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Abstract

Non-polio enteroviruses are emerging viruses known to cause outbreaks of polio-like infections in different parts of
the world with several cases already reported in Asia Pacific, Europe and in United States of America. These
outbreaks normally result in overstretching of health facilities as well as death in children under the age of five.
Most of these infections are usually self-limiting except for the neurological complications associated with human
enterovirus A 71 (EV-A71). The infection dynamics of these viruses have not been fully understood, with most
inferences made from previous studies conducted with poliovirus.
Non-poliovirus enteroviral infections are responsible for major outbreaks of hand, foot and mouth disease (HFMD)
often associated with neurological complications and severe respiratory diseases. The myriad of disease
presentations observed so far in children calls for an urgent need to fully elucidate the replication processes of
these viruses. There are concerted efforts from different research groups to fully map out the role of human host
factors in the replication cycle of these viral infections. Understanding the interaction between viral proteins and
human host factors will unravel important insights on the lifecycle of this groups of viruses.
This review provides the latest update on the interplay between human host factors/processes and non-polio
enteroviruses (NPEV). We focus on the interactions involved in viral attachment, entry, internalization, uncoating,
replication, virion assembly and eventual egress of the NPEV from the infected cells. We emphasize on the virus- human
host interplay and highlight existing knowledge gaps that needs further studies. Understanding the NPEV-human host
factors interactions will be key in the design and development of vaccines as well as antivirals against enteroviral
infections. Dissecting the role of human host factors during NPEV infection cycle will provide a clear picture of how
NPEVs usurp the human cellular processes to establish an efficient infection. This will be a boost to the drug and vaccine
development against enteroviruses which will be key in control and eventual elimination of the viral infections.
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Introduction
Non-Polio enteroviruses belong to the genus Enterovirus
(consisting of 15 species); family Picornaviridae [1] and
have been identified in different parts of the world
affecting human population [2]. Major outbreaks of non-
polio virus associated infections have been recently
reported in Asia Pacific, Europe, Canada and United
States of America (USA). The peak of these infections is
coming at a time when the world is nearing eradication
of poliomyelitis, with just small number of cases

reported in some parts of the world [3]. The burden of
these infections has been felt in children under the age
of five; most of whom are just beginning their early years
at school. Most of these infections are known to be self-
limiting but severe neurological complications and even
death has been reported in some cases.
The focus of this review is to highlight the known role

of human host factors and processes during the selected
NPEV infections. A brief introduction on the epidemi-
ology and pathogenesis of the selected non-polio viruses
are described. The viral-host process/protein interac-
tions are then discussed, followed by the existing gaps
that need to be addressed in future. The ability of
various NPEV viruses to usurp various cellular processes
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such as; cell cycle division, autophagy as well apoptosis,
necroptosis and pyroptosis for efficient replication are
also highlighted. The state of antiviral therapy research
against these viruses is briefly discussed and existing
gaps highlighted. The future perspectives and areas of
concern are also emphasized.

The burden of non-poliovirus enterovirus infections
Enterovirus A 71 (EV-A71) was first isolated from fecal
and throat swab samples from patients with central ner-
vous system complications in California [4]. Since then,
EV-A71 has been linked with outbreaks of foot, hand
and mouth disease (HFMD); often a self-limiting infec-
tion characterized with and severe forms characterized
with acute flaccid paralysis and brainstem encephalomy-
elitis [5–8]. Coxsackievirus A16 (CV-A16), also plays a
major role in hand, foot and mouth disease (HFMD)
epidemics. Renal failure has also been reported in two
HFMD cases due to CV-A16 infection [9, 10] and more
recently one case of acute kidney injury secondary to
EV-A71 infection was reported by Xu and colleagues
[11]. HFMD outbreaks have been reported in different
parts of Asia Pacific; often with neurological complica-
tions in children under the age of five especially in
preschool centers as observed in Singapore [12]. For
example, between 2008 to 2012 there were about 7.2
million probable cases of HFMD and about 2400 fatal
cases reported in mainland China alone with high eco-
nomic costs [13]. This year, 34 cases of encephalitis/
neurological complications as a result of EV-A71 virus
infection have been reported in Colorado, United States
of America [14]. A 2–3 yearly cyclic pattern of hand,
foot and mouth disease outbreaks have been reported in
Asia pacific region [15]. The drivers of seasonality of
NPEV in USA was studied recently by Pons-Salort and
coworkers and identified the month of July and Septem-
ber to be the peak of these infections [16]. These out-
breaks always result in the overburdening of the health
care systems, pain and loss of lives in severe cases of the
disease. Even though recent mathematical modelling
findings using data from Singapore showed high incident
rates with limited disability-adjusted life years (DALYs)
compared to other infectious diseases prevalent in the
South East Asian countries [17], HFMD has a potential
threat to global health. Analysis of samples earlier
collected for poliovirus surveillance studies in seven
Western African countries identified several NPEVs
circulating in the region with echoviruses being the
dominant strain [18]. This study also identified least de-
scribed types such as EV-A119, EV-B75, CV-A20 as well
as EV-D94 among others to be circulating in this region
[18]. The identification and molecular characterization
of NPEVs in West Africa points to the global diversity of

these viruses and calls for a stronger surveillance system
for better management and control.
Recently, minor outbreaks of HFMD have been attrib-

uted to other coxsackieviruses such as CV-A10 and CV-
A6. Even though the magnitude of their effects during
outbreaks is not as large as that of EV-A71 and CV-A16;
there is need to understand pathogenesis of the infec-
tions as well as quantifying their burden for easy disease
monitoring. Coxsackievirus A6 (CV-A6) was isolated in
USA in 1949 and has been recognized as one of the
causative agents of hand, foot and mouth disease in
different parts of the world including USA, Europe
(Finland, Spain) and Asia Pacific (Taiwan, Japan, China,
Thailand and Vietnam among other countries in the re-
gion) [19–27]. The emergence of CV-A6 as a player in
the HFMD outbreaks eventually complicates vaccine and
antiviral therapy development against HFMD. CV-A16
and EV-A71 have been broadly studied; however little
success has been achieved in vaccine and therapy devel-
opment thus the emergence of CV-A6 points to the
urgent need of understanding its infection dynamics.
Coxsackievirus A6 and A10 have been linked to sporadic
outbreaks of atypical HFMD infections in China and
France [28–32]. Between 2009 and 2011, CV-A10 and
CV-A6 contributed to about 4.7 and 2.5% cases of
HFMD correspondingly in China [32]. With time, CV-
A6 has become one of the major causative agents of
both severe and mild cases of hand, foot and mouth
disease in China between 2013 to 2015; accounting for
approximately 25.8% of mild and 16.9% of severe cases
in 2015 [33]. There is a high possibility of virulent
strains of HFMD viruses emerging as frequent recom-
bination of enteroviruses A have been reported [30, 34].
These viruses have a potential of causing major out-
breaks with potential threat to global health.
Enterovirus D 68 (EV-D68); first identified from throat

swabs of children suffering from respiratory infections in
1962 and named as “Fermon virus” by Schieble and co-
workers [35]. Since then, severe outbreaks of respiratory
infections as a result of Enterovirus D 68 infections have
been reported in Taiwan, USA, Canada and in Europe
among other endemic regions [17, 36–38]. The link to
acute flaccid paralysis and acute flaccid myelitis further
exacerbates EV-D68 infections [39]. Several research
studies have demonstrated the infection dynamics of this
viral infection; for example, the ability of EV-D68 to
infect neuronal cells has been reported by Brown and
colleagues. Using neuronal cell line; SH-SY5Y confirming
its neurotropism in line with the observed acute flaccid
myelitis/ paralysis in patients [40]. Systemic and molecu-
lar diversity studies of EV-D68 in Lyon France, showed a
diversification pattern for this virus [41]. The establish-
ment of an experimental mouse model by Hixon and col-
leagues for studying the effects of EV-D68 provides much
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needed animal model for better understanding of the in-
fection cycle of this virus [42]. Establishing the EV-D68
human host cell interactions will provide an insight into
the pathogenesis of the infection and eventually be vital in
the design of antivirals and vaccines against the virus.
There is necessity to extensively understand the

molecular mechanisms of these viruses including the in-
fection paradigms which will be key in the development
of vaccines and antiviral therapy as well as players in
molecular epidemiology.

Host factors/processes involved in NPEV attachment,
entry and internalizatione
Viral tissue tropism depends solely on cellular receptors
which are responsible for attachment and entry of the
virus particles into the host cells. Human host proteins
act as receptors for viral attachment and eventual entry
into the cells playing a role in the tissue tropism for vari-
ous viral infections. Several receptors have been identi-
fied for various picornaviruses with poliovirus receptors
being the first ones to be identified in this family. With
the recent reemergence of enteroviral infection out-
breaks, there is need to document all the recent findings
in the entry process of these viruses; pointing to the
eventual gaps that needs further research. Interplay
between viral proteins and human host proteins play a
major role in the attachment, entry and internalization
of viral infections. Specific viruses use a confined set of
receptors on the cell membrane for entry into suscep-
tible cells, eventual uncoating of the virus. This process
is vital for the eventual reproduction of viral genome
and for continuity of the viral life cycle. Among the
picornaviruses, poliovirus is the most extensively studied
and several studies on non-polio enteroviruses have
relied on these studies. A few host factors have been
identified as possible receptors for the NPEVs, but the
dynamics of the eventual attachment, entry and internal-
ization is not yet fully understood.
Clathrin-mediated endocytosis as an entry pathway for

EV-A71 virus was identified through siRNA screens
targeting key genes involved in the process of endocytosis
cytoskeletal dynamics, and endosomal trafficking [43, 44].
Since then it has always been known that clathrin medi-
ated endocytosis is the major route of EV-A71 entry into
susceptible cells. However, inhibition of the clathrin-
mediated endocytosis pathways by chlorpromazine (CPZ)
or dynasore (DNS) did not inhibit EV-A71 entry into the
A549 cells, thus pointing to a combination of pathways
involved in the viral entry [45].
Among the picornaviruses, poliovirus and rhinovirus

receptors were identified in 1989; being the first entero-
virus receptors to be described. Greve and his col-
leagues identified intercellular adhesion molecule 1
(ICAM-1) as a Rhinovirus receptor [46] while CD155

was described as a poliovirus receptor by Mendelshon
and colleagues [47].
Some EV-A71 receptors have been identified; but these

putative receptors have not been able to fully explain the
diverse nature of symptoms observed in hand, foot and
mouth disease cases. EV-A71 receptors include; human
scavenger receptor class B member 2 (SCARB2); a
known to not only function as an attachment receptor
but also as an uncoating receptor during EV-A71 infec-
tion [48]. SCARB2 receptor is ubiquitously expressed in
different parts of the body including neuronal cells.
SCARB2 is a transmembrane receptor and a known β-
glucocerebrosidase (β-GC) receptor responsible for
transport from endoplasmic reticulum to lysosome and
is also key in lysosome maintenance [49]. SCARB2 was
also identified as an attachment receptor for human
enterovirus species A and coxsackie A 16 virus [50].
Several cell types are known to express SCARB2,

including the neurons thus may be directly linked to the
neurological complications associated with EV-A71 in-
fections; even though this has not been validated. At
acidic and neutral conditions, the SCARB2 undergoes
conformational changes leading to the opening up of
lipid transfer channel mediating ejection of hydrophobic
pocket from the virion a process important for viral
uncoating [51].
P-selectin glycoprotein ligand-1 (PSGL1) a membrane

protein expressed on white blood cells where it is
responsible for inflammation, tethering or rolling of
leukocytes at the vascular endothelial has also been de-
scribed as a receptor for EV-A71 responsible for the
viral entry into blood cells [52–54]. PSGL-1 has a high
avidity for EV-A71 virus compared to SCARBR2 yet its
associated with low infection effeciency due to its inabil-
ity to induce viral uncoating [55].
Sialyated glycans were also elucidated to be playing a

role in EV-A71 infection of the DLD intestinal cells [56].
Another attachment receptor; heparan sulfate glycosami-
noglycan was also identified by Tan and colleagues
pointing to the number of binding options available for
EV-A71 virus [57]. A recent study by Tseligka and co-
workers confirmed the importance of heparan sulfate
during EV-A71 infection [58]. This explains the wide
range of symptoms associated with EV-A71 infections
from mild infections to neurological complications in
some cases. Yang and colleagues identified the inter-
action between EV-A71 viral protein 1 (VP1) and human
annexin 2 protein thereby enhancing EV-A71 infection
[59]. Cell surface vimentin has also been described as
attachment receptor for EV-A71 pointing to the pres-
ence of array of receptors responsible for the viral entry
into the cells [60]. Using glycoproteomic approach, Su
and colleagues identified cell surface nucleolin to be aid-
ing in EV-A71 attachment and entry by interacting with
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viral protein 1 [61]. Cell surface prohibitin was recently
identified as the first possible host factor that interacts
with EV-A71 during viral entry into neuronal cells
thereby aiding in the neuropathies associated with EV-
A71 infections [62]. Fibronectin; a high molecular
weight glycoprotein joins the list of the wide array of
EV-A71 receptors to be discovered recently by Qiao and
colleagues [63]. This study postulates that EV-A71 may
be binding to the fibronectin protein through its VP1
structural protein.
A recent genome-wide RNAi screening by Yueng and

colleagues identified human tryptophanyl-tRNA sythe-
tase (hWARS) as an entry factor for EV-A71 as well as
CV-A16 and EV-D68 [64]. The results from this study
proposed an interesting view as the hWARS are not an-
chored on the membrane surface where it may be acting
as a receptor; thus, there is need for further studies to
unravel the exact mechanism of action of these proteins.
As suggested by Perlman and Gallagher [65] in their
commentary review on the findings from Yueng’s group,
we support the need to further evaluate mechanisms of
the three known EV-A71 entry receptors to find out if
there is any interactions or if they are all needed for
effective entry of the virus into susceptible cells. Possible
mode of action for this new perspective in EV-A71 in-
fection has been extensively reviewed in the commentary
issue by Perlman and Gallagher [65]. Given that EV-D68
and CV-A16 viruses do not depend on PSGL1 and
SCARB2 receptors for entry into cells, the findings of
this study will be key in understanding the pathogenesis
of these viruses upon validation of the exact mechanism
of action. This was the first report linking interferon
gamma to inducing viral entry into the cells.
The continued research aiming at documenting the

array of receptors for EV-A71 and other picornaviruses
will provide vital information in design of antiviral
therapies and vaccines. Completely mapping out all the
essential host proteins acting as functional receptors for
EV-A71 will provide a rich niche for design and develop-
ment of vaccines and therapy against infections associ-
ated with it. The existing EV-A71 and CV-A16 receptors
have not been able to completely explain the pathogen-
esis of hand, foot and mouth disease. Human PSGL1 for
example seems to only facilitate a small number of
enteroviral entry into the cells, while SCARB2 has been
shown to support an array of the viruses. This points
out to the need of a more concerted efforts to identify
and establish all the possible functional entry receptors
for EV-A71. The recently identified hWARS needs to be
further be validated to determine the efficiency in
supporting entry of the enteroviruses reported from this
study. Much need to be done going forward to fully
understand the pathogenesis of the hand, foot and
mouth disease. With a full map of entry receptors or

factors, we will be able to design antiviral therapy able to
block the entry pathway of the viruses thus limiting viral
infections. This will be important in the design of antivi-
rals against enteroviruses associated with the hand, foot
and mouth disease.
Sialic acid as well as Intercellular adhesion molecule-

5 (ICAM 5) have been identified as receptors for entero-
virus D68 (EV-D68) facilitating entry into susceptible
cells [66, 67]. The coxsackievirus-adenovirus receptor
(CAR) protein was the first receptor to be identified for
coxsackie B virus subgroups A, C, D E and F [68, 69].
Thereafter, other receptors for Coxsackievirus A 24 and
coxsackievirus A24 variant (CV-A24v) responsible for
acute hemorrhagic conjunctivitis (AHC) have been
described. ICAM-1 was identified as an uncoating recep-
tor for CV-A21; sialic acid as an attachment receptor for
CV-A24v [70]. Low density lipoprotein receptor (LDLR)
was purified by Hofer and coworkers from HeLa cell cul-
ture supernatant and classified as minor rhinovirus receptor
[71]. Very low lipoprotein receptor was also identified to be
a receptor of the human rhinovirus 2(HRV2) [72]. Intercel-
lular adhesion molecule-1 (ICAM-1) was also observed to
be aiding infection of mouse cells by coxsackievirus A21
and rhinovirus thereby acting as its receptor [46, 73].
Another host factor; KREMEN1 was recently shown to

play a role in the entry of coxsackievirus A10 (CV-A10);
serotype A enterovirus [74]. This study also showed that
KREMEN1 played a major role in entry of other sero-
type A enteroviruses; A2, A3, A4, A5, A6 and A12 [74].
Interestingly sequence analysis of these viruses using the
enteroviral structural protein P1 showed that they
cluster together on the phylogenetic tree.
Studies on another enterovirus; rhinovirus C (RV-C), as-

sociated with severe respiratory diseases, wheezing and
asthmas in children has been limited by the inability to
grow in cell cultures. However a recent study identified
human clathrin related family member 3 (CDHR3) as a
functional receptor for the RV-C [75]. Receptors for both
the major group of rhinoviruses A and B have been de-
scribed. Major group of rhinovirus A and B (RV-A and
RV-B) binds to the intercellular adhesive molecule
(ICAM-1) [46] while the minor group binds to the low
density lipoprotein for efficient entry into the cells [71, 76].
Identification of receptors for the enteroviruses en-

ables us to understand the pathogenicity of these epide-
miologically important group of viruses. Attachment,
adsorption and entry of viruses into the cells are the key
initial stages for establishing efficient viral infections.
There is need to understand the infection-mics of the
rhinoviruses with a goal of developing antivirals or vac-
cines towards this group of viruses. For echoviruses;
decay accelerating factor (DAF); CD55 known to regu-
late complement system within cells was also shown to
be a receptor for a number of echoviruses and coxsackie
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B viruses [77–79]. Known NPEV receptors are summa-
rized in Table 1 below.
Clearly dissecting the human host cell factors-NPEV

interactions will provide a rich niche of interaction map
that will be key in the design of antiviral therapy against
this group of epidemiological importance. Understand-
ing the mechanisms involved in viral entry as well as the
host cell factors acting as receptors will provide import-
ant information on the development of viral entry inhib-
itors. Given that most of these viruses use an array of
host factors/mechanisms to infect the host cell, as block-
ing of known entry inhibitors do not completely inhibit
viral entry into the cells. This supports the need to
clearly elucidate and map out all host factors involved in
the viral attachment and eventual entry. This interaction
between human host factors and viral proteins for even-
tual entry into the cells plays the key role in the viral
tissue tropism. We therefore suggest that more con-
certed efforts need to be put in place to identify all pos-
sible entry mechanisms of these viruses with an aim of
developing NPEV entry inhibitors into the cells thereby
limiting viral infection. This can only be fruitful if we
eventually identify all the host factors needed for the
NPEV entry into cells.

Host factors plays a role in viral NPEV virus genome
replication
The recent technological advances have been essential in
high throughput genome-wide screens aimed at

discovery of the interplay between human host factors
and the steps involved in viral infection. These tech-
niques have revolutionized the identification of human
host factors involved in viral infections with much suc-
cess so far. Cherry and Panda presented techniques for
siRNA genome-wide screens, detailing all the basic steps
involved [81]. Several studies have used the siRNA
genome-wide screens to identify the role of human host
factors during enteroviral infections. Wu and colleagues
performed a siRNA genome-wide screen which identi-
fied several human host factors necessary for EV-A71
virus infection [82]. This study identified susceptible
host factors and resistant host factors involved in EV-
A71 infection; NGLY1 and CDK6 and AURKB respect-
ively pointing to an important interaction between viral
proteins and human host cell factors.
A small siRNA screen targeting human membrane

trafficking genes identified vasolin-containing protein
(VCP-p97) as an important protein essential after PV
viral replication and it interacts and colocalizes with 2
BC/2C as well as 3AB/3B in poliovirus infected cells
[83]. EV-A71 through 2Apro and 3Cpro have been shown
to target endoplasmic reticulum proteins thereby leaving
the ERAD proteins tethered within the ER lumen [84].
EV-A71 2Apro specifically inhibits synthesis of Herp and
VIMP at the translational level, while 3Cpro cleaves
Ubc6e at Q219G, Q260S, and Q273G thereby interfering
with the ERAD processes [84]. This study proposed that
EV-A71 may be interfering with the ER membranes and

Table 1 NPEV receptors

Receptor/entry factor Viruses Cell line/animal model used for the study Reference

Decay accelerating factor (DAF) Echovirus, Coxsackievirus B3 HeLa, T84, WOP [77–79]

Intercellular adhesion molecule-1 (ICAM-1) Coxsackievirus A21, rhinovirus, CV-A24 Mouse L cells, HeLa B, HAP1, HeLa R19 [46, 70,
73]

Sialylated glycan EV-A71 DLD-1 intestinal cells, K562 myeloid cells [56]

Annexin EV-A71 HepG2 [59]

Heparan sulfate glycosaminoglycans EV-A71, CV-A16 Chinese hamster ovary cells (CHO),
rhabdomyosarcoma (RD)

[57]

Human scavenger receptor class B member
2

EV-A71, CV-A16, CV-A7, CV-A14 Mouse L929, Ltr929, Ltr245, Ltr051, RD [48, 50]

Human P-selectin glycoprotein ligand 1 EV-A71 CHO-K1, RD, Jurkat, MOLT4, MT-2, HEp-2 [52, 53,
80]

Intercellular adhesion molecule-5 EV-D68 HEK293T [66]

Vimentin EV-A71 U251, RD, Vero, HeLa [60]

Cell surface nucleolin EV-A71 RD [61]

Sialic acid EV-D68, RD, HAP1, human lung fibroblast (HELF) [67]

LDLR, VLDLPR Human Rhinovirus minor HeLa [71, 72]

Fibronectin EV-A71 RD, HEK293 [63]

KREMEN1 CV-A10, CV-A2, CV-A3, CV-A4, CV-A5, CV-A6
and CV-A12

HAP1, H1-HeLa, HEK293, HCT 116, Vero E6, RD;
Kremen1/2-Deficient Mice

[74]

hWARS EV-A71, CV-A16 and EV-D68 human neuronal NT2, mouse fibroblast L929 [64]
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hijacks ERAD component; p97 to improve its replication
[84]. Pharmacological inhibition of myristoyltransferases
resulted in a decreased myristoylation of CXB3 virus
structural proteins through reduction of VP0 acylation
[85]. Inhibition of myristolyation by siRNA knockdown
and use of myristic acid analogues prevented cleavage
between VP4 and VP2 as well as reduction in viral RNA
synthesis [86]. These studies brings forth a new mechan-
ism of myristoylation in picornaviral protein cleavage
and processing of VP0 thus providing an alternative
target for possible antivirals against these viruses [85].
RNA viruses have evolved with the human host cells

to devise mechanisms of protecting themselves from the
hostile environments within the host. These interactions
result in the protection of the viral RNA integrity for an
efficient infection and eventual establishment of disease
as reviewed by Barr and Fearns [87]. It is a common
belief that RNA viruses can remodel their host cell intra-
cellular membranes to form double membranous struc-
tures; replication organelles that acts as a replication site
for their genome. However, the mechanism of host cell
remodeling has not been fully explicated. The sequential
events leading to the formation of replication organelles
are not yet fully identified. There is need to elucidate the
role of the human host factors especially the lipid trans-
fer proteins within the endoplasmic reticulum. It has
been postulated that enteroviruses usurp the lipid trans-
fer at the membrane to aid in the formation of the repli-
cation organelles [88]. Stoeck and his colleagues showed
that Hepatitis C virus (HCV); positive stranded RNA
virus usurps lipid transfer protein Neimann pick type
C1(NPC1) within the late endosomes where it leads in
localization of cholesterol leading to the formation of
the double membrane structures essential for the forma-
tion of the replication organelle [89]. It will be important
to elucidate the role of other known lipid transport
proteins including steroidogenic acute regulatory protein
(StAR) and Oxysterol-binding protein-related protein 1A
and B (OSBPL1A) in the formation of replication organ-
elle during NPEV viral infections.
Hsu and colleagues showed how viruses usurp host

processes and proteins to reorganize host membranes to
form replication organelles via the reorganization of the
secretory pathways [90]. This study showed how entero-
viruses and flaviviruses exploit host machinery; Arf1 and
GBF1 resulting in recruitment of phosphatidylinositol-4-
phosphate(PI4P) lipid augmented organelles vital for
their replication [90]. Specifically, this study showed that
enterovirus RNA polymerase binds PI4P thus illustrating
the importance of phosphoinositide lipids during viral
genome replication.
Zhang and colleagues elucidated that ARF1 and GBF1;

vesicular proteins colocalizes with phosphatidylinositol-
4-kinase IIIβ(PI4PIIIβ) leading to accumulation of PI4P

thus pointing to their essential role during HCV virus
infection [91]. This far, it has been shown that enterovi-
ruses recruit PI4PIIIβ via the 3A viral protein for
efficient viral genome replication. A study by Dorobantu
and colleagues highlighted that the recruitment of
PI4PIIIβ to the replication organelle does not depend on
the interactions of GBF1/ARFA and acyl coenzyme A
[acyl-CoA]-binding protein domain 3 (ACBD3) during
coxsackievirus B3 replication [92]. Thus, the mecha-
nisms of recruiting the PI4P leading to subsequent
formation of replication complex remains unclear.
Furthermore, studies by Xiao and coworkers showed

that EV-A71 3A protein facilitates the interaction be-
tween ACBD3 and PI4PIIIβ at the replication sites [93].
Contrary to previous studies showing that PI4PIIIβ
recruitment is independent of ACBD3 during rhinovirus
infection, this particular study points to a selective re-
cruitment strategy of PI4PIIIβ facilitated by 3A protein
to the replication sites during EV-A71 infections [93].
A study by Banerjees recently identified that picorna-

viral 3CD protein plays a crucial role as a master regula-
tor during hijacking of the host cell phospholipid
biosynthetic pathways; eventually resulting in prolifera-
tion of the membranes at the specific point [94]. This
study demonstrated that 3CD viral protein alone is suffi-
cient to induce PI4P, phosphatidylinositol-4,5-bispho-
sphate (PIP2) and phosphatidylcholine (PC) synthesis
during picornaviral infections [94]. To this end, there is
need to illustrate the mechanisms used by this viral pro-
tein to recruit an array of these cell membrane biogen-
esis lipids. To find out whether the formation of the
replication organelle is conserved among the enterovi-
ruses, Melia and colleagues studied the architecture of
the replication organelles formed during encephalomyo-
carditis virus; a picornavirus in the genus Cardiovirus
[95]. This study postulated that the endoplasmic
reticulum might be the likely donor organelle for the
formation of the replication organelle during EMCV
infection [95]. The common belief that enteroviruses
replication and evasion of the innate immune system
signaling is aided by the formation of the membranous
web was recently challenged by Melia and colleagues
[96]. Using a known PI4PIIIβ inhibitor; BF738735
(identified in an earlier screen by van der Schaar and
colleagues [97]), this study showed that a mutant cox-
sackievirus (CV-B3 3A-H57Y) was able to replicate
within the Golgi apparatus in the absence of replication
organelles [97].
To this end, the clear steps involved in the formation

of the double membranous structures required for the
formation of the enteroviruses replication organelles re-
main unresolved. There is need to dissect the exact
mechanisms involved in the formation of replication
complex; a mechanism without which the replication of
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the viral genomes becomes compromised. This might be
an opening towards the development and or design of
antivirals targeting this exact mechanism. For example,
the mechanisms of the cell remodeling during RNA
virus infection has been mined by a recent study by
Nguyen and coworkers [98]. This study identified fatty
acid synthase and ceramidase as potential inhibitory
target against rhinoviruses [98], highlighting the possibil-
ity of targeting lipid transfer during the replication
organelle formation for possible therapeutics.

Host factors involved in enteroviral protein translation
Translation of viral proteins upon release into the cyto-
plasm is cap-independent thus human host proteins
binds to the viral type 1 internal ribosome entry site
(IRES) for efficient replication. Some nuclear factors
relocate to the cytoplasm during enteroviral infections
where they bind to the internal ribosome entry sites
(IRES); acting as internal ribosome entry sites trans-
acting factors (ITAFs) thereby recruiting ribosomes to
the site for protein translation. RNA binding protein;
heterogenous nuclear ribonucleoprotein (hnRNP)A1 is
known to shuttle from nucleus to cytoplasm during
enteroviral infections [99, 100]. Lin and colleagues
demonstrated that this RNA binding protein(RBP) is an
ITAF and binds to 5’UTR of EV-A71 and Sindbis virus
during viral infection thus enhancing viral protein trans-
lation [101]. Tolbert and coworkers demonstrated that
hnRNP A1 binds specifically to the stem loop II of the
EV-A71 IRES [102]. A follow-up study by the same
group demonstrated that hnRNP A1 induces conform-
ational changes upon binding to the stem loop II of the
EV-A71 IRES leading to the enhanced viral protein
translation [103]. HnRNP A1 has also been linked to
regulation of replication in other viruses such as hepa-
titis C virus [104], human cytomegalovirus where it in-
teracts with immediate early gene 2 protein [105],
dengue virus [106] and human papillomavirus type16 L1
[107] among other viruses.
Far upstream element binding protein 2 (FBP2) was

described by Lin and colleagues to be an ITAF and a nega-
tive regulator of EV-A71 IRES dependent replication
[108]. A follow-up study from the same group showed
that EV-A71 induces proteasome, autophagy and caspase
activity mediated cleavage of FBP2 into a positive regula-
tor of viral protein synthesis [109]. FBP1; another nuclear
protein was also demonstrated to translocate to the cyto-
plasm during EV-A71 infection where it binds to the viral
IRES there by recruiting ribosomes to the sites for en-
hanced viral protein synthesis; thus, acting as a positive
ITAF [110]. Studies by Zhang and coworkers described
nuclear factor cellular factor 68-kDa Src-associated pro-
tein in mitosis (Sam68) as an EV-A71 positive ITAF; upon
translocation into the cytoplasm [111].

Human host factors-viral protein studies identified
nuclear factor; adenosine-uridine (AU)-rich element
RNA binding factor 1 (AUF1) is targeted for cleavage by
CV-B3 viral 3C protease upon translocation to the cyto-
plasm for enhanced stability of the IRES dependent viral
RNA production [112], similar antiviral observations
were made for poliovirus, coxsackievirus and human
rhinovirus [113]. Rozovics and colleagues reported a
3CD dependent cleavage of AUF1 during poliovirus and
rhinovirus infections enhances RNA replication [114].
Interestingly, the replication of another picornavirus;
EMCV was not affected by messenger RNA decay pro-
tein: AUF1 as observed in other enteroviruses, suggest-
ing a variance in the restriction mechanism of this
nuclear factor [115]. Investigating the role of AUF1 in
EV-A71 infections, Lin and colleagues showed that it
relocates to the cytoplasm during infection where it
binds to the viral IRES and restricts viral RNA produc-
tion [116]. AUF1 is the only nuclear factor which has
shown an effect on the replication of other picornavi-
ruses; pointing to its possible global role during these
viral infections, offering a possible target for in the
development of antivirals against enteroviruses.
Other host factors described to be involved in picorna-

viral translational activity include; Misshapen NCK-related
kinase (MINK) in EV-A71 [117], heterogenous nuclear
ribonucleoprotein C [118], La autoantigen in hepatitis C
cap-independent translation [104], polypyrimidine tract-
binding protein (PTB) and poly(rC)-binding protein
(PCBP) for IRES dependent translation of poliovirus [119],
double stranded RNA binding protein 76 (DRBP76) acting
as a negative IRES regulator for rhinovirus 2 [120, 121], as
well as ploy(rC) binding protein 1 and 2 boosting polio-
virus and rhinovirus IRES dependent translation [122].
The mode of action of enterovirus IRES is not fully

understood as seems to be a myriad of host nuclear fac-
tors involved in the cap-independent viral replication.
There is need for further research to help identify all the
host factors involved in enteroviral IRES dependent RNA
production. Identifying host factors that binds to the IRES
during enterovirus cap-independent viral translation will
be key in understanding the viral replication cycle.

Programmed cell death during EV-A71 viral infection
Neuronal cell death as a result of enteroviral infections
have been observed in some cases of HFMD [5, 123]
and the mechanism linked to programmed cell death.
For a long it has been a common belief that apoptosis
and necrosis are the major players in programmed cell
death (reviewed [124]). Other mechanisms including
pyroptosis and necroptosis have been described to play a
role in complementing apoptosis in restricting viral
infections [125–128].
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The process of caspace-1 induced pyroptosis was
first described in Salmonella enterica serovar Typhi-
murium bacteria [129]; and has been elucidated to be
used by other species of bacteria to escape inflamma-
some and stimulate cell death (reviewed [130]). Pyr-
optosis; inflammatory programmed cell death, has
been linked to cell death during EV-A71 infections in
neuronal cell lines [131]. AIM2 mediated inflamma-
tion had been linked to the pyroptosis during EV-A71
infections as it was up-regulated as well as AIM2
downstream stimulated genes such as CARD16,
caspase-1 and IL-1β during viral infection in neuronal
cell lines (SK-N-SH) [132]. Yogarajah and coworkers
recently identified radical S-adenosylmethionine do-
main containing 2 (RSAD2) and Absent in melanoma
2 (AIM2) to be modulating EV-A71 and CV-A16 in-
fections of the neuronal cells [133]. Consistent with
previous findings from the same research group; the
upregulation of AIM2 resulted in reduced viral repli-
cation [132]. The results from this study points to
mechanisms involved in the neuronal complications
observed in the fatal cases of EV-A71 infections
which are not observed during CV-A16 infections.
This observation is postulated to be as a result of dif-
ferential stimulation of host factors during viral infec-
tions by the viral 5’non-tranlsated regions [133].
Involvement of pyroptosis during viral infection has
been reported for other viruses including; encephalo-
myocarditis virus (EMCV) [134], rhinovirus [135] and
adenoviruses [136].

Enteroviruses induces cell cycle arrest for genome
replication
Viruses are known to target various host cellular factors
for effective and efficient replication. Several viruses
have been shown to target human host cell cycle; arrest-
ing the cell division thereby avoiding competition from
the dividing cells for their efficient genome replication.
DNA viruses have been shown to have the ability of
entering the cell cycle S phase and arresting cycle for
viral replication; for example Simian Virus 40 [137],
human papillomavirus 16 and 18 viral protein E6 inter-
acts with p53 [138] as well as herpes simplex virus
ability to block cell cycle is reviewed in details by
Flemington and colleagues [139], have been shown to
usurp the cell cycle for efficient viral replication process.
Infectious bronchitis virus (IBV); a coronavirus was
shown by Li and colleagues as well as Dove and co-
workers to induce cell cycle arrest during the S and
G(2)/M phases for improved viral replication [140, 141].
Influenza A virus replication has been shown to interact
with cell division factors resulting to arrest of the cell
cycle division at the G0 /G1phase [142]. Arrest of cell
cycle at G2 phase by Human Immunodeficiency Virus-1

(HIV-1) viral protein R (Vpr) through blocking of
p34cdc2/cyclin B complex stimulation [143, 144]. Coro-
naviruses; severe acute respiratory syndrome and mouse
hepatitis virus (MHV) are able to capture cell cycle at
G0/G1 phase for efficient genome replication [145–147].
Among enteroviruses, the cell cycle arrest has been re-

ported for EV-A71, CV-A16, EV-D68 and recently for
CV-A6 viruses. Targeting the cell cycle host factors helps
the viruses to replicate within the cells with limited
competition from actively dividing cells. Completely
understanding the how viruses take advantage of the
cellular processes/ proteins to establish efficient infec-
tion and genome replication is vital in the development
of vaccines and antiviral therapy against these viruses.
Disruption of cell cycle division at S phase has been

reported during EV-A71 infection thereby blocking the
entry of the cells into G2/M phase through viral RNA
dependent RNA polymerase 3D non-structural protein
[148]. This study showed that EV-A71 mediates cell
cycle through increasing transcription of cyclin E1,
promoting proteasomal degradation of cyclin A2 and
eventual phosphorylation of cyclin dependent kinase
2(CDK2) thus regulating expression of these key cyclin
regulators [148]. The same study also showed that an-
other picornavirus; coxsackievirus A16 infection as well
mediates cell cycle division disruption at S phase [148].
Factors that control cell cycle and differentiation; Aurora
B kinase (AURKB) and cyclin dependent kinase 6
(CDK6) were identified by Wu and colleagues as EV-
A71 restriction factors [82].
EV-D68 mediates synchronization of cell division

at the G0/G1 but not at S phase thus promoting viral
replication while cell cycle arrest at G2/M phase
inhibited viral replication [149]. This observation is
contrary to CV-A16 and EV-A71 where cell arrest at
S phase promoted viral replication. Remarkably, cell
cycle disruption at G2/M phase inhibited viral repli-
cation for CV-A16, EV-A71 and EV-D68 viruses
[148, 149]. Wang and colleagues demonstrated for
the first time that CV-A6 disrupts cell division cycle
at G0/G1 phase for viral replication through its non-
structural protein RNA-dependent RNA polymerase
3D and 3C protease proteins [150]. Viruses depends
on host cell proteins and processes for efficient gen-
ome replication. Exploiting the cell cycle process, a
highly regulated process enables viruses to have un-
fettered access to the cell cycle factors for efficient
viral replication.
Future work should look at the cell cycle stage

where other enteroviruses disrupt cell division cycle.
This will enable better antiviral therapy design and
development targeting different viruses associated
with HFMD as well as other forms of enteroviral
infections.
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Role of autophagy in Enteroviral RNA replication and
egress
The process of autophagy has been linked to the forma-
tion of the double membranous structures which acts a
replication site for enteroviruses including poliovirus
(PV). The formation of these membranous structures is
dependent on the exploitation of the autophagy process
by the enteroviruses (PV, CV-B, CV-B3 among other
enteroviruses) where 3A and 2 BC viral proteins are in-
volved [151–156]. Recent studies have linked autophagy
regulators to the formation of the autophagosome/ the
replication organelle during coxsackievirus B (CV-B);
thus showing that enteroviruses not only target the
autophagy process but also its regulators for efficient
replication of their genomes [157, 158]. Wong and col-
leagues showed that coxsackievirus B3 (CV-B3) induces
autophagosome formation without lysosome degradation
of proteins [156], clearly highlighting the role of autop-
hagosome in the formation of the replication organelles
during enteroviral infections. Follow-up studies by Zhai
and colleagues observed formation of autophagosomes
both in CV-B3 infected fibroblasts and in Balb/c mice
thus, linking autophagy to the pathogenesis of myocardi-
tis infections [159]. The shedding of CV-B3 virus from
infected cells was linked by Robinson and colleagues to
the extracellular microvesicles with autophagosome
markers. The role of the autophagomes in the release of
CV-B3 virus from infected cells was later validated by
Sin and coworkers [160]. The study by Sin and colleagues
demonstrated ability of CV-B3 to egress from cells and in-
fect other cells via a dynamin related protein 1(DRP1) ini-
tiated mitochondrial fragmentation; a process vital for the
mitochondrial based autophagy elimination/mitophagy
[161]. From this study, CV-B3 is believed to localize in the
mitochondria where it initiates virus induced mitophagy
and eventual escape from cells through autophagosome-
bound-mitochondrion-virus complex [161]. The role of
mitophagosome in the release of CV-B3 virus, explains
possible alternative process used by picornaviruses to
release from infected cells and infect other cells thus
ensuring the infection cycle is sustained. The disruption of
the mitochondrial dynamics through virus induced stimu-
lation of DRIP1 to block virus induced apoptosis and
eventual persistence of viral infection has also been
observed in HCV [162]. This points to the fact that differ-
ent single stranded RNA viruses may be using the same
process to disrupt mitochondrial traffic and eventual
apoptosis for viral replication maintenance of viral
infection cycle.
Enterovirus A71(EV-A71) induced autophagy had been

reported both in vivo and in vitro with EV-A71-VP1 and
2C proteins localizing with microtubule-associated
protein 1 light chain 3(LC3) and mannose-6-phosphate
receptor (MPR) resulting in the formation of the

amphisome thereby increasing viral replication [163,
164]. EV-A71 2 BC non-structural protein was recently
shown to trigger the formation of autolysosomes in hu-
man rhabdomyosarcoma cells thus enhancing EV-A71
replication [165]. This study also showed that the 2 BC
protein interacts with N-ethylmaleimide-sensitive factor
attachment receptor (SNARE) protein, syntaxin-17
(STX17), synaptosome associated protein 29 (SNAP29)
and microtubule-associated protein 1 light chain 3B
(LC3B) major players in the formation of the autolyso-
some [165]. The results of this study are consistent with
earlier findings linking enterovirus 2 BC non-structural
proteins to the exploitation of autophagy process to sup-
port enterovirus viral replication. Corona and colleagues
showed that enterovirus D68(EV-D68) is able to disrupt
autophagy processes downstream to promote viral replica-
tion and eventual egress from the cells thus promoting
viral infection within the cells [166]. This phenomena
linking viral proteins to interact with various regulators of
autophagy processes for efficient viral replication and
transmission has been reviewed [167, 168]. Another pend-
ing issue has been if the enteroviruses are able to replicate
inside the acidic autophagosomes and how do they evade
degradation and exit the cells intact. However, this has so
far been linked to the enteroviruses’ ability to divert cargo
traffic away from degradation [166, 169, 170]. CV-B3 3C
protease has been illustrated to target cleavage of SNARE
and PLEKHM1 proteins which are key in regulation of
autophagosome fusion and eventually impairing establish-
ment of SNARE complexes [170].
The role of autophagy regulators in enterovirus infec-

tions have also been studied. For example, a study by
Delorme-Axford showed that an autophagy regulator;
bactericidal/permeability-increasing protein (BPI) fold-
containing family B, member 3 (BPIFB3) acts as a host
limiting factor during coxsackievirus B virus infection
[158]. This study reported that BPIFB3 may be playing a
role in downregulating the key steps involved in the
autophagy process proposed to be helping in the forma-
tion of the membranes needed for enteroviruses replica-
tion [158]. A study by Morosky and colleagues linked
BPIFB6, another protein in the family of BPIFB to be a
positive regulator of CV-B suggesting that BPIFB family of
proteins may be having diverse effects in regulating viral
infections [157]. A recent study by Delorme-Axford and
coworkers identified exoribonuclease Xrn1 as a negative
post-transcriptional regulator of autophagy [171]. The
same study also showed that Xrn1 maintains the process
of autophagy at basal levels thus limiting replication of
poliovirus and coxsackievirus B [171].
A recent study by Velazquez and colleagues demon-

strated that poliovirus can generate autophagosomes
through a downstream of ULK1 signaling pathway;
cleaving the cargo traffickers which may negatively
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interfere with cargo loading [172]. This points out to the
ability of the picornaviruses to fine-tune the interaction
with the autophagy machinery for effective survival
within the cells. Targeting of autophagy key players and
auxiliary factors have been reported for number of picor-
naviruses. CV-B3 through its viral 2Aprotease was has
been shown to cleave sequestosome 1/p62 (SQSTM1/
p62) [173]; a known intermediary of selective autophagy
degradation of ubiquitinated proteins [174–176]. This
study further showed that cleavage of SQSTM1 resulted
in the impairment of NF-kB signaling and eventual
disruption of the selective autophagy in infected cells;
emerging as an pro-viral strategy to establish an efficient
infection during CV-B3 infection [173]. A subsequent
study by Mohamud and colleagues demonstrated that
SQSTM1 and another host factor calcium binding and
coiled-coil domain-containing protein 2/nuclear dot 10
protein 52 (CALCOCO2) regulate CV-B3 virus infection
by targeting autophagy receptors; via their interaction
with viral protein 1 [177]. This study also showed that
CALCOCO2 targets mitochondrial antiviral signaling
protein for degradation thereby blocking the establish-
ment of antiviral state within the infected cells for
efficient establishment of CV-B3 infection [177]. Differ-
ent strategies used by viruses to trigger and hijack the
process of autophagy have been recently reviewed in
details by Zhang and coworkers [178].
Autophagy is key in controlling various cellular pro-

cesses including enhancing innate immune signaling
during viral infections through a process known as viro-
phagy. The ability of virus infected mitophagosomes to
be released out of the infected cells provides an import-
ant mechanism of virus egress from the infected cells.
Enteroviruses have been shown to have the ability of
interacting with cellular autophagic process that is con-
ventionally known to degrade the mitochondrial traffic
upon fusion with the lysosomes. Enteroviruses has
evolved ways to evade this process through degradation
of various autophagy initiating factors as well as its regu-
lators. This host cellular process has been linked to the
non-lytic exit of various enterovirus infections including
Poliovirus, Echovirus 7, EVA71 and CV-B3 viruses.
However, blocking initiation of mitophagy as a way of
controlling viral infections may not be feasible given that
observations from different studies have shown only dis-
ruption of extracellular micro-vesicles (EMV) release
and not the replication ability of CV-B3 virus. Thus, this
process does not provide an ideal antiviral target. An
overview of the human host cell/process: NPEV viral
protein interactions are highlighted in Table 2 below.

Advances in enterovirus antiviral drug developments
Much has not been achieved in the development of
antivirals against NPEV infections. The major challenge

for development of the antivirals has always been the
mutations on the viral genomes. Several compounds
have been tested for possible use as antivirals against
enteroviruses as shown in Table 3 below but no much
success has been achieved. Most of the drug screening
have been done in vitro with little success in vivo and in
clinical trials. Screening FDA approved drugs and repur-
posing of existing drugs based on known viral-human
protein interactions are some of the strategies that has
been adopted by scientists to identify antivirals against
NPEVs. For example, Li and colleagues evaluated the
effects of ribavirin a known antiviral against other RNA
viruses on EV-A71 for possible repurposing of the drug
[179]. Their study showed decreased EV-A71 virus yield
in vitro and reduced disease status, death and adverse
effects associated with its infection in vivo; highlighting
the possible role as an antiviral compound against EV-
A71 [179]. Plant metabolites have also been targeted as
possible antiviral compounds against enteroviruses. For
example, Quercetin; a well distributed plant flavonoid
has been shown recently to inhibit EV-A71 infection by
inhibiting virus attachment, adsorption and by targeting
viral 3C protease [180].
The antiviral efficacy of pyrazolo[3,4-d]pyrimidines

have also been evaluated against enteroviruses; CV-B3
and EV-A71 virus infections where they inhibited their
infections but the exact mechanism was not established
[181]. More recently, andrographolide has been reported
to suppress EV-D68 replication targeting the viral mat-
uration within the acidified endosomes [182]. World
Health organization (WHO) recommended combination
therapy has also been evaluated for possible antiviral
development against enteroviruses [183]. Screening of
FDA approved drugs recognized pirlindole as a strong
inhibitor of CV-B3 [184].
Natural products have recently gained much interest

in drug development studies. Of these; plant secondary
metabolites; flavonoids have been of interest in drug
therapy screens against viral infections given that they
are freely available and form better part of human diet-
ary. Screening of plant metabolites for possible use as
antiviral therapy has been reported as reviewed by
Zakaryan and colleagues [185] and their biological activ-
ity as well as chemistry have also been extensively
reviewed [186]. Some flavonoids with antiviral abilities
in vitro against viral infections include; isoquercitrin
against Zika virus infections [187], chikungunya infec-
tions [188], apigenin antiviral effects on a number of
viruses such as African swine fever virus (ASFV), hepa-
titis C virus [189, 190]. Apigenin have also shown anti-
viral activity against EV-A71 virus by inhibiting viral
IRES dependent translation [191–193]. A recent screen
of flavonoid library identified ST077124 and ST024734
as lead antiviral compounds against EV-A71, CV-A6 and
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CV-A16 enteroviruses [194]. All these concerted efforts
towards identifying antivirals against enteroviruses and
other viral infections needs a follow-up and validation in
animal models. The good news is that most of the
already identified compounds have shown no cytotox-
icity in cells; thus, may not have toxic effects in animal
models. The efficacy of most of the identified com-
pounds have only been elucidated in vitro thus there is
need for further studies to identify their effects in vitro.

Little success has been achieved in terms of antiviral
therapy against enteroviruses. Given that drug discovery
process is an expensive and time-consuming venture,
most researchers have relied on the FDA approved drugs
or drugs that are already in use for possible re-
purposing. Not much success on drug therapy has been
recorded in viral infections due to the high mutation
rates observed during viral replication. Combination
therapy of the drugs with different mode of actions

Table 2 host factors involved in NPEV infection cycle

Human host factor: Viral Protein interaction Role during viral infection cycle Reference

EV-A71 3Cpro Cleaves Ubc6e at Q219G, Q260S and Q273G Inhibits ERAD pathway to promote viral replication [84]

EV-A71 2Apro Inhibits synthesis of Herp and VIMP ER
proteins at translational level

EV-A71 3A facilitates interaction with ACBD3 and PI4PIIIβ
at replication site for formation of replication complexes

Formation of membranous structures for viral replication [93, 94]

Picornaviral 3CD protein induces PI4P and PIP2 and
phosphatidylcholine synthesis during
picornaviral infections

hnRNP A1 relocates to cytoplasm from nucleus and
binds to the stem loop II of the EV-A71 IRES

Viral protein translation: Enhanced IRES dependent viral
RNA production

[99–103, 109, 110]

EV-A71 induces proteasome, autophagy and caspase
activity cleavage of FBP2 into a positive ITAF

Sam68 translocates into the cytoplasm and binds to
viral IRES

[111, 112, 114, 117]

CV-B3, rhinovirus viral 3C protease cleaves AUF1
upon translocation to the cytoplasm

MINK binds to IRES acting as an ITAF

EV-A71 viral 3D RNA dependent RNA polymerase
disrupts cell cycle division at S phase thus blocking
entry into G2/M phase

Cell cycle arrest for efficient replication by accessing the
host factors cell division machinery.

[148–150]

EV-D68 mediates synchronization of cell division at G0/G1

CV-A6 viral protein 3D and 3C disrupts cell division cycle
at G0/G1

PV, CV-B, CV-B3 virus induced autophagy through 3A
and 2 BC viral proteins

Formation of replication complexes for viral replication. [151–156, 159]

CV-B3 induces autophagosome formation without
lysosome degradation in fibroblasts and BALB/C mice

CV-B3 induces DRP1 initiated mitochondrial fragmentation Virus egress through the autophagosome-bound-
mitochondrion-virus complex

[161]

EV-A71-VP1 and 2C proteins induce autophagy through
localization with LC3 and MPR

Enhanced EV-A71 replication through formation of
amphisome

[163, 164]

EV-A71 2 BC protein interacts with SNARE, STX17, SNAP29
and LC3B proteins leading to formation of autolysosome
in RD cells

Enhanced viral replication [165]

EV-D68 can disrupt autophagy process downstream Promotes viral replication and egress from infected cells;
promoting viral infection within the cells

[166]

CV-B3 viral protein 3C targets cleavage of SNARE and
PLEKHM1 proteins

Impairs establishment of SNARE complexes thus providing
conducive environment for viral replication

[170]

CV-B3 viral 2A protease cleaves SQSTM1/p62 a known
intermediary of selective autophagy degradation of
ubiquitinated proteins

Impairs NF-kB signaling and disrupts selective autophagy in
infected cells to establish an efficient viral replication/infection

[173]

CV-B3 interacts with CALCOCO2 and SQSTM1 Targets autophagy receptors; targets mitochondrial antiviral
signaling protein for degradation thus blocking establishment
of antiviral state in the infected cells

[177]
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targeting different stages of viral infections would be an
alternative in targeting different stages of the enteroviral
infection cycle. This will only be achieved with a
complete map out of the human host factors hijacked by
these viruses during infections. Thus, there is need for
continued elucidation of molecular mechanisms of the
already postulated viral targets as well as identifying
other underlying factors and process. Vaccines have
shown much success against viral infections and the suc-
cess story of vaccination against poliovirus infection in
the world which is a picornavirus; points for the need of
continued studies towards identifying vaccine candidates
against the enteroviral infections. With outbreaks of en-
teroviruses being recorded in different parts of the
world, if not checked they might have a potential threat
to the global health; just soon after near- eradication of
poliovirus infection.

Conclusion and future perspectives
The emergence of outbreaks of enteroviral infections in
different parts of the world point to the need of mapping
all the host factors involved in the infection paradigm.
Given that viruses need host factors in every step of
their infection from attachment, entry, replication, virion
assembly and eventual entry, there is need to elucidate
all the host factors involved for an improved under-
standing of the molecular dynamics of enteroviral infec-
tions. This will be a big boost towards the long overdue
antiviral and vaccine development against these epidemi-
ologically important viruses. There is much to be eluci-
dated on the formation of NPEV replication complex
formation as the existing mechanisms do not wholly
explain the processes and steps involved in this import-
ant process during viral replication. The nuclear host
factors involved in the enteroviral replication also needs
to be fully described as this is a vital step in maintaining

viral replication and eventual life cycle. Viral entry
studies need to be carried out as the known receptors
and viral entry requirements do not fully explain the
myriad of disease features observed during viral infec-
tions. The role of cellular processes such as autophagy,
apoptosis, necroptosis, pyroptosis as well as post-
translational modifications in enteroviral infections also
needs to be fully elucidated. This will be specifically
important in explaining the little-known stages of viral
infections such as non-lytic egress for continuous viral
cycle within the host.
The paucity of information on the infection dynamics

of these viruses calls for concerted efforts to elucidate
the viral-human cell interactions. There is still a lot to
be investigated to fill the gaps that exist on the life cycle
of non-polio enteroviruses. With new cases emerging in
different parts of the world, it is just a matter of time
before we have a global outbreak of non-poliovirus
enteroviral infections in different parts of the world.
There is also an urgent need for further studies espe-
cially in the field of vaccine developments as well as
antiviral therapy against enteroviruses.
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Table 3 Non-Poliovirus Inhibitors

Drug compound Virus Mode of action Reference

Andrographolide EV-D68 Suppresses maturation of the virus within the acidic endosomes. [182]

DTriP EV-A71 Blocks viral replication by targeting the RNA dependent RNA
polymerase.

[195]

Ribavirin EV-A71 General reduction of the viral yield [179]

Quercetin EV-A71 Inhibits virus attachment, adsorption and the viral 3C protease [180]

Rupintrivir EV-A71, CV-A16, HRV Binds and inhibits viral 3C protease activity [196–198]

Fluoxetine CV-B3 Reduces synthesis of viral RNA and protein [199]

Dibucaine CV-B3, EV-D68, RNA replication stage; may be targeting CV-B3 viral 2C protease [184]

Formoterol CV-B3, EV-D68, EV-A71, RV-A2, RV-B14 Likely inhibit RV-14 by reducing ICAM-1 levels or acidic endosomes. [184, 200]

Pirlindole EV-D68 and CV-B3 RNA replication stage; may be targeting CV-B3 viral 2C protease

Budesonide RV-14 [200]

Zuclopenthixol EV-D68 and CV-B3 RNA replication stage; may be targeting CV-B3 viral 2C protease [184]

Apigenin EV-A71 Targeting viral IRES thereby inhibiting viral translation process [191–193]
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