor was used in the calculation of fiducial limits. ** Because the significance level is less than 0.05,
a heterogeneity factor was used in the calculation of fiducial limits.

2.3. Encapsulation and Fumigant Persistence

Nanoencapsulation efficiency percentage and loading percentage of E. largiflorens
essential oil by MCM-41 were 81.25 and 79.12%, respectively. These values for zeolite
3A were 85.37 and 83.48%, respectively. The size of synthesized mesoporous particles
evaluated by scanning electron microscopy (SEM) and dynamic light scattering (DLS) are
presented in Figure 3A–D and 4; the zeolite 3A and MCM-41 with essential oil encapsulated
treatment can be recognized as micro- and nanoparticles, respectively.
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According to DLS analysis, the average particle sizes of MCM-41 and Zeolite 3A
changed from 151 to 157 nm and 272 to 308 nm, respectively, as a result of loading of
essential oil. The results of DLS analysis showed that the mean particle size of Zeolite
3A was larger than that of Zeolite 3A essential oil, and loading the essential oil slightly
increased the particle size of MCM-41 (Figure 4).
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Persistence of the essential oil of E. largiflorens was terminated after 6 days. Loading of
E. largiflorens essential oil in MCM-41 and Zeolite 3A increased its persistence to 19 and
17 days, respectively. Although pure and capsulated essential oil formulations resulted in
up to 50% mortality after 5 days, encapsulation of essential oil increased the efficiency of
fumigant toxicity. Insect mortality increased from 99 insects in pure essential oil to 178 and
180 insects in MCM-41 and Zeolite 3A, respectively (Figure 5).
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Figure 5. Fumigant toxicity and persistence of pure and nanoencapsulated Eucalyptus largiflorens essential
oil against Callosobruchus maculatus. A concentration of 6.25 µL/L air (24-h LC90 value) was considered
for both pure and nanoencapsulated oil. To eliminate the mortality in the control group (without any
essential oil), the mortality percentage observed each day was corrected using Abbott’s formula.

3. Discussion

Terpenic components, such as spathulenol, cryptone, 1,8-cineole, terpinen-4-ol, p-
cymen-7-ol, p-cymene, cuminaldehyde, carvacrol, and α-pinene, were detected at high
levels in the essential oil of E. largiflorens. The essential oil composition of E. largiflorens
in this investigation is qualitatively similar to that reported in previously published stud-
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ies [38–40]. However, some notable quantitative differences include the relatively high
concentrations of 1,8-cineole (23.1–47.0%) coupled with relatively low concentrations of
spathulenol (0.4–2.7%) in the previous reports. Such differences may be due to several
exogenous and endogenous factors, including harvesting time, geographical position,
extraction method, and genetic makeup [19,41,42]. Insecticidal properties of some compo-
nents identified in the essential oil of E. largiflorens have previously been reported (Table 3).
Along with acute toxicity, these components caused several sublethal effects, including the
inhibition of acetylcholine esterase, adenosine triphosphatases, female oviposition and F1
adult emergence, and even repellent activity, on the treated insect pests, which is indicative
of their multiple modes of action (Table 3). In other words, there is a mixture of insecticidal
compounds with various biological effects in E. largiflorens essential oil, which are probably
responsible for the observed toxicity. However, synergistic and antagonistic properties of
other compounds in the essential oil should be considered [43].

Table 3. Recently reported insecticidal effects of some chemical components existing in E. largiflorens
essential oil.

Compound Insecticidal Activity

Anethole Toxicity and acetylcholine esterase inhibitory against German cockroach (Blattella germanica (L.)) [44].

1,8-Cineole Toxicity, along with oviposition and F1 adult emergence, inhibitory against C. maculatus [45].

Camphor Toxicity against larvae of cotton leaf worm (Spodoptera littoralis Boisduval) [43].

Carvacrol Toxicity against mushroom fly (Lycoriella ingenua (Dufour)) [46].

Carveol Toxicity and acetylcholine esterase inhibitory against B. germanica [44].

Cuminaldehyde Toxicity against the larvae of L. ingenua [46].

Limonene Toxicity against adults of the housefly (Musca domestica) [47].

p-Cymen-7-ol Toxicity against T. castaneum and L. serricorne [48].

p-Cymene Toxicity, repellency, and inhibition of acetylcholinesterase and adenosine triphosphatases on T. castaneum [49].

Phellandranal Toxicity, along with acetylcholine esterase, inhibitory against B. germanica [44].

Pinocarvone Toxicity against Japanese termite (Reticulitermes speratus Kolbe) [50].

Spathulenol Toxicity against the aphid Metopolophium dirhodum (walker) and relatively non-toxic to non-target ladybird and earthworm [51]

Terpinen-4-ol Toxicity and repellency against booklouse (Liposcelis bostrychophila Badonnel), cigarette beetle (Lasioderma serricorne F.), and T. castaneum [52].

Verbenone Toxicity against L. bostrychophila, L. serricorne and T. castaneum [53].

α-Pinene Toxicity, repellency, and inhibition of acetylcholinesterase and adenosine triphosphatases on T. castaneum [49].

α-Terpinyl acetate Toxicity against M. domestica adults [47].

Micro- and nanoencapsulated formulations based on controlled-release techniques
have recently been introduced to enhance the persistence and possible application of plant
essential oils for pest management [54–57]. For example, the toxicity of gelatin-based
microencapsulated essential oils of Rosmarinus officinalis L. and Thymus vulgaris L. against
the larvae of Indian meal moth, Plodia interpunctella (Hubner), were reported [58]. It was
found that 5% of microcapsules in the diet of larvae caused 17.5 and 20.0% mortality by
R. officinalis and T. vulgaris essential oils after 7 days, respectively. In another study, fumi-
gant toxicity and persistence of Cuminum cyminum L. essential oil and oil loaded in myristic
acid-chitosan nanogels were extended against the granary weevil (Sitophilus granarius L.)
and confused flour beetle (Tribolium confusum Jacquelin du Val) [59]. In the other research,
pure and maltodextrin/Angum gum nanoencapsulated essential oil of Eucalyptus globulus
Labill with high concentrations of terpenic compounds 1,8-cineol and p-cymene were toxic
to third-instar larvae of the Mediterranean flour moth (Ephestia kuehniella Zeller). Encapsu-
lation enhanced both the insecticidal activity and the persistence of E. globulus essential
oil [24]. In the present study, significant fumigant toxicity and persistence of micro- and
nanoencapsulated E. largiflorens essential oil based on mesoporous materials were attained
against C. maculatus as new formulations. These formulations based on controlled-release
techniques allowed for a smaller reduction in essential oil quantity over a given time
interval, as in the abovementioned studies.
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A few studies documented the encapsulation of plant-derived materials by meso-
porous silica for augmentation of their bioeffects against detrimental agents, including
fungi and insects. For example, the antifeedant activity of α-pinene and linalool (as two
major constituents in the essential oils of many aromatic plants) was improved against the
tobacco cutworm (Spodoptera litura F.) and the castor semilooper (Achaea janata L.) by load-
ing in silica nanoparticles [60]. Bernardos et al. [61] demonstrated that antifungal activity of
some nanoencapsulated essential oil components comprising carvacrol, cinnamaldehyde,
eugenol, and thymol by MCM-41 was intensified against Aspergillus niger ATCC 6275 so
that encapsulated carvacrol and thymol was able to maintain antifungal activity, even after
30 days. In our recent study, the persistence of essential oils isolated from Thymus eriocalyx
(Ronniger) Jalas and Thymus kotschyanus Boiss and Hohen was modified by loading in
MCM-41 from 6 and 5 days in pure formulation to 20 and 18 days in nanoencapsulated
formulations, respectively [34]. In the present work, an outlook was established of the uti-
lization of E. largiflorens essential oil by loading in MCM-41 and zeolite 3A for enhancement
of its fumigant toxicity and efficiency against a key pest, C. maculatus.

Chemical compositions of plant essential oils normally comprise terpenic and phenyl-
propanoic components. In the present study, spathulenol (15.6%) was found to be the most
abundant component in the essential oil of E. largiflorens, followed by cryptone (7.0%),
1,8-cineole (5.8%), terpinene-4-ol (5.7%), p-cymen-7-ol (5.1%), p-cymene (4.8%), and cumi-
naldehyde (4.4%). Essential oils comprise a mixture of several compounds that may be
cause a reduction in pest resistance. Furthermore, multiple biochemical effects of pure
essential oils have been reported, including inhibition of acetylcholinesterase (AChE),
blockage of the octopamine and gamma-aminobutyric acid receptors (GABArs), and reduc-
tion in detoxifying enzyme (esterase and glutathione S-transferases (GSTs)) activities and
energy resources against insect pests [62–64]. Another characteristic of pure essential oils,
besides high insecticidal efficiency against a wide range of insect pests, is low mammalian
toxicity [62,63]. Furthermore, their components, in general, are biodegradable, in contrast
to their ecotoxicology [10,65]. These positive attributes highlight the promising efficiency
of essential oils against insect pests. However, low persistence is the main factor restricting
the application of essential oils as part of pest management strategies. In this study, the
fumigant persistence of E. largiflorens essential oil was improved by encapsulation in MCM-
41 and Zeolite 3A. Although both physical and chemical mechanisms may be considered
in loading and releasing essential oils from porous materials, research is often focused on
physical means due to the presence of several nanopores in these materials [31,66]. For ex-
ample, Milićević et al. [67] indicated that zeolite adsorbs the droplets of clove bud essential
oil due to its porosity; the insecticidal, antifungal, and antibacterial effects of essential oils
were augmented by loading in this porous material. In a study by Hettmann et al. [68], a
functionalized calcium carbonate porous coating was used for controlled release of rose-
mary and thyme essential oil. The authors found that thyme essential oil required almost
double the time required by rosemary essential oil to reach the saturation point, which
can be explained by diverse chemical composition and concentration of monoterpenes
between the two essential oils. Essential oil evaporates from the pores of porous materials
and distributes to the air. The study by Hettmann et al. [68] mainly focused on physical
influences, including degrees of loading and temperature, on release of essential oils from
porous materials.

4. Materials and Methods
4.1. Materials

All required materials, including aluminum oxide, anhydrous sodium sulphate (Na2SO4),
aqueous ammonia (25% w/w), cetyl trimethyl ammonium bromide (CTAB), silicon dioxide,
sodium acetate trihydrate, sodium aluminate, sodium orthosilicate, sodium oxide, and
tetraethyl orthosilicate (TEOS), were obtained from Merck (Darmstadt, Germany).
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4.2. Plant Materials

Leaves of Eucalyptus largiflorens were collected from Kashan Botanical Garden, Kashan
(33◦59′20′′ N, 51◦28′38′′ E), Iran. Voucher samples were deposited at the herbarium of
Kashan Botanical Garden and characterized by scientific name.

4.3. Essential Oil Extraction

The samples were air-dried at room temperature and ground with an electric grinder.
Essential oils were extracted using a Clevenger apparatus with 100 g of plant samples and
1200 mL distilled water for 3 h, and additional water from extracted essential oil was removed
with Na2SO4. Extracted essential oil was stored in a refrigerator at 4 ◦C prior to experiments.

4.4. Essential Oil Analysis

Chemical analysis of the essential oils was carried out using an Agilent 7890B series
GC instrument coupled with an Agilent 5977A Series mass spectrometer (Santa Clara, CA,
USA). The GC column was an HP-5ms fused-silica capillary column (30 m length, 0.25 mm
diameter) with a film thickness of 0.25 µm. The following oven temperature program
was initiated at 50 ◦C, held for 1 min, then increased to 100 ◦C at a rate of 8 ◦C/min,
increased 2 ◦C/min to 110 ◦C and held at 110 ◦C for 2 min, increased 5 ◦C/min to 185 ◦C,
increased 15 ◦C/min to 280 ◦C and held at 280 ◦C for 2 min, and then increased 10 ◦C/min
to 300 ◦C and held at 300 ◦C for 5 min. The spectrometers were operated in EI mode; the
scan range was 50–500 amu, the ionization energy was 70 eV, and the scan rate was 0.20 s
per scan. The injector, interface, and ion source were kept at 280 ◦C. Helium was used
as the carrier gas, with a 1.0 mL/min flow rate. The sample was prepared by diluting
essential oil in in methanol (1:10), and 1 µL of the solution was injected. The relative
percentages of each component present in the analyzed EOs were calculated from TIC areas.
The retention indices were determined in relation to a homologous series of n-alkanes
(C8–C20) under the same operating conditions. Compounds were identified by comparing
mass spectral fragmentation patterns and retention indices with those obtained from mass
spectral libraries [35–37].

4.5. Insect Rearing

The initial colony of C. maculatus was obtained from the Department of Plant Protection,
Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili. The
insects were reared on cowpea seeds (Vigna ungiculata (L.): Nekador cultivar) for several
generations. Unsexed pairs of insects were transferred to uncontaminated cowpea seeds
and removed after 48 h. The seeds contaminated with insect eggs were kept separately in
an incubator 27 ± 2 ◦C, 75 ± 5% relative humidity with as 12: 12 dark: light photo period.
Adults (1–7 days old) were designated for the bioassays [69].

4.6. Fumigant Toxicity of Essential Oil

Glass containers (580-mL) with tight caps were used as fumigant chambers. Based
on the preliminary experiments, five essential oil concentrations (1.72, 2.24, 2.93, 3.96,
and 5.16 µL/L air) were tested against the adults of C. maculatus (20 insects/container).
All concentrations were sprayed evenly using a handheld sprayer on a 2 × 2 cm strip
of Whatman no. 1 filter papers adhered to the inner surface of the lid of fumigation
chambers. The exposure period was 24 and 48 h, and four replications were made for
each concentration plus the control group. The controls were prepared with the same
procedures, without any essential oil concentration. Insects were considered dead when
they did not respond to touch with a paintbrush. The estimated mortality was checked
for normality with the Kolmogorov–Smirnov test [70]. The mortality percentage was
corrected using Abbott’s formula to account for the mortality in the control group [71]:
Pt = [(Po _ Pc)/(100 _ Pc)] × 100, where Pt is the corrected mortality percentage, Po is the
mortality percentage of treated insects, and Pc is the mortality percentage in the control
group. The mortality data obtained from a fumigant toxicity assay of essential oil were
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subjected to analyses of variance (ANOVA), and comparison of means was performed at
p ≤ 0.05 using Tukey’s test. Probit analyses were performed to estimate LC50 and LC90
values (lethal concentration to kill 50 and 90% of tested insects, respectively), regression line
details, and χ2 values. SPSS version 24.0 (Chicago, IL, USA) was used as statistical software.

4.7. Synthesis of Mesoporous Materials

Pure-silica MCM-41 was synthesized according to the procedure described by Ebadol-
lahi et al. [34]. CTAB as template was dissolved in a mixture of water: ethanol (155:1),
and an ammonia solution and sodium acetate were then added. After 10 min stirring at
200 rpm, when a clear solution was obtained, TEOS was immediately added. The molar
ratio of the resulting gel was 1 TEOS, 0.22 CTAB, 0.034 sodium acetate, 11 NH3, 1 ethanol,
and 155 water. After 2.5 h stirring at room temperature, the obtained gel was transferred
to a stainless-steel vessel and held at 70 ◦C for 5 h. The resulting powder was collected
using filtration and then washed with water. The resulting surfactant containing MCM-41
was dried at 70 ◦C for 3 h, and the synthesized powder was culminated at 550 ◦C for 5 h to
remove the template phase.

In the synthesis of Zeolite A3, aluminum oxide, silicate, sodium oxide, and water were
used at a ratio of 1, 2, 0.55, and 0.45 (0.55 Na2O, Al2O3, 2 SiO2, 0.45 H2O). The resulting
mixture was poured into water and, after adding potassium chloride (35% zeolite weight),
was stirred for 2 h. The mixture was passed through a filter and dried after washing.

4.8. Encapsulation of Essential Oil and Persistence Assays

A total of 20 mg of each mesoporous material was added to a solution of 100 µL
acetone and 6.25 µL of E. largiflorens essential oil (considered as a LC90 value). The weight
of mesoporous material (20 mg) was measured in the control group after 20 min shaking at
room temperature. At the same time, the final encapsulated essential oil was prepared with
the same approach, and all trials were carried out without essential oil in the control group.
The size distributions of particles were determined by scanning electron microscopy (SEM)
(Hitachi su8040) and a dynamic light scattering (DLS) (HORIBA model, Japan). The encap-
sulation efficiency percentage and loading percentage were determined as follows [72]:

Nanoencapsulation Efficiency Percentage =
weight of encapsulated essential oil
weight of essential oil used initially

×100

Loading Percentage =
weight of encapsulated essential oil

weight of essential oil − encapsulated particles
×100

Pure and nanoencapsulated essential oil persistence was measured based on fumigant
bioassay; impregnated filter papers were used for pure essential oil under the lid of the
fumigation chambers, and nanoencapsulated essential oil persistence was determined by
mesoporous materials in 6-cm diameter Petri dishes in the bottom of the chamber. The LC90
value of essential oil determined by fumigant bioassay (6.25 µL/L air) was used for both
pure and capsulated essential oils. In the case of nanoencapsulated essential oil, unloaded
nanoparticles were considered as a control group. The mortality was counted for each 24 h
of exposure time, and 10 adults (1–7 days old, randomly selected among both males and
females) were introduced to the fumigant chamber for each time step. Four replications
were considered for each treatment and the control groups. Mortality of insects treated
with pure essential oil and encapsulated with MCM-41 and Zeolite 3A were recorded until
the 6th, 17th, and 19th days, respectively. The mortality percentage was corrected using
Abbott’s formula [40] to correct for the mortality in the control group, and a comparison of
means was performed at p ≤ 0.05 using Tukey’s test.

5. Conclusions

Micro- and/or nanoencapsulation and other controlled-release techniques were used
to enhance the pesticidal effectiveness and persistence of plant essential oils. In this study,
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the essential oil of E. largiflorens was encapsulated in mesoporous materials MCM-41 and
Zeolite 3A. All pure and capsulated essential oil formulations had significant fumigant
toxicity against insect pests, with up to 50% mortality achieved after 5 days. Encapsulation
of E. largiflorens essential oil improved its persistence from 6 days for pure essential oil
to 19 and 17 days for capsulated formulation by MCM-41 and Zeolite 3A, respectively.
Along with persistency increases, encapsulation of essential oil improved the effectiveness
of fumigant toxicity, and insect mortality increased from 99 insects in pure essential oil to
178 and 180 insects in MCM-41 and Zeolite 3A encapsulated formulations, respectively.
Accordingly, nano- and microencapsulation of E. largiflorens essential oil based on MCM-41
and Zeolite 3A improved efficiency against C. maculatus, resulting in improved residual
toxicity compared to pure oil. However, additional studies are required to clarify the
toxicity against other pests, as well as the residual effects of these agents on commodities
and non-target organisms.
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