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Abstract: HMGB1 and HMGB2 proteins are abundantly expressed in human embryonic stem cells
(hESCs) and hESC-derived progenitor cells (neuroectodermal cells, hNECs), though their functional
roles in pluripotency and the mechanisms underlying their differentiation in response to the anticancer
drug etoposide remain to be elucidated. Here, we show that HMGB1 and/or HMGB2 knockdown
(KD) by shRNA in hESCs did not affect the cell stemness/pluripotency regardless of etoposide
treatments, while in hESC-derived neuroectodermal cells, treatment resulted in differential effects on
cell survival and the generation of rosette structures. The objective of this work was to determine
whether HMGB1/2 proteins could modulate the sensitivity of hESCs and hESC-derived progenitor
cells (hNECs) to etoposide. We observed that HMGB1 KD knockdown (KD) and, to a lesser extent,
HMGB2 KD enhanced the sensitivity of hESCs to etoposide. Enhanced accumulation of 53BP1 on
telomeres was detected by confocal microscopy in both untreated and etoposide-treated HMGB1
KD hESCs and hNECs, indicating that the loss of HMGB1 could destabilize telomeres. On the other
hand, decreased accumulation of 53BP1 on telomeres in etoposide-treated HMGB2 KD hESCs
(but not in HMGB2 KD hNECs) suggested that the loss of HMGB2 promoted the stability of telomeres.
Etoposide treatment of hESCs resulted in a significant enhancement of telomerase activity, with
the highest increase observed in the HMGB2 KD cells. Interestingly, no changes in telomerase activity
were found in etoposide-treated control hNECs, but HMGB2 KD (unlike HMGB1 KD) markedly
decreased telomerase activity in these cells. Changes in telomerase activity in the etoposide-treated
HMGB2 KD hESCs or hNECs coincided with the appearance of DNA damage markers and could
already be observed before the onset of apoptosis. Collectively, we have demonstrated that HMGB1
or HMGB2 differentially modulate the impact of etoposide treatment on human embryonic stem cells
and their progenitor cells, suggesting possible strategies for the enhancement of the efficacy of this
anticancer drug.

Keywords: HMGB1 and HMGB2; human embryonic stem cells; neuroectodermal cells; apoptosis;
telomerase; etoposide

1. Introduction

Human embryonic stem cells (hESCs) provide an inexhaustible source of specialized cells to
hold the greatest promise for therapeutic perspectives and basic research of human development [1,2].
hESCs are highly sensitive to DNA-damaging agents, which induce DNA repair mechanisms following
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genomic insult [3]. In eukaryotic cells, gene activation or repression (and, consequently, the execution
of the differentiation program) is highly influenced by the structure of the chromosomal DNA,
which is associated with histones and nonhistone HMG proteins, in particular, the HMGB-type
proteins [4–6]. The majority of HMGB research has focused on the evolutionarily highly conserved
HMGB1 and HMGB2 proteins, which are detectable at a high level in all types of embryonic and adult
cells [7,8]. HMGB1 and HMGB2 are expressed in human inner cell mass (ICM, [9]) and are highly
upregulated in human ESCs [8,10]. HMGB2 expression is selectively downregulated during embryonic
development, and the protein is expressed only in certain tissues in adult organisms. HMGB1 continues
to be expressed in all embryonic and adult cells (reviewed in [4,11,12]). The critical roles of HMGB1/2
proteins in cell survival, embryonal neurogenesis, regulation of cell proliferation, differentiation,
and telomere biology have been previously demonstrated [4,10,13–18].

Telomerase is a reverse transcriptase that counteracts the erosion of chromosome termini in most
mammalian cells and plays a pivotal role in regulating the proliferation and senescence of normal
somatic cells and cancer cells (reviewed in [19] and refs. therein). The absence of telomerase activity
results in telomere shortening, and critically short telomeres trigger the DNA damage response,
followed by senescence or cell death [19,20]. Telomerase activity is downregulated in most somatic
cell types, but 90% of malignant tumors reactivate telomerase as a prerequisite for their unlimited
growth potential. Telomerase activity is widespread in early human development and consistent
with this, human embryonic stem cells (hESCs) have robust telomerase activity to maintain telomere
length and cellular immortality (reviewed in [21,22]). Telomerase is also upregulated in human
cancer cells after exposure to the anticancer drug etoposide [23,24]. It has previously been shown
that undifferentiated hESCs are much more sensitive to etoposide-induced apoptosis than their more
differentiated progeny, and that p53 is required for etoposide-induced apoptosis of the cells [25].
Etoposide can induce DNA damage-induced apoptosis in hESCs via the activation of both caspase-3
and transcription-dependent functions of p53 [25]. The combination of telomerase inhibition with
apoptosis-inducing drug treatments was shown to increase cell death compared to drug treatment
alone ([26,27] and refs. therein). Our recent findings on the distinct modulation of cellular activity of
telomerase by HMGB1 and HMGB2 [10,17,28] could be a starting point for developing new approaches
aiming at the promotion of cell death in drug-treated cancer cells.

The aim of this study was to study the impact of deregulated expression of HMGB1 and/or
HMGB2 on stemness, cell cycle distribution, apoptosis, telomere integrity, and telomerase activity in
hESCs and their differentiated derivatives, neuroectodermal cells (hNECs), treated with the anticancer
drug etoposide.

2. Materials and Methods

2.1. Cloning of Inducible HMGB-shRNA Constructs

Sequences for HMGB1 and/or HMGB2 for knockdown (KD) by vector-based shRNA
interference were designed using the Smith-Waterman algorithm and BLAST sequence alignments
(NCBI, Bethesda, MD, USA). The prepared inducible HMGB-shRNA constructs were then tested
to determine which had the most efficient HMGB silencing. The impact was investigated using
at least two different shRNA HMGB constructs for a given HMGB gene along with “scrambled”
shRNA controls previously tested in several human cell lines [10–29]. The sense and antisense
strands containing the shRNA-expressing sequence targeting human HMGB1, HMGB2, or both
HMGB1 and HMGB2 were annealed and ligated into the BglII/HindIII-linearized pSuperior-puro vector
(http://www.oligoengine.com), as detailed in [10].

2.2. Generation of Stably Transfected hESCs with Inducible HMGB-shRNA Constructs

The undifferentiated hESCs (line CCTL14) used in this study have previously been thoroughly
characterized for the expression of pluripotency transcription factors and their ability to
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differentiate, as described [30]. Mouse embryonic fibroblasts (MEF)-conditioned media (MEF-CM)
were used to culture hESCs under feeder-free conditions on MatrigelTM hESC-qualified matrix
(BD Biosciences, San Jose, CA, USA) as described in [10]. The procedures used for preparation of
stably transfected and inducible hESCs capable of HMGB1 and/or HMGB2 KD are detailed in [10].
Induced expression of the shRNAs targeting HMGBs was initiated upon the addition of 0.1 µg/mL of
doxycycline (Dox) for 5–10 days. HMGB1 and/or HMGB2 KD was verified by Western blotting and/or
immunofluorescence microscopy.

2.3. Human Neuroectodermal Lineage Commitment from hESCs

The establishment of neuroectodermal cells (hNECs) capable of rosette structure formation
was detailed in our previous paper [10]. Briefly, hESCs were seeded at a density of 2-5 × 103

cells/cm2 on culture plates precoated with Matrigel™ in the presence of neural differentiation media
(DMEM/F12/Neurobasal 1:1, N2, B27 (Invitrogen, Carlsbad, CA, USA), 2 mmol/L L-glutamine (all
media components from Invitrogen), 1×MEM nonessential amino acids, 1% penicillin-streptomycin
and (composition described in [10,17]), and 5% CO2 in a humidified atmosphere at 37 ◦C. After 5
days of culture, a specific neuroectodermal cell morphology emerged, and neuronal rosettes appeared
after 8-10 days. Two distinct scenarios for the differentiation of hESCs into neuroectodermal cells
(hNECs) were examined. HMGB silencing was performed before (Scenario A) or after (Scenario B)
differentiation of hESCs into the hNECs, which was initiated as detailed in [10,17].

2.4. Crystal Violet Staining

Growth curves of hESCs or hNECs in the presence or absence of etoposide were determined using
crystal violet staining, as detailed in [10,17].

2.5. Western Blotting

Cells were resuspended in lysis buffer (50 mM Tris-HCl (pH 6.8) containing 10% glycerol and 1%
sodium dodecyl sulfate (SDS)), and protein concentrations were determined using the DC Protein
Assay Kit (Bio-Rad, Hercules, CA, USA). Equal amounts of proteins from cellular lysates were
loaded onto 10-12.5% SDS-PAGE (sodium dodecyl sulphate-polyacrylamide gel electrophoresis) gels
and electrophoresis was carried out as detailed in [10,17]. Resolved proteins were then transferred onto
Immun-Blot® PVDF Membranes (Bio-Rad: 1620177) using a wet-transfer system operated at 100 V for
2 h. The membranes were washed with Tris-buffered saline containing Tween-20 (TBST) and incubated
with primary and HRP-conjugated secondary antibodies, as detailed in [10,17]. Detection of proteins
on the membranes was performed using SuperSignal™ West Dura Extended Duration Substrate
reagent (Thermo Fisher Scientific, Waltham, MA, USA), followed by visualization using the FujiFILM
Luminescence image analyzer LAS-3000 instrument (LifeSciences, Irvine, CA, USA).

2.6. Cell Cycle Assay by Flow Cytometry

Cultured hESCs and hNECs were dissociated using TrypLE Select (Thermo Fisher Scientific,
USA) and Accutase (Sigma-Aldrich, St. Louis, MO, USA), respectively; the pellets were resuspended
in cold 1× PBS and counted with a hemocytometer. After fixation in ice-cold 70% ethanol (v/v) for
1 h, cells were washed in ice-cold PBS and incubated with RNaseA (final concentration 0.02 mg/mL;
Boehringer Ingelheim, Germany) at 37 ◦C for 30 min. Propidium iodide was then added (40 µg/mL
in PBS; Sigma-Aldrich, USA) for 10 min. Finally, the data were acquired using a FACS Canto II (BD
Biosciences, San Jose, CA, USA). The distribution of cells in different cell cycle phases was measured
using FlowJoTM software (http://www.flowjo.com).

http://www.flowjo.com
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2.7. Immunocytochemistry

Cells were washed with PBS, fixed with 4% paraformaldehyde in PBS pH 7.4 for 20 min at
RT, permeabilized with PBS containing 0.1% Triton X-100 for 20 min, and blocked with 1% bovine
serum albumin in PBS for 1 h. The cells were then washed three times with PBS and incubated with
diluted primary antibodies at 4 ◦C overnight. The washed cells were incubated with the appropriate
AlexaFluor-conjugated secondary antibodies (as detailed in [10,17]) for 2 h at RT. Cell nuclei were
counterstained with 4,6-diamidino-2-phenylindole (DAPI) (Sigma-Aldrich).

2.8. Confocal Microscopy

For fluorescence staining, control hESCs and cells with downregulated HMGB1 and/or HMGB2
expression were cultured on Matrigel-coated sterilized coverslips placed into wells of a 24-well tissue
culture plate. Cells were maintained under feeder-free conditions using either CM or hNEC-induced
neural media in the presence of Dox for five or 12 days [10,17]. After washing the coverslips with
cultured cells with PBS (1×), the cells were fixed with cold 100% methanol for 10 min at -20 ◦C,
and permeabilized with 0.2% Triton X-100 in PBS (Sigma Aldrich) for 30 min. After washing the cells
twice with PBS (1×), the cells were blocked for 30 min in a blocking solution composed of PBS
supplemented with 0.1% Tween-20 (PBST) and 1% BSA. Then, cells were incubated with primary
antibodies (diluted 1:50-300 in PBST) for overnight at 4 ◦C, followed by incubation with secondary
antibodies (diluted 1:500 in PBST) conjugated to Alexa Fluor 488 and Alexa Fluor 568 (Thermo Fisher)
at room temperature for 1 to 2 h. Finally, cells were labeled with DAPI for 3-5 min, and coverslips were
mounted on slides using Mowiol (Calbiochem, San Diego, CA, USA), allowed to dry, and fluorescence
images of the cells were taken using an Olympus Fluoview FV10i confocal laser scanning microscope
(Olympus Corporation, Tokyo, Japan). CellProfiler, free open-source software (McQuin, 2018 #4686}),
was applied to measure and analyze all of the resulting images from the confocal microscope [31].

2.9. Annexin V-FITC/Propidium Iodide Double-Staining Assay

While Annexin V is used to determine whether cells have undergone apoptosis, propidium
iodide (PI) is used to detect necrotic or late apoptotic cells. An Annexin V/PI double staining kit
(ApoFlowExFITC Kit, cat. No: ED7044, EXBIO) was used in flow cytofluorimetric analyses according
to the manufacturer’s instructions. Briefly, cells (floating and attached, untreated or treated with
etoposide) were collected and washed twice with ice-cold PBS; then, the cell pellet was resuspended by
flicking in 100 µL 1× binding buffer and the cell density adjusted to 2-5 ×105 cells/mL. Subsequently,
5 µL Annexin V-FITC and 5 µL propidium iodide were added and incubated in the dark at RT for
15 min. The prepared cells (viable, apoptotic, and necrotic) were immediately quantified by flow
cytometry (FACS Canto II; BD Biosciences) with at least 10,000 events for each sample and analyzed
using FlowJo software. The data generated by flow cytometry were plotted in two-dimensional dot
plots in which they could be divided in four categories corresponding to Q1 (Annexin V−/PI+), dead
cells; Q2 (Annexin V+/PI+), late apoptotic and necrotic cells; Q3 (Annexin V−/PI-), viable cells; Q4
(Annexin V+/PI-), early apoptotic cells.

2.10. Cell Cycle and Apoptosis of Etoposide-Treated Cells

hESCs or hNECs (control cells or cells after HMGB silencing) were incubated with 3.4 µM etoposide
for 3, 12, or 24 h at 37 ◦C. After treatment, adherent and floating cells were harvested by enzymatic
dissociation, washed once with PBS, and pelleted by centrifugation, as detailed for untreated cells
in [10]. Prior to analysis by FACS Canto II, the cells were labeled using either propidium iodide for cell
cycle distribution or an Annexin V/PI Apoptosis Detection kit (ApoFlowExFITC Kit, EXBIO) according
to the manufacturer’s instructions. Subsequently, the data about the distribution of cell cycle phases
and apoptosis induction were obtained using FlowJo software.
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2.11. Image Acquisition and Analysis

Microscopy images of cells grown in 24-well plates were recorded with an automated ImageXpress
XL (Molecular Devices, Sunnyvale, CA, USA). To cover a maximal surface area of the wells, 49 images
were taken for each well in a DAPI channel. To quantify the neural rosette structures using CellProfiler
software, the images were first smoothed using a Gaussian filter, and neural rosettes were then detected
using an Otsu thresholding method, as indicated in [10,17]. The percentage of the image area covered
by the neural rosettes was subsequently determined.

2.12. Determination of Telomerase Activity by TRAP Assay

Cellular lysates for the estimation of telomerase activity were prepared from cells that had been
lysed in CHAPS detergent (200 µL per 106 cells) on ice for 30 min, followed by centrifugation (1200× g)
for 20 min. Telomerase activity was determined in cellular lysates (24 ng of total proteins) by the qPCR
TRAP (telomeric repeat amplification protocol) assay using primers as detailed in [17]. Briefly, samples
were incubated at 37 ◦C for 30 min, followed by initial denaturation at 94 ◦C for 3 min and three
subsequent cycles (95 ◦C/30 s, 55 ◦C/60 s, and 72 ◦C/30 s), and a final 40 cycles (94 ◦C/30 s, 55 ◦C/30 s
and 72 ◦C/30 s). The fluorescence signal was acquired at 55 ◦C during the course of the final 40 PCR
cycles. TRAP analyses were performed in quadruplicate and independently verified in at least three
other experiments. All qPCR analyses were performed using Rotorgene 6000 (Rotor-Gene 6000 Series
Software 1.7).

2.13. Statistical Analysis

All quantitative data are presented as the mean with standard deviation (SD). Statistical analysis
among groups was carried out by means of a one-way ANOVA test, followed by Tukey’s multiple
comparison test post hoc analysis or by Bonferroni post hoc test. In some cases, data were analyzed
using a t-test. For all statistical analyses, p > 0.05 was considered not significant (ns); * p < 0.05,
** p < 0.01, *** p < 0.001, and **** p < 0.0001. All data were analyzed using GraphPad Prism version 5.0
for Windows (GraphPad Software, La Jolla, CA, USA). All experiments were carried out in triplicate.

3. Results

3.1. Pluripotent hESCs with Downregulated HMGB1/2 Expression Retain Stemness and Pluripotent State

Although our knowledge regarding HMGB1 and HMGB2 as nuclear transcription regulators
has steadily advanced over the last decade, their functional roles and regulatory activities in hESCs
and during the early stages of development remain unclear. In this paper, we have investigated
the impact of HMGB1 and/or HMGB2 knockdown (KD) on the stemness, cell cycle distribution,
apoptosis, telomere integrity, and telomerase activity in hESCs and their differentiated derivatives,
neuroectodermal cells (hNECs), in the presence or absence of the anticancer drug etoposide.

hESCs capable of Dox-inducible HMGB1 and/or HMGB2 KD were generated using previously
described methods [10,17]. The addition of Dox to the culture media of pluripotent human embryonic
stem cells (hESCs) confirmed that HMGB1 or HMGB2 expression was reduced by ~90-95% in KD
cells, on average, as determined by Western blotting (Figure 1A,B, left panels). As Dox can affect cell
survival/self-renewal and other cellular properties, we have used the lowest possible concentration of
Dox (0.1µg/mL) in our experiments to reduce its impact on hESCs while still achieving the highest HMGB
knockdown. Knockdown of HMGB1 and/or HMGB2 in hESCs was also verified by immunostaining
of the cells (Figure 1A,B, right panels). Importantly, HMGB1 and/or HMGB2 KD did not alter
the morphology of undifferentiated hESCs during 4 weeks of culture (passage 5 in Figure 1C).
Compared to somatic cells, pluripotent hESCs proliferate much faster due to a very short overall
cell cycle [32]. Therefore, we were also interested to see whether HMGB silencing could change
the proliferation rate of hESCs. As shown in Figure 1D, cultivation of hESCs possessing a HMGB1
shRNA construct with 0.1 µg/mL Dox for 5 passages displayed a decreased number of cells relative to
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control cells. Conversely, cells with HMGB2 KD increased in proliferation, whereas double HMGB1/2
KD exhibited a similar proliferation rate to the control cells (Figure 1D).

To further examine the impact of HMGB1 and/or HMGB2 KD on the pluripotency of human
embryonic stem cells, we performed Western blotting of the pluripotent stem cell markers OCT4,
NANOG, and SOX2. hESC lines with inhibited HMGBs continued to self-renew and expressed common
pluripotency markers OCT4, NANOG, and SOX2 (Figure 1E). Densitometric quantification of Western
blots from Figure 1E revealed that HMGB2 KD had no impact on the levels of pluripotency proteins,
while HMGB1 and HMGB1/2 KD downregulated the levels of NANOG and SOX2, but not OCT4
(Figure 1F). However, the decreased levels of NANOG and SOX2 observed upon HMGB1 or HMGB1/2
double KD (Figure 1E,F) had no impact on the pluripotency of hESCs, as revealed using a teratoma
formation assay, in which no tangible deviation from the normally differentiated teratoma morphology
was demonstrated [10]. Thus, both control hESCs and the cells upon HMGB1 and/or HMGB2 KD
displayed a similar potential to differentiate toward all three germ layers in vivo, revealing no impact
of the knockdown of HMGBs on hESC stemness and pluripotent state [10].

3.2. Distinct Impact of HMGB1/2 KD on Survival and Neuroectodermal Lineage Commitment

Recent findings suggest that HMGB proteins could differentially affect neurogenesis through
the regulation of neural stem cell (NSC) proliferation and survival [13,33,34]. Previous studies
demonstrated the involvement of SOX2 and PAX6 (markers of stem/progenitor cell proliferation
and neurogenesis) in the developing human nervous system [35] and the derivation of human neural
stem cells (hNSCs) from hESCs [36]. The radially organized columnar epithelial cells termed “neural
rosettes”, derived from hESCs, display a novel stem cell state in the progression of hESCs toward
differentiated neural commitments.

In order to investigate whether HMGB1 and/or HMGB2 KD are associated with the regulation of
neuroectodermal lineage commitment and how the loss of the HMGB1 and/or HMGB2 could affect
the cell cycle/apoptosis/telomerase activity of hESCs and their derivatives (neuroectodermal cells)
treated with the anticancer drug etoposide, we used two distinct protocols to differentiate human
ESCs into neuroectodermal cells (referred to as hNECs). Scenario A was used to assess the ability
of hESCs to differentiate in the absence of HMGB proteins. As shown in Figure 2A (Scenario A),
HMGB1 and/or HMGB2 expression was continuously inhibited by the addition of Dox from at least
one week before the initiation of differentiation (D1, the time at which the neurodifferentiation media
were added) until day 12 of differentiation. Scenario B was used to assess the impact of deregulated
HMGB expression on already differentiated hNECs. In Scenario B, differentiation was initiated under
normal conditions, and HMGB silencing was initiated upon addition of Dox for only 7 days, beginning
on day 12 of differentiation (Figure 2A, Scenario B). Western blotting confirmed that the desired
downregulation of HMGB1 and/or HMGB2 expression was achieved in both differentiation scenarios
(Figure 2B). The pluripotency markers OCT4 and NANOG became undetectable upon differentiation,
regardless of the HMGB status and the differentiation scenario. While PAX6 and SOX2 were detectable
in hNECs regardless of the HMGB KD, these markers were significantly decreased upon HMGB1 KD
using both differentiation scenarios (Figure 2B). HMGB1 KD in hNECs resulted in a two-fold decrease
in the number of the differentiated cells, regardless of the differentiation scenario (Figure 2, panels
C/D). Correspondingly, the formation of rosettes in hNESCs upon HMGB1 KD was also significantly
decreased by ~65% and ~30% in Scenarios A and B, respectively. No impact of HMGB2 KD on
the formation of rosettes in hNESCs was observed in our experiments (Figure 2C,D).
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Figure 1. The morphology of human embryonic stem cells (hESCs) remains unchanged after knockdown of
HMGB1 and/or HMGB2 while maintaining self-renewal and pluripotency in culture. (A and B) Left panels:
The level of Dox-inducible HMGB1 and HMGB2 knockdown in hESCs as determined by Western blotting.
Bar graphs represent the quantification of Western blots. All data on HMGB expression were normalized
to β-actin. Knockdown of HMGB1 or HMGB2 in control hESCs (empty vector transfected) was set
as 1. Right panels: Immunostaining of HMGB1 and/or HMGB2 in stably transfected hESC clones
with inducible HMGB knockdown. Anti-HMGB1 or anti-HMGB2 (green) antibodies were used. DNA
was stained with 4,6-diamidino-2-phenylindole (DAPI, blue). (C) Normal morphology of hESCs in
the absence (−) or presence (+) of doxycycline (Dox) under standard culture media for 5 passages.
(D) Relative number of hESCs upon HMGB1 and/or HMGB2 knockdown (results are normalized to
empty vector-transfected cells). Levels of the pluripotency markers OCT4, NANOG, and SOX2 upon
HMGB1 and/or HMGB2 knockdown in hESCs, as revealed by Western blotting (E) or densitometric
quantification (F) of the Western blots. Description: “C”, cells transfected with empty vector; “−1”, cells
with HMGB1 knockdown; “−2”, cells with HMGB2 knockdown; “−1/2”, cells with HMGB1 and HMGB2
knockdown. All calculations were normalized against β-actin. The expression level of pluripotency
markers in the control (empty vector transfected) cells was set as 1. Data represent the mean and standard
deviation (SD) of three independent experiments. Data were analyzed using Tukey’s multiple comparison
test (p > 0.05 = not significant, ns; * p < 0.05; ** p < 0.01; *** p < 0.0001). Scale bars = 50, 200 µm.
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Figure 2. The distinct impact of HMGB1/2 silencing on the cell survival and differentiation efficiency of
neuroectodermal cells. (A) Two scenarios for the differentiation of hESCs into the neuroectodermal
lineage. Scenario A: Undifferentiated hESCs were treated with doxycycline (Dox) for at least 3 days
and subsequently induced to differentiate (D1) into neuroectodermal cells for 12 days in the continuous
presence of Dox in differentiation media. On day 12 (D12), the cells were harvested for analysis. Scenario
B: Undifferentiated hESCs were induced to differentiate to human neuroectodermal cells (hNECs) for
12 days. At that point (D12), Dox was added to the differentiation media, and the hNECs were allowed
to grow for another 7 days in the presence of Dox. On day 19 (D19), the cells were harvested for analysis.
(B) Expression of the pluripotency markers OCT4 and NANOG and the differentiation-associated
proteins SOX2 and PAX6 as determined by Western blotting of cellular lysates from hNECs prepared
either by Scenario A or Scenario B. Equal loading of samples was verified using the anti-β-actin antibody.
Description: “C”, cells transfected with empty vector; “1”, cells upon HMGB1 knockdown; “2”, cells
upon HMGB2 knockdown; “1/2”, cells upon HMGB1 and HMGB2 knockdown. (C,D) Morphology
of neural rosettes as visualized by phase contrast microscopy using an Image Xpress XL automated
microscope (Molecular Devices, San Jose, CA, USA; top panels). Bar graphs indicate the relative number
of hNECs and quantification of rosette structure formation upon HMGB1 and/or HMGB2 knockdown
(lower panels; results are normalized to empty vector-transfected cells). Data were analyzed using
Tukey’s multiple comparison test (p > 0.05 = not significant, ns; * p < 0.05; ** p < 0.01; *** p < 0.0001)
and represent the mean and SD of three independent experiments. Scale bars = 50, 200 µm.
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3.3. Pluripotent hESCs Exposed to Etoposide are more Susceptible to Cell Death than the hESC-Derived
Progenitor Cells

It was previously revealed that undifferentiated human embryonic stem cells were much more
sensitive to etoposide-induced apoptosis than their more differentiated progeny, and that p53 was
required for etoposide-induced apoptosis of the cells [25]. The aim of our subsequent experiments
was to determine the impact of deregulated expression of HMGB1 and/or HMGB2 on the cell survival
and cell cycle of hESCs and progenitor cells (hESC-derived neuroectodermal cells, hNECs).

To determine the optimal concentrations of etoposide for subsequent experiments, the induction
of apoptosis was monitored by assessing the activity of caspase-3, one of the central executioners of
apoptosis, in hESC cells (Figure 3B). While there were no morphological signs of damaged apoptotic or
necrotic cells (data not shown), cleavage of caspase-3 was the most prominent at 3.4 µM etoposide
in the course of treatment (Figure 3B); consequently, we decided to use this etoposide concentration
for most of the subsequent experiments. Etoposide at 3.4 µM could decrease cell growth of both
undifferentiated hESCs and differentiated hNECs by ~2-fold in a time-dependent manner (Figure 3C).
Loss of HMGB1 and, to a lesser extent, HMGB2, further promoted the cell growth inhibition in
the etoposide-treated hESCs (Figure 3C). We have observed that the neuroectodermal cells (hNECs)
prepared according to Scenario A were more sensitive to 3.4 µM etoposide than the cells prepared
according to Scenario B (Figure 3C). The sensitivity of hNECs, irrespective of the differentiation
protocols, was further increased in cells with deregulated expression of HMGB1 or HMGB2.

3.4. Cell Cycle Progression in HMGB KD hESCs and hNECs Treated with Etoposide

The distribution of cell cycle phases appears to be distinct in human embryonic stem cells
compared to differentiated cells. Pluripotent hESCs have a quick cell cycle with an abbreviated G1
phase [32]. Further studies revealed that hESCs could initiate endoderm/mesoderm gene expression
and neuroectoderm markers only during the early and late G1 phase, respectively [37], whereas hESCs
responded poorly to differentiation signals in the G2/S/M phases of the cell cycle [38]. Activation of
cell death by etoposide is cell cycle dependent due to the suppression of topoisomerase II activity,
which is essential for the progression through S phase [39]. As the effect of some anticancer drugs is
associated with different cell cycle phases [40], we have determined the impact of etoposide on cell
cycle progression and sub-G1 arrest in control and HMGB1 and/or HMGB2 KD cells.

Time-course monitoring of the cell cycle distribution in etoposide-treated hESCs (Figure S1)
revealed that 3.4 µM of etoposide caused significant accumulation of the cells in G0/G1 phase
and sub-G1 peaks (an indicative of apoptosis), with a concomitant decrease of the cells in G1 phase after
3-24 h. A significant increase in the S phase population was observed in hESCs or hNECs prepared
by Scenario A (but not by Scenario B) soon after etoposide treatment (Figure S1: compare panels B
and H,I). The increase in the S phase population was abolished at the onset of apoptotic cell death upon
prolonged etoposide treatment for 12-24 h. The populations of cells in the sub-G1 phase were similar
in control (empty vector-transfected) cells and HMGB1/2 KD hNECs (Figure S1, panels E,H) for 0-24 h.

In summary, our results indicate that etoposide treatment of the HMGB1 KD hESCs or hNECs
resulted in an increased percentage of sub-G1 cells (Figure S1B). While a higher percentage of sub-G1
cells was also observed in etoposide-treated HMGB1 KD hNECs (irrespective of the differentiation
protocol; Figure S1, panels E,H), an increase in the percentage of sub-G1 cells was observed upon 3 h
etoposide treatment of the HMGB2 KD hNECs prepared according to Scenario B, but not in the HMGB2
KD hNECs prepared according to Scenario A (Figure S1, panels E,H) or in the HMGB2 KD hESCs
(Figure S1B). Thus, etoposide can suppress the growth of hESCs and hNECs by hindering cell cycle
progression and induction of sub-G1 arrest in a time- and HMGB-dependent manner.
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Figure 3. HMGB1/2 knockdown (KD) can differentially modulate the cell viability of hESCs and hNECs
treated with the anticancer drug etoposide. (A) hESCs were treated with increasing concentrations of
etoposide (0.17, 0.68, 1.7, 3.4, and 17 µM) for 24 h, and the growth curves were recorded by measuring
the absorbance of crystal violet at 570 nm (results were normalized against untreated control cells,
which were set as 1). (B) Cleavage of caspase-3 in etoposide-treated hESCs as revealed by Western
blotting. Cellular lysates from control (empty vector-transfected) hESCs were treated with increasing
concentrations of etoposide (0.17-3.4 µM) for 3, 4, or 6 h. Equal loading of samples was verified using
anti-β-actin antibody. (C) Relative cell count of 3.4 µM etoposide-treated hESCs and hNECs (prepared
by Scenarios A or B) was measured using the Cedex automated cell counting system (Roche Diagnostics,
Mannheim, Germany) at 0, 6, 12, and 24 h (left to right). Data were analyzed using Bonferroni post
hoc test and represent the mean and SD of three independent experiments (* p < 0.05; ** p < 0.001;
*** p < 0.001).

3.5. Apoptosis of Etoposide-Treated hESCs is Enhanced upon HMGB1 KD

Apoptosis (programmed cell death) is essential for proper homeostatic maintenance and survival
in multicellular organisms. Previous reports have illustrated that hESCs are more vulnerable to rapid
apoptosis upon genotoxic stress compared to ordinary somatic cells [3,25,41]. HMGB1 KD was reported to
increase drug sensitivity in cancer cells, and it was assumed that HMGB1 plays transcription-dependent
(such as regulation of Bcl-2 family protein expression) and transcription-independent roles (such
as regulation of autophagy and p53 location) in the regulation of apoptosis (reviewed in [42]).
However, the contribution of HMGB1/2 proteins to the apoptosis of hESCs and progenitor cells mediated
by treatment of the cells with anticancer drugs is unclear.

Here, we have used flow cytometry and analyzed the impact of HMGB KD on apoptosis in Annexin
V/PI-labeled hESCs (Figure 4) upon incubation of the cells with 3.4 µM etoposide for different periods
of time (0-24 h). HMGB1 KD resulted and a ~2-fold increase in the percentage of apoptotic/necrotic
cells in etoposide-untreated hESCs (Figure 4B), in agreement with previous reports published on
other cell lines [43]. A high increase in the percentage of apoptotic/necrotic cells was observed
in the etoposide-treated cells after 12 h, although a small increase in apoptotic/necrotic cells was
detectable for all etoposide incubation times (Figure 4B). While HMGB2 or HMGB1/2 KD did not affect
the percentage of apoptotic/necrotic cells in etoposide-untreated hESCs, treatment of the HMGB2
KD hESCs with etoposide for 12-24 h resulted in a concentration-dependent increase in apoptotic
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(Annexin V-positive cells) and necrotic (PI-positive cells) cell death (Figure 4B). Our findings revealed
an important role of both HMGB1 and HMGB2 in sensitizing hESCs for the anticancer drug etoposide.

Figure 4. Distinct impact of HMGB KD on apoptosis of hESCs treated with etoposide. (A) Representative
dot plots showing Annexin V/propidium iodide (PI) binding assays in etoposide-treated hESCs upon
HMGB1 and/or HMGB2 KD, as analyzed by flow cytometry. Q1 (Annexin V−/PI+), dead cells; Q2
(Annexin V+/PI+), late apoptotic and necrotic cells; Q3 (Annexin V−/PI−), viable cells; Q4 (Annexin
V+/PI−), early apoptotic cells. Values in red represent percentages of cells in Q1–Q4. (B) Percentage
of apoptotic + necrotic cells in hESCs from (A). (C) Relative fold change of total cell death among
populations of control or HMGB KD hESCs compared to untreated cells. Error bars represent the mean
and SD of three independent experiments. Data were analyzed using either Bonferroni post hoc test
for the (percentage of apoptotic + necrotic cells) or Tukey’s multiple comparison test for analysis of
the relative fold change of dead cells (p > 0.05 = not significant, ns; * p < 0.05; ** p < 0.01; *** p < 0.001). “C”,
cells transfected with empty vector; “HMGB1”, cells upon HMGB1 knockdown; “HMGB2”, cells upon
HMGB2 knockdown; “HMGB1/2”, cells upon HMGB1 and HMGB2 knockdown. “1”, cells upon HMGB1
knockdown; “2”, cells upon HMGB2 knockdown; “1/2”, cells upon HMGB1 and HMGB2 knockdown.
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3.6. The Impact of HMGB1/2 Knockdown on Apoptosis of Etoposide-Treated Progenitor Cells Depends
on the Differentiation Protocol of hESCs

We used flow cytometry to analyze the impact of HMGB KD on apoptosis in Annexin
V/PI-labeled neuroectodermal cells (hNECs) treated with 3.4 µM etoposide for different times (Figure 5).
Similarly to the etoposide-untreated HMGB1 KD hESCs (Figure 4), HMGB1 KD in etoposide-untreated
neuroectodermal cells resulted in a ~2-fold increase in the percentage of apoptotic (Annexin V-positive
cells)/necrotic (PI-positive cells) cells, irrespective of the differentiation protocol (Figures 5 and 6).
A significant increase in the percentage of apoptotic/necrotic cells was also detected in HMGB1 KD
hNECs treated with etoposide for 3 h (Figures 5 and 6) regardless of the differentiation protocol used
(Figures 5 and 6). However, clear differences in the response of HMGB KD hNECs to apoptosis were
observed between cells differentiated according to Scenarios A and B when treated with etoposide
for longer times, i.e., 12 or 24 h (Figures 5 and 6B). While there were no apparent differences in
the percentage of apoptotic/necrotic cells in control and HMGB1 or HMGB2 KD hNECs differentiated
according to Scenario A (Figure 5B), the percentage of apoptotic/necrotic cells in HMGB1 or HMGB2
KD hNECs differentiated according to Scenario B was significantly higher than in the control cells
(Figure 6B). Interestingly, simultaneous silencing of both HMGB1 and HMGB2 resulted in hNECs with
a similar percentage of apoptotic/necrotic cells to the control etoposide-treated cells (Figure 6B).

3.7. HMGB1 KD Promotes Cell Death Induction in Etoposide-Treated hESCs and hNECs via Activation of
Caspase-3 Pathway

One of the most common signaling cascades involved in apoptosis is the activation of enzymes
caspases. PARP-1 (a nuclear protein performing many roles in the cell, including central roles in
the repair of damaged DNA [44]) is one of several known cellular substrates of caspases. Cleavage of
PARP-1 by caspases is considered a hallmark of apoptosis [45]. Activation of caspase-3 is primarily
associated with etoposide-induced cell death of hESCs [25].

Here, Western blotting and immunodetection were used to study the impact of HMGB1 and/or
HMGB2 KD on activation of caspase-3 and PARP cleavage, expression of RIP kinase (a specific
marker for necrosis), and transcription factors Oct4, Sox2, and Pax6 in etoposide-treated cells as
well as the induction of the tumor suppressor protein p53, which can elicit a response to various
DNA-damaging agents (including etoposide) [46]. Caspase-3 and PARP cleavage was already observed
in etoposide-untreated HMGB1 KD hESCs or hNECs (Figure 7) and was further enhanced upon
treatment of the cells with etoposide. In agreement with the observed increased percentage of apoptotic
cells in etoposide-treated Annexin V/PI-labeled HMGB2 KD hESCs relative to etoposide-treated control
cells (Figure 4), enhanced caspase-3 and PARP cleavage was detected in the etoposide-treated HMGB2
KD hESCs by Western blotting (Figure 7A). These data indicate that silencing of either HMGB1 or
HMGB2 promoted cell death in etoposide-treated hESCs, with the strongest impact observed in HMGB1
KD cells.

Induction of p53 was already observed in etoposide-untreated HMGB1 KD hESCs or hNECs
(Figure 7), and further enhanced upon treatment of the cells with etoposide for 3 h. However, no
significant difference in p53 induction was observed in control cells or cells upon HMGB KD treated
with etoposide for longer times, i.e., 12 or 24 h (Figure 7). Enhanced cleavage of RIP (a specific marker
for necrosis) was consistently observed in etoposide-treated HMGB1 KD hESCs (Figure 7A). Cleavage
of RIP was also observed in untreated and etoposide-treated HMGB1 KD hNECs and was gradually
enhanced upon prolonged etoposide treatment of the cells prepared according to Scenario A, but
much less according to Scenario B (Figure 7B,C). In agreement with our previous report [10], untreated
HMGB1 KD hNECs exhibited consistently decreased expression of SOX2 and differentiation marker
PAX6 (Figure 7). Expression of SOX2 and PAX6 was further diminished upon prolonged incubation of
HMGB1 and/or HMGB2 KD hNECs with etoposide but was not observed in the control treated cells
(Figure 7B,C). No impact of etoposide and/or HMGB KD on the expression of Oct4 was observed in
hESCs, demonstrating that the pluripotent state of the cells was preserved (Figure 7A).
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Figure 5. The impact of HMGB1/2 KD on the apoptosis of etoposide-treated hNECs prepared according
to Scenario A. (A) Representative dot plots showing Annexin V/propidium iodide (PI) binding assays
in hNECs upon HMGB1 and/or HMGB2 KD, followed by etoposide treatment for 0-24 h, as analyzed
by flow cytometry. (B) Percentage of apoptotic/necrotic cells in hESCs from (A). (C) Relative fold
change of total cell death among populations of control or HMGB KD hNECs (control cells from each of
the cell types were set as 1). Error bars represent the mean and SD of three independent experiments.
Data were analyzed using either a Bonferroni post hoc test for the (percentage of apoptotic + necrotic
cells) or Tukey’s multiple comparison test for analysis of the relative fold change of dead cells (p > 0.05
= not significant, ns; * p < 0.05; ** p < 0.01; *** p < 0.001). “C”, cells transfected with empty vector;
“HMGB1”, cells upon HMGB1 knockdown; “HMGB2”, cells upon HMGB2 knockdown; “HMGB1/2”,
cells upon HMGB1 and HMGB2 knockdown. “1”, cells upon HMGB1 knockdown; “2”, cells upon
HMGB2 knockdown; “1/2”, cells upon HMGB1 and HMGB2 knockdown.
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Figure 6. The impact of HMGB1/2 KD on apoptosis of etoposide-treated hNECs prepared according to
Scenario B. (A) Representative dot plots showing Annexin V/propidium iodide (PI) binding assays in
hNECs upon HMGB1 and/or HMGB2 KD, followed by etoposide treatment for 0-24 h, as analyzed by
flow cytometry. (B) Percentage of apoptotic + necrotic cells in hESCs from (A). (C) Relative fold change
of total cell death among populations of control or HMGB KD hNECs compared to untreated cells.
Error bars represent the mean and SD of three independent experiments. Data were analyzed using
either Bonferroni post hoc test for the (percentage of apoptotic + necrotic cells) or Tukey’s multiple
comparison test for analysis of the relative fold change of dead cells (p > 0.05 = not significant, ns;
* p < 0.05; ** p < 0.01; *** p < 0.001). “C”, cells transfected with empty vector; “HMGB1”, cells upon
HMGB1 knockdown; “HMGB2”, cells upon HMGB2 knockdown; “HMGB1/2”, cells upon HMGB1
and HMGB2 knockdown. “1”, cells upon HMGB1 knockdown; “2”, cells upon HMGB2 knockdown;
“1/2”, cells upon HMGB1 and HMGB2 knockdown.
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Figure 7. HMGB1 and HMGB2 differentially affect Casp3/PARP cleavage in etoposide-treated hESCs or
hNECs. (A-C) Western blotting of total cellular lysates from hESCs and hNECs prepared by Scenario A
or B. Equal loading of samples was verified using anti-β-actin antibody. “C”, cells transfected with
empty vector; “1”, cells upon HMGB1 knockdown; “2”, cells upon HMGB2 knockdown; “1/2”, cells
upon HMGB1 and HMGB2 knockdown. C-Casp3, cleaved caspase-3; C-PARP, cleaved PARP (poly
(ADP-ribose) polymerase); C-RIP, cleaved RIP (receptor-interacting protein kinase).

3.8. Impact of HMGB1/2 KD on Telomere Integrity is Distinct in Etoposide-Treated hESCs and hNECs

Proteins of the shelterin complex associate with telomere ends and help to protect them from
triggering DNA repair pathways (telomere “capping”) [47]. Several studies have demonstrated that
telomere “uncapping”, e.g., by the exposure of the cells to etoposide [48], brings about a p53-dependent
accumulation of DNA damage response factors (such as γ-H2AX and 53BP1) on telomeres, forming
Telomere dysfunction-Induced Foci (TIFs) [28,49]. Previously, we have shown by confocal microscopy
that deregulation of HMGB1 and HMGB2 expression could differentially affect telomere integrity
and stability in human ESCs and neuroectodermal cells, as revealed by the detection of TIFs [17].

Here we have studied the impact of HMGB1 and/or HMGB2 KD in etoposide-treated hESCs or
hNECs on telomere integrity and stability by measuring the number of TIFs (co-localization of 53BP1
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with TRF1) at telomeres. Colocalization of 53BP1 and TRF1 (a key component of the shelterin complex)
was revealed by confocal microscopy and image analysis (see Section 2). An increased number of TIFs
per nucleus was detected in etoposide-treated HMGB1 KD hESCs and hNECs cells relative to control
cells (Figure 8). While HMGB2 or HMGB1/2 KD in etoposide-treated hESCs resulted in a decreased
number of TIFs, no changes in TIFs were recorded under the same conditions in the HMGB KD
hNECs (Figure 8). Our results demonstrate a distinct impact of HMGB1 and HMGB2 proteins on
telomere protection in etoposide-treated hESCs and neuroectodermal cells (Figure 8). The HMGB1
protein promoted telomere stability (as revealed by increased number of TIFs in HMGB1 KD cells)
in both untreated [17] and etoposide-treated hESCs and hNECs (Figure 8). Previously, we have
demonstrated that HMGB2 protein can destabilize telomeres (as revealed by decreased number of TIFs
in HMGB2 KD cells) in etoposide-untreated hESCs and hNECs [17]. Interestingly, the destabilization
impact of the HMGB2 protein on telomeres was detected only in etoposide-treated hESCs, but not in
etoposide-treated neuroectodermal cells (Figure 8).

3.9. The Distinct Impact of HMGB2 KD on Telomerase Activity in Etoposide-Treated hESCs and hNECs

Telomerase is critical in the development of cellular immortality and cancer. Telomerase is
activated in the majority of human malignancies (reviewed in [50]). Combining telomerase inhibition
with apoptosis-inducing drug treatments was shown to increase cell death compared to drug treatment
alone ([26,27] and refs. therein). Previously, we demonstrated the distinct impact of HMGB1 and/or
HMGB2 KD on telomerase activity in mouse and human cells [10,17,28]. We have also demonstrated that
HMGB1/2 proteins could enhance expression of the topoisomerase IIα gene [29]. Reports are available
demonstrating enhanced telomerase activity in human cancer cells after exposure to the anticancer
drug etoposide, a potent topoisomerase IIα inhibitor [23,24].

We have studied the impact of deregulated HMGB1 and/or HMGB2 expression on telomerase
activity in etoposide-treated hESCs and neuroectodermal cells. We also investigated whether
the observed distinct impact of HMGB KD on telomere integrity (Figure 8) could be related to
changes in telomerase activity in these cells. Control cells or cells upon HMGB1 and/or HMGB2 KD
were treated with etoposide and the telomerase activity was analyzed by qPCR, as detailed in [17]. We
have confirmed that telomerase activity was significantly higher in control (untreated) hESCs than in
hESC-derived neuroectodermal cells (hNECs), in agreement with previous reports [10,17]. Several very
interesting and unexpected findings were obtained upon the determination of telomerase activity in
etoposide-treated hESCs and hNECs. Etoposide treatment of human embryonic stem cells, irrespective
of HMGB knockdown, resulted in a significant enhancement of telomerase activity. The magnitude of
telomerase activity upregulation increased with the etoposide dose and was highest in cells treated
with 2-4 µM for 24 h (Figure 9, top panels A and B). The observed increase in telomerase activity
in hESCs not only depended on the concentration of etoposide, but also on the type of HMGB KD
(Figure 9, top panels A and B). The highest telomerase activity was detected in the etoposide-treated
HMGB2 or HMGB1/2 KD hESCs. Treatment of control hESCs or HMGB1 KD hESCs with etoposide
resulted in a similar increase in telomerase activity, indicating that HMGB1 was not involved in
the etoposide-mediated enhancement of telomerase activity in hESCs (Figure 9B, top panel).
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Figure 8. Accumulation of 53BP1 on telomeres in etoposide-treated cells with deregulated expression
of HMGB1/2. (A) hESCs or (B) hESC-derived neuroectodermal cells (hNECs) prepared according
to Scenario A. Left panels: Following etoposide exposure (3.4 µM/3 h), control cells and HMGB1-
and/or HMGB2-depleted cells were processed for immunofluorescence using antibodies against TRF1
(green) and 53BP1 (red) and staining of DNA (blue). Right panels: bar graphs indicate cells with ≥4
colocalization events of 53BP1 with telomeres (TRF1) as number of TIFs (Telomere Dysfunction-Induced
Foci) relative to control cells per nucleus. The number of TIFs per nucleus in control cells was
arbitrarily set as 1. In each of the cell lines, ~200 nuclei were analyzed using CellProfiler modular
image analysis software (https://cellprofiler.org). Colocalization of 53BP1 with telomeres is indicated by
circles, and some colocalization events (enlarged) are circled. “C”, cells transfected with empty vector.
Statistical differences among samples were evaluated using one-way ANOVA analysis of variance
followed by Tukey’s multiple comparison test; p-value < 0.05 was considered to indicate significance
(p > 0.05 = not significant, ns; * p < 0.05, and *** p < 0.001). Scale bar = 5 µm.

https://cellprofiler.org
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Figure 9. Modulation of telomerase activity by HMGB1 and/or HMGB2 in etoposide-treated hESCs or
hNECs. Telomerase activity was determined in hESCs or hESC-derived neuroectodermal cells (hNECs)
by qPCR telomeric repeat amplification protocol (TRAP) assay, as detailed in [17]. Cells were treated
with etoposide at 0, 0.1, 0.5, 1, 2, or 4 µM for 24 h. (A) Telomerase activity relative to etoposide-untreated
control cells (set as 100%). (B) A recalculation of telomerase activity from (A), where both untreated
control and HMGB KD cells were set as 1. Red line, control cells transfected with empty vector (no
HMGB KD); green line, HMGB1 KD; blue line, HMGB2 KD; dark yellow, HMGB1 and HMGB2 KD; ns,
not significant. (C) A summary of the impact of HMGB KD on telomerase activity in etoposide-treated
cells. “−”, no change in telomerase activity before and after etoposide treatment; ↑, increased telomerase
activity; ↓, decreased telomerase activity (number of arrows indicate the relative strength of impact).
Statistical differences among samples were evaluated by one-way ANOVA, followed by Tukey’s
multiple comparison test. Values of p < 0.05 were considered significant (* p < 0.05, ** p < 0.01, ***
p < 0.001, **** p < 0.0001).

A distinct impact of HMGB1 or HMGB2 KD on telomerase activity was observed in etoposide-treated
neuroectodermal cells (hNECs). Interestingly, treatment of HMGB2 or HMGB1/2 KD hNECs with
etoposide markedly decreased telomerase activity in a concentration-dependent manner (Figure 9B,
lower panel). Thus, HMGB2 knockdown in etoposide-treated hESCs resulted in enhanced telomerase
activity (indicative of an inhibitory impact of the HMGB2 protein on telomerase activity in the cell),
while in the hESC-derived hNECs, loss of HMGB2 could inhibit telomerase activity (indicative of
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a stimulatory impact of the HMGB2 protein on the cellular activity of telomerase). Moreover, HMGB2
KD could enhance telomerase activity in both etoposide-untreated hESCs and hNECs, demonstrating
that the HMGB2 protein inhibits the cellular activity of telomerase in the absence of etoposide [10,17].
Telomerase activity was hardly affected, if at all, in the etoposide-treated control or HMGB1 KD hNECs
(Figure 9B, lower panel), suggesting that the HMGB1 protein could not modulate telomerase activity in
the etoposide-treated hESCs or hNECs (Figure 9B). The impacts of HMGB KD on telomerase activity in
etoposide-treated cells are summarized in Figure 9C.

4. Discussion

HMGB1 and HMGB2 proteins are currently under investigation due to their involvement in
DNA replication, transcription, recombination, repair, inflammation, tumor development, and cell
signaling [4,51]. In this report, the main emphasis was on understanding the impact of HMGB1
and HMGB2 silencing (knockdown) on stemness of hESCs, cell cycle distribution, apoptosis,
and telomerase activity in hESCs and their differentiated derivatives (neuroectodermal cells, hNECs)
treated with the anticancer drug etoposide. HMGB1 and HMGB2 proteins are highly related, share
>80% identity and differ mainly in the length of their acidic C-tails (reviewed in [4]). Although
their DNA binding preferences are similar, their protein binding partners are mostly distinct [4,52].
HMGB1 is indispensable for life, whereas HMGB2−/− knockout mice are able to survive with reduced
fertility and spermatogenesis defects [34,53,54]. HMGB1 expression is ubiquitous, but HMGB2
is widely expressed during embryogenesis [54] and also in adults, mainly in the lymphoid organs
and testes [18]. HMGB2 has various functions in distinct differentiation programs, such as erythropoiesis,
chondrogenesis, and regulation of neurogenesis ([14,34,55] and refs. therein). The abovementioned
differences in the structure, expression, and function of HMGB1 and HMGB2 may provide a basis
for understanding their distinct roles in the modulation of apoptosis, differentiation, and telomerase
activity, as well as the differences in the efficacy of the anticancer drug etoposide.

HMGB1 and HMGB2 expression is augmented in a number of tumors, such as human gastric, breast,
and ovarian cancer ([56–58] and refs. therein). Metastasis and large tumor size are correlated with high
telomerase activity and enhanced HMGB1 and HMGB2 levels, and shown to be associated with lower
patient survival (reviewed in [59]). It is possible that HMGB2 may have distinct functions in the context
of different cells. In cancer cells ([55–58,60,61] and refs. therein), the HMGB2 protein could function as
a positive regulator of telomerase activity. In noncancer cells (such as mNSCs, neural progenitor cells,
mouse embryonic fibroblasts, mESCs, hESCs, or hESC-derived neuroectodermal cells, [10,13,17,62]),
it could act as a negative regulator of the cellular activity of telomerase. Etoposide treatment of
hNECs reversed the negative impact of HMGB2 on telomerase activity, and the protein could stimulate
telomerase activity, as demonstrated by our results. The molecular basis of the different impact of
HMGB2 on telomerase activity in control and etoposide-treated cells is unknown, but may be related to
distinct mechanisms involving telomerase regulation and/or DNA damage response in hESCs and their
differentiated derivatives ([17,63,64] and refs. therein).

Although human embryonic stem cells and cancer cells share many similarities, hESCs do not
form tumors following blastocyst implantation, most likely due to the fact that hESCs differentiate
when present in an environment that would otherwise drive them to tumorigenesis [65,66]. The stem
cell niche (the microenvironment regulating stem cell fate) is characterized by an environment that
is nonpermissive with respect to tumor development and possesses the unique ability to reprogram
and reverse tumorigenicity. This may also be related to the secretion of soluble factor(s) by hESCs,
capable of inhibiting growth of cancer cells, and exposure to such factors might represent a new cancer
treatment strategy [65,67]. Whether HMGB proteins are involved in the secretion/production of these
factors is unknown.

Although telomerase activity is strongly upregulated in etoposide-treated human pancreatic
cancer cells and human leukemia HL-60 cells, it was not observed in other studied cells such as
KP-3 and KP-1N [23,24]. A negative correlation was found between increased telomerase activity
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and the percentage of dead cells after etoposide treatment [23,24], indicating that telomerase upregulation
in etoposide-treated cells was likely associated with elements of cellular DNA damage response preceding
apoptosis. The latter explanation may also be true for etoposide-treated hESCs [25]. Higher telomerase
activity in the etoposide-treated HMGB2 KD hESCs (relative to control treated cells) may confirm
the reported involvement of HMGB proteins in the DNA damage response [6]. Thus, enhanced telomerase
activation in etoposide-treated HMGB2 KD hESCs may reflect augmented DNA damage response in these
cells due to the absence of HMGB2 as a DNA damage protective protein.

HMGB1 and HMGB2 not only differently affect the cellular activity of telomerase in
etoposide-untreated or -treated hESCs and hNECs [10,17], but the proteins also differentially modulate
the sensitivity of cancer cells to distinct anticancer drugs. While HMGB1 or HMGB2 KD could
enhance the sensitivity of SKOV-3 cells to carboplatin, HMGB1 KD resulted in a loss of response to
the anticancer drug paclitaxel [68]. HMGB2 KD could also promote sensitivity to another anticancer
drug, olaparib [68].

5. Conclusions

Our findings on the distinct roles of HMGB1 and HMGB2 in the modulation of telomerase activity
in etoposide-treated cells could be of interest for developing strategies for augmenting the efficacy
of anticancer drugs [6]. It remains to be established whether the reported distinct impact of HMGB
KD on the efficacy of anticancer drugs ([6] and refs. therein and in this paper) is correlated with
HMGB-dependent changes in the cellular activity of telomerase.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-273X/10/10/1450/s1,
Figure S1. Etoposide-treated hESCs and hNECs exhibit time- and HMGBs KD-dependent cell-cycle progression
and sub-G1 peak formation.
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