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Abstract: The huge global expansion of the COVID-19 pandemic caused by the novel SARS-corona
virus-2 is an extraordinary public health emergency. The unavailability of specific treatment against
SARS-CoV-2 infection necessitates the focus of all scientists in this direction. The reported antiviral
activities of guanidine alkaloids encouraged us to run a comprehensive in silico binding affinity of
fifteen guanidine alkaloids against five different proteins of SARS-CoV-2, which we investigated. The
investigated proteins are COVID-19 main protease (Mpro) (PDB ID: 6lu7), spike glycoprotein (PDB ID:
6VYB), nucleocapsid phosphoprotein (PDB ID: 6VYO), membrane glycoprotein (PDB ID: 6M17), and
a non-structural protein (nsp10) (PDB ID: 6W4H). The binding energies for all tested compounds
indicated promising binding affinities. A noticeable superiority for the pentacyclic alkaloids partic-
ularly, crambescidin 786 (5) and crambescidin 826 (13) has been observed. Compound 5 exhibited
very good binding affinities against Mpro (∆G = −8.05 kcal/mol), nucleocapsid phosphoprotein
(∆G = −6.49 kcal/mol), and nsp10 (∆G = −9.06 kcal/mol). Compound 13 showed promising bind-
ing affinities against Mpro (∆G = −7.99 kcal/mol), spike glycoproteins (∆G = −6.95 kcal/mol), and
nucleocapsid phosphoprotein (∆G = −8.01 kcal/mol). Such promising activities might be attributed
to the long ω-fatty acid chain, which may play a vital role in binding within the active sites. The
correlation of c Log P with free binding energies has been calculated. Furthermore, the SAR of the
active compounds has been clarified. The Absorption, Distribution, Metabolism, Excretion, and Toxi-
city (ADMET) studies were carried out in silico for the 15 compounds; most examined compounds
showed optimal to good range levels of ADMET aqueous solubility, intestinal absorption and being
unable to pass blood brain barrier (BBB), non-inhibitors of CYP2D6, non-hepatotoxic, and bind
plasma protein with a percentage less than 90%. The toxicity of the tested compounds was screened
in silico against five models (FDA rodent carcinogenicity, carcinogenic potency TD50, rat maximum
tolerated dose, rat oral LD50, and rat chronic lowest observed adverse effect level (LOAEL)). All
compounds showed expected low toxicity against the tested models. Molecular dynamic (MD)
simulations were also carried out to confirm the stable binding interactions of the most promising
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compounds, 5 and 13, with their targets. In conclusion, the examined 15 alkaloids specially 5 and
13 showed promising docking, ADMET, toxicity and MD results which open the door for further
investigations for them against SARS-CoV-2.

Keywords: virtual screening; docking; COVID-19; antiviral; cytotoxicity; guanidine alkaloids;
crambescidins; crambescins; Monanchora n. sp.

1. Introduction

COVID-19 is a disease caused by a new strain of the coronavirus. This disease first
appeared in Wuhan, China at the end of December 2019. Two months later, the disease
became widespread in China [1,2]. COVID-19 has now turned into a pandemic affecting
almost every country in the world. As of 1 December 2020, COVID-19 has affected more
than 63,697,245 patients in more than 188 countries and territories around the world and
caused around 1,477,645 deaths worldwide. Unfortunately, there are no specific antiviral
medications available for the treatment of COVID-19 patients. Many scientists worldwide
are working to prepare a vaccine to fight COVID-19 infection. At present, several vaccines
have been approved for clinical trials at home and abroad.

Coronavirus viruses belong to the order Nidovirales in the subfamily Coronavirinae
(family Coronaviridae) [3]. They are enveloped viruses that contain a large non-segmented,
positive-sense RNA genome with a length of up to 33.5 kilobases [4]. The Coronaviridae
family can be classified into four genera to include Alpha-, Beta-, Gamma- and Delta-
coronavirus (alphaCoV, betaCoV, gammaCoV, and deltaCoV). Coronaviruses were named
for how they appear under the electron microscope. The viruses look like they are covered
with pointed structures that surround them like a corona or crown due to the presence of
spike glycoproteins on their envelope (Figure 1) [5].
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piratory syndrome (MERS-CoV) [6,7]. SARS-CoV was first detected in 2002 in Foshan, 
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zootonic transmission from the civet [8–11]. MERS-CoV detected in 2012 in the Arabian 
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Figure 1. Schematic representation of the structure of SARS-CoV-2. It has at least four canonical structural proteins; E
(envelope), M (membrane), N (nucleocapsid) and S (spike) proteins (Created with BioRender.com).

Coronaviruses mostly cause insignificant respiratory infections, including the com-
mon cold. However, more recent emerging coronaviruses can cause more serious diseases,
including severe acute respiratory syndrome (SARS-CoV) and the Middle East respira-
tory syndrome (MERS-CoV) [6,7]. SARS-CoV was first detected in 2002 in Foshan, China,
possibly originated from the Chinese horseshoe bat-CoV, 35 to 20 years ago via zootonic
transmission from the civet [8–11]. MERS-CoV detected in 2012 in the Arabian Peninsula,
possibly originated from the South African Bat-CoV, around 14 years ago via zootonic
transmission from the camel [8,9,12]. SARS-CoV-2 detected in 2019 in Wuhan, China, pos-
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sibly originated from intermediate horseshoe bat-CoV around 11 years ago via zootonic
transmission from pangolins [13–15].

Generally, viral proteins can be classified according to their functions into two major
groups as structural and non-structural proteins [16]. Structural proteins, such as nucle-
ocapsid proteins, can function as shields protecting viral DNA from being degraded by
host enzymes [17]. Other vital structural proteins are the membrane glycoproteins which
form an envelope enclosing the virus capsid and bind to specific receptors on host cell mem-
branes [18]. For example, the coronavirus spike glycoprotein (S protein), by binding to a
specific cellular receptor, is a significant structural protein that mediates entry into cells [19].
The main protease (Mpro) is a key non-structural chymotrypsin-like cysteine proteases
enzyme used by coronaviruses for replication. It acts on the two large polyproteins (PPs)
(PP1a and PP1ab) to release the 16 non-structural proteins (NSPs 1–16) through cleavage of
the C-terminal end of these PPs [20,21]. The non-structural protein (nsp10) by functioning
as a vital cofactor is a crucial regulator of the replicative enzyme SARS-CoV replicas [22].

Given the fact that oceans and seas cover almost 70% of the earth, and consequently,
contain the largest ecological diversity of biological species, marine natural products (MNPs)
attract much interest. This includes metabolite congers from the marine sponge Cryptotethya
crypta [23]. MNPs, many of which have distinct structures and biological mechanisms,
represent a huge renewable natural reservoir for possible new drugs [24–35]. Among the
eight clinically approved marine drugs, two successful molecules were identified as antiviral
drugs, namely cytarabine (Cytosar-U, Depocyt) and vidarabine (Vira-A). These are synthetic
analogues originally inspired by spongothymidine, which is the first nucleoside isolated
from the sponge Cryptotethya crypta. Both compounds hinder viral DNA polymerase and
consequently, DNA synthesis in particular herpes simplex virus type 1 and type 2, vaccinia
and varicella zoster viruses [26]. Additionally, two marine-derived molecules are being
preclinically investigated for their antiviral-HIV-1, HIV-2, and SIV activities. These are
avarol, a sesquiterpenoid hydroquinone isolated from the marine sponge Dysidea avara,
and cyanovirin-N, a protein isolated from cultures of the cyanobacterium (blue-green alga)
Nostoc ellipsosporum [36]. Meanwhile, recent synthetic efforts and clinical trials highlight the
exploration of an additional 19 structurally divergent MNP, many of which are nucleosides,
as antivirals [37].

Polycyclic guanidine alkaloids (PGAs) represent a major group of marine metabolites
common to Poecilosclerida sponges including Batzella, Crambe, Monanchora, Clathria, Ptilo-
caulis, and some starfishes, such as Fromia monilis and Celerina heffernani [38–40]. Since the
discovery of the first antiviral pentacyclic congener, ptilomycalin A, in 1989 by Kashman and
coworkers [41], these metabolites have attracted much interest. Chemically, PGAs contain a
common central tricyclic guanidinic core (Vessel) linked to aω-long chain fatty acid (An-
chor). They are synthesized via the aza-Michael incorporation of a polyketide chain with a
guanidinic moiety, followed by subsequent cyclizations, substitutions, and oxidations. These
chemical reactions produce a structurally complex and diverse group of molecules that have
a central guanidinic core, including bicyclic (e.g., crambescins), tricyclic (e.g., batzelladines)
and pentacyclic (e.g., crambescidins) derivatives [38–42]. PGA metabolites are recognized
for displaying a broad spectrum of biomedical properties, including being cytotoxic [43–50],
antimicrobial [51,52], antifungal [53,54], antimalarial, and anti-infective [55–58]; as well
as being enzyme inhibitors and Ca+2 channel blockers [59,60]. Moreover, many PGAs
have been reported to display significant antiviral activities against HIV-1, herpes simplex
type-1 [41,43,61–67]. Indeed, polycyclic guanidinic meltabilities including tricyclic batzel-
ladines and pentacyclic crambescidins isolated from the marine sponges Crambe crambe
and Monanchora unguifera and their synthetic analogues displayed significant inhibitory
activity against gp120-CD4 binding, motivate CD4-p56lck dissociation, and prevent HIV-1
cell fusion [68–71].

As part of our research into MNPs together with the global effort to find new robust
antiviral drugs capable of combating COVID-19, we report here on the potential interactions
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between five SARS-CoV-2 proteins and fifteen structurally diverse polycyclic guanidine-
containing alkaloids isolated from the Pacific marine sponge Monanchora n. sp. [45].

2. Materials and Methods
2.1. Docking Studies

The crystal structures of the target proteins: (i) COVID-19 main protease (Mpro) (PDB
ID: 6lu7, resolution: 2.16 Å), (ii) spike glycoproteins (PDB ID: 6VYB, resolution: 3.20 Å),
(iii) nucleocapsid phosphoprotein (PDB ID: 6VYO, resolution: 1.70 Å), (iv) membrane
glycoprotein (PDB ID: 6M17, resolution: 2.90 Å), and (v) nsp10 (PDB ID: 6W4H, resolu-
tion: 1.80 Å) were downloaded from Protein Data Bank (http://www.pdb.org). Molecular
Operating Environment (MOE) was used for the docking analysis [72]. In these studies,
the free energies and binding modes of the examined molecules against target proteins
were determined. At first, the water molecules were removed from the crystal structures of
target proteins, retaining only main-chain amino acids which are essential for binding. The
co-crystallized ligands were used as reference ligands. Then, the protein structures were
protonated, and the hydrogen atoms were hidden. Next, the energy was minimized and
the binding pockets of each protein were defined [73,74]. The structures of the examined
compounds and the co-crystallized ligands were drawn using ChemBioDraw Ultra 14.0 and
saved using SDF formats. Then, the saved files were opened using MOE software and 3D
structures were protonated. Next, the energy of the molecules was minimized. Validation
processes were performed for each target receptor by running the docking process only
for the co-crystallized ligand. Low Root Mean Square Deviation (RMSD) values between
docked and crystal conformations indicated valid performances [75,76]. The docking proce-
dures were carried out utilizing a default protocol. In each case, 10 docked structures were
generated using genetic algorithm searches. The output from MOE software was further
analyzed and visualized using Discovery Studio 4.0 software [76–79].

2.2. ADMET

ADMET descriptors (Absorption, Distribution, Metabolism, Excretion, and Toxicity)
of the compounds were determined using Discovery Studio 4.0. Initially, the Chemistry
at Harvard Macromolecular Mechanics (CHARMM) force field was applied, then the
compounds were prepared and minimized according to the preparation for small molecules
protocol. Then ADMET descriptors protocol was applied to carry out these studies [75,78].

2.3. Toxicity

The toxicity parameters were calculated using Discovery Studio 4.0. Daclatasvir was
used as a reference drug. Initially, the CHARMM force field was applied, then the com-
pounds were prepared and minimized according to the preparation for small molecules
protocol. Then different parameters were calculated using toxicity prediction (extensible)
protocols.

2.4. Isolation and Characterization of Compounds 1–15

Compounds 1–15 were isolated and identified from the French Polynesian marine
sponge, Monanchora n. sp. For detailed isolation and structural characterizations, see El-
Demerdash et al. [45].

2.5. Molecular Dynamics Simulation for Compounds 5 and 13

Since compound 5 (crambescidins 786) and compound 13 (crambescidins 826) dis-
played the best binding modes and free energies among the 15 investigated compounds,
they were subjected to molecular dynamics (MD) investigation. A 100 ns MD simulation
was performed on compound 5 binding against the COVID-19 main protease, nucleocapsid
phosphoprotein and nsp10. Furthermore, a 100 ns MD simulation was performed on com-
pound 13 bounded to the COVID-19 main protease, spike glycoproteins, and nucleocapsid
phosphoprotein.

http://www.pdb.org
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MD simulations were performed using GROMACS 2019 software package where
the CHARMM36 forcefield was used for protein topology preparation and the official
CHARMM General Force Field server (CGenFF) for ligand topology preparation solvated in
a dodecahedron box of common simple point charge (SPC) water model applying explicit-
solvent periodic boundary conditions. The 6 solvated complexes were neutralized using
sodium and chloride ions. Both systems were subjected to minimization using the steepest
descent method through 5000 steps to resolve any steric clashes or inappropriate geom-
etry. Then, to ensure a reasonable starting structure, the system was equilibrated under
constant number of particles, volume, and temperature (NVT) ensemble for 100 ps using a
Berendsen thermostat. The second round of equilibration was performed under constant
pressure (Isothermal-isobaric (NPT) ensemble) using the Parrinello–Rahman barostat for
an additional 100 ps. Finally, the position restraints were released, and the system was
simulated in the production run under an NPT ensemble (Nosé–Hoover thermostat and
Parrinello–Rahman barostat) for 100 ns using a time step of 2 fs. Simulation results were
analyzed using Visual Molecular Dynamics (VMD) software, ver.1.9.3 [80].

3. Results

In this work, the binding potential of 15 guanidine-containing marine alkaloids (1–15),
previously isolated from the French Polynesian Monanchora n. sp. marine sponge (Chart 1),
against a host of SARS-CoV-2 proteins has been investigated. Five SARS-CoV-2 proteins
(structural and non-structural) were selected. These include: (i) the COVID-19 main pro-
tease (Mpro) (PDB ID: 6lu7, resolution: 2.16 Å), (ii) the spike glycoproteins (PDB ID: 6VYB,
resolution: 3.20 Å), (iii) the nucleocapsid phosphoprotein (PDB ID: 6VYO, resolution:
1.70 Å), (iv) the membrane glycoprotein (PDB ID: 6M17, resolution: 2.90 Å), and (v) the
nonstructural protein (nsp10) (PDB ID: 6W4H, resolution: 1.80 Å). Comprehensive docking
studies were performed using MOE 14.0 software. These docking studies predicted the
free energy (∆G) of binding specifically for the molecules shown in Table 1.
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Chart 1. Reported polycyclic guanidine alkaloids (1–15) from Monanchora n. sp. marine sponge.

3.1. Validation of the Docking Processes

Validation of the docking procedure was achieved via redocking of the co-crystallized
ligands against the active pockets of SARS-CoV-2 target proteins. The calculated RMSD
values between the redocked poses and the co-crystallized ligands were 2.6, 2.1, 0.9, 2.4,
and 0.5 for COVID-19 main protease, spike glycoproteins, nucleocapsid phosphoprotein,
membrane glycoprotein, and nonstructural protein 10, respectively. Such values of RMSD
indicated the efficiency and validity of the docking processes (Figure 2).
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Docking studies, in general, showed robust binding energies for all compounds
tested with a noticeable superiority for pentacyclic compounds. The pentacyclic guani-
dines, crambescidins 786 (5) and 826 (13) exhibited the greatest free energy of dock-
ing. Crambescidin 786 (5) showed promising binding affinities against COVID-19 main
protease (∆G = −8.05 kcal/mol), nucleocapsid phosphoprotein (∆G = −6.49 kcal/mol),
and nsp10 (∆G = −9.06 kcal/mol), compared to the co-crystallized ligands PRD_002214
(∆G = −8.18 kcal/mol), MES (∆G = −3.80 kcal/mol), and SAM (∆G = −5.77 kcal/mol),
respectively. In addition, crambescidin 826 (13) showed good binding affinities against the
COVID-19 main protease (∆G = −7.99 kcal/mol), spike glycoproteins (∆G = −6.95 kcal/mol),
and nucleocapsid phosphoprotein (∆G = −8.01 kcal/mol), compared to the co-crystallized
ligands PRD_002214 (∆G = −8.18 kcal/mol), NAG (∆G = −3.56 kcal/mol), and MES
(∆G = −3.80 kcal/mol), respectively (Table 1).
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Table 1. Free energies of binding for fifteen marine guanidine alkaloids (1–15) to SARS-CoV-2 target proteins, and their
calculated partition coefficient (c log P).

Compound COVID-19 Main
Protease

Spike
Glycoproteins

Nucleocapsid
Phosphoprotein

Membrane
Glycoprotein nsp10 c Log P

Monanchoradin A (1) −5.62 −3.83 −4.70 −4.27 −6.12 1.204
Monanchoradin B (2) −5.54 −4.10 −4.46 −4.65 −5.73 1.66
Monanchoradin C (3) −6.01 −3.71 −5.10 −4.61 −6.08 2.116

Dehydrocrambescin A2 418 (4) −6.45 −4.50 −6.31 −5.69 −7.19 3.998
Crambescidin 786 (5) −8.05 −5.60 −6.49 −6.37 −9.06 4.195
Crambescidin 814 (6) −7.87 −6.87 −6.34 −6.97 −7.50 5.563

Norcrambescidic acid (7) −7.50 −5.81 −6.37 −7.34 −7.35 6.52
Monalidine A (8) −5.77 −3.55 −4.63 −4.32 −5.63 4.566

(−)-crambescin A2 392 (9) −6.93 −4.07 −5.47 −5.50 −6.61 2.479
(−)-crambescin A2 406 (10) −6.88 −4.60 −5.44 −6.01 −10.54 2.936
(−)-crambescin A2 420 (11) −7.38 −4.32 −5.60 −5.61 −6.53 3.392

Crambescidin 800 (12) −6.75 −6.49 −6.29 −7.04 −7.22 4.651
Crambescidin 826 (13) −7.99 −6.95 −8.01 −6.09 −8.39 6.979
Crambescidic acid (14) −7.02 −5.36 −6.05 −6.66 −7.38 6.898
Crambescidin 359 (15) −5.53 −3.85 −4.55 −4.39 −4.72 3.235

Co-crystallized ligand (PRD_002214) −8.18 - - - - -
Co-crystallized ligand (NAG) - −3.56 - - - -
Co-crystallized ligand (MES) - - −3.80 - - -
Co-crystallized ligand (NAG) - - - −3.63 - -
Co-crystallized ligand (SAM) - - - - −5.77 -

The detailed binding mode of the co-crystallized ligand (PRD_002214) against COVID-
19 main protease was as follows: the ligand formed four hydrogen bonds and three
hydrophobic interactions. In addition, the 2-oxopyrrolidin-3-yl moiety occupied the first
pocket of (Mpro) and the isopropyl moiety occupied the second pocket of (Mpro). Further-
more, the benzyl acetate moiety occupied the third pocket of the receptor. Moreover, the
5-methylisoxazole-3-carboxamide moiety was incorporated in the fourth pocket (Figure 3).
For the binding mode of the co-crystallized ligand (NAG) against COVID-19 spike glyco-
protein, it formed five hydrogen bonds with Asn61, Asn30, The29, and Phe59 (Figure 4).
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Additionally, the co-crystallized ligand (MES) bonded with COVID-19 nucleocapsid
phosphoprotein through the formation of two hydrogen bonds with Asn154 and Asn75
(Figure 5). Furthermore, the co-crystallized ligand (NAG) docked into the active site
of COVID-19 membrane glycoprotein showed four hydrogen bonds with Ser390, Ser64,
Glu261, and Gln63 (Figure 6). Finally, the binding mode of the co-crystallized ligand (SAM)
against COVID-19 nsp10 showed three hydrogen bonds with Asn6899, Tyr6930, Asp6928,
and Asp6897. Moreover, it formed seven hydrophobic interactions with Lys6968, Lys6844,
Asp6928, Phe6947, and Leu6898 (Figure 7).

The pentacyclic crambescidin 786 (5) exhibited a binding mode similar to that of the
co-crystallized ligands against the COVID-19 main protease, nucleocapsid phosphopro-
tein, and nsp10. The binding mode of compound 5 against the COVID-19 main protease
showed four hydrogen bonds with Thr26, Ser46, and Glu166. In addition, it formed two
hydrophobic interactions with Lul166 and Pro168. The longω-fatty acid chain facilitated
the occupation of compound 5 with different pockets of the (Mpro) (Figure 8). For the bind-
ing mode of 5 against the COVID-19 nucleocapsid phosphoprotein, it occupied the binding
region of the target protein forming one hydrogen bond with Asn75 and one hydrophobic
interaction with Pro151 (Figure 9). Finally, the binding mode of 5 against COVID-19 nsp10
showed one hydrogen bond with Asn6841 and two electrostatic interactions with Asp6912.
Theω-fatty acid chain of compound 5 played a vital role in the occupancy of the active site
of the target protein (Figure 10).
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Figure 10. (A) Compound 5 docked into the active site of COVID-19 nsp10. (B) Mapping surface
showing compound 5 occupying the active pocket of COVID-19 nsp10.

Crambescidin 826 (13) exhibited a binding mode like that of the co-crystallized ligands
against the COVID-19 main protease, spike glycoproteins, and nucleocapsid phosphoprotein.
The binding mode of compound 13 against the COVID-19 main protease showed three
hydrogen bonds with Gly143, Thr26, and Glu189. Compound 13 occupied the four pockets
of the Mpro due to the presence of a long ω-fatty acid chain (Figure 11). For the binding
mode of compound 13 against spike glycoproteins, it formed one hydrogen bond with Tyr28
and two hydrophobic interactions with Tyr269 (Figure 12). Finally, the binding mode of
compound 13 against the COVID-19 nucleocapsid phosphoprotein showed one hydrogen
bond with Thr76. In addition, it formed one hydrophobic interaction with Trp52 (Figure 13).
On the other hand, compound 7 exhibited good affinity into the active site of the COVID-19
membrane glycoprotein showing one hydrogen bond with Asp266. In addition, it formed
four hydrophobic interactions with His65, Pro265, Val552, and Asp266 (Figure 14).
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Figure 14. (A) Compound 7 docked into the active site of COVID-19 membrane glycoprotein. (B) Map-
ping surface showing compound 7 occupying the active pocket of COVID-19 membrane glycoprotein.

3.2. Correlation of c Log P with Free energy of Binding against SARS-CoV-2 Target Proteins

The calculated partition coefficients (c Log P) of the examined compounds were cal-
culated using Discovery Studio 4.0 and summarized in Table 1. Then we investigated the
correlation between c Log P and free energy of binding against SARS-CoV-2 target proteins.
Simple linear regression analysis was carried out to plot the values of c Log P against the
corresponding free energy of binding. The obtained coefficients of determination (R2) indi-
cated that there were moderate correlations between c Log P and the free energy of binding
against SARS-CoV-2 spike glycoproteins, nucleocapsid phosphoprotein, and membrane
glycoprotein with R2 values of 0.566, 0.5651, and 0.5199, respectively (Figure 15). For the
COVID-19 main protease, there were mild correlations between the c Log P and the free
energy of binding with R2 value of 0.4296. On the other hand, there was no correlation
between the c Log P and the free energy of binding against nsp10 (R2 = 0.1116).
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3.3. Structure-Activity Relationship (SAR)

Firstly, the effect of the length of the side chain on binding affinity has been explored.
The decreased binding affinity of compounds 1, 2, 3, 4, 8, and 15 (incorporating short alkyl
side chain) than the corresponding members incorporating long alky side chain (5, 6, 7, 9, 10,
11, 12, and 14) indicated that the long chain group is more preferred computationally than
the shorter chain against the target receptors. In addition, it was found that the side chains
with more hydrophilic characters (e.g., compounds 4 and 13) were more effective than
those with less hydrophilic groups (e.g., compounds 3 and 14). We then investigated the
impact of the main nucleus on the binding affinity of the examined compounds. Depending
on the binding modes of compounds 5 and 13 (incorporating bulky nuclei), it indicated
that increasing of the main nucleus bulkiness leads to an increase in the binding affinity.

3.4. In Silico ADMET Analysis

The promising results of these docking studies enabled us to explore the ADMET
characteristics and toxicity properties of the examined alkaloids. ADMET experiments can
predict different properties of these chemicals including their oral absorption, bioavailability,
the ability to penetrate the blood brain barrier (BBB), their distribution, and their excretion.
These properties offer valuable information about possible dose, route of administration,
and the safety of the examined drugs. Furthermore, these data help to reduce the risk
of a compound’s late-stage attrition. ADMET studies were carried out for 15 guanidine
alkaloids. Daclatasvir (well-studied as an antiviral) was used as a reference drug. ADMET
studies include many descriptors. (i) blood brain barrier penetration, which predicts blood
brain barrier penetration of a molecule; (ii) intestinal absorption, which predicts human
intestinal absorption (HIA) after oral administration; (iii) aqueous solubility, which predicts
the solubility of each compound in the water at 25 ◦C; (iv) CYP2D6 binding, which predicts
cytochrome P450 2D6 enzyme inhibition; (v) hepatotoxicity, which predicts the potential
hepatotoxicity of a given compound; and (vi) plasma protein binding, which predicts
the fraction of drug that while be bound by plasma proteins [81]. Discovery Studio 4.0
was used to predict ADMET descriptors for all compounds. The predicted descriptors are
listed in Table 2. The results revealed that the tested compounds have low or very low
BBB penetration levels except for compounds, monalidine A (8) and crambescidin 359 (15),
which showed high levels of BBB penetration. Accordingly, it might be suggested that such
compounds were expected to be safe to the Central Nervous System (CNS). The bicyclic
compounds, 1 and 9, together with the pentacyclic compounds, 5 and 6 and 12 and 13,
showed optimal range levels of ADMET aqueous solubility. Intestinal absorption is the
percentage of a drug that is absorbed across the gut wall [82]. A well-absorbed drug is one
that is absorbed at least 90% into the human bloodstream [83]. According to in silico ADMET
studies, the bicyclic compounds 1, 2, 3, and 8, together with the pentacyclic compound
15 were predicted to have good intestinal absorption levels, while compounds 4, 7, 9, 10,
and 14 showed moderate absorption levels. The cytochrome P450 2D6 (CYP2D6) model
predicts the potential of a compound to inhibit CYP2D6 enzyme using 2D chemical structure
as input. CYP2D6 is an essential enzyme involved in the metabolism of a wide range of
substrates in the liver. Therefore, CYP2D6 inhibition is needed as part of the regulatory
procedures in the drug discovery process [84]. All examined members were predicted to
be non-inhibitors of CYP2D6 except monalidine A (8). Hepatotoxicity prediction of such
compounds revealed that all compounds are non-hepatotoxic except compound monalidine
A (8). Consequently, the liver dysfunction side effect is not expected upon administration
of these compounds. The plasma protein binding model predicts whether a compound is
likely to be highly bound (≥90% bound) to carrier proteins in the blood [85]. All compounds
were expected to bind plasma protein less than 90% except compound 8 (Figure 16).
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Table 2. Predicted ADMET for 15 guanidine alkaloids and reference drug, Daclatasvir.

Compounds BBB
Level a

Solubility
Level b

Absorption
Level c

CYP2D6
Prediction d

Hepatotoxicity
Prediction e

PPB
Prediction f

Monanchoradin A (1) 3 4 0 FALSE FALSE FALSE
Monanchoradin B (2) 3 3 0 FALSE FALSE FALSE
Monanchoradin C (3) 3 3 0 FALSE FALSE FALSE

Dehydrocrambescin A2 418 (4) 4 3 2 FALSE FALSE FALSE
Crambescidin 786 (5) 4 4 3 FALSE FALSE FALSE
Crambescidin 814 (6) 4 4 3 FALSE FALSE FALSE

Norcrambescidic acid (7) 4 2 2 FALSE FALSE FALSE
Monalidine A (8) 1 2 0 TRUE TRUE TRUE

(-)-crambescin A2 392 (9) 4 4 1 FALSE FALSE FALSE
(-)-crambescin A2 406 (10) 4 3 1 FALSE FALSE FALSE
(-)-crambescin A2 420 (11) 4 3 2 FALSE FALSE FALSE

Crambescidin 800 (12) 4 4 3 FALSE FALSE FALSE
Crambescidin 826 (13) 4 4 3 FALSE FALSE FALSE
Crambescidic acid (14) 4 2 2 FALSE FALSE FALSE
Crambescidin 359 (15) 1 2 0 FALSE FALSE FALSE

Daclatasvir 4 3 3 FALSE TRUE TRUE
a BBB level, blood brain barrier level, 0 = very high, 1 = high, 2 = medium, 3 = low, 4 = very low. b Solubility level, 1 = very low, 2 = low, 3 =
good, 4 = optimal. c Absorption level, 0 = good, 1 = moderate, 2 = poor, 3 = very poor. d CYP2D6, cytochrome P2D6, TRUE = inhibitor,
FALSE = non inhibitor. e Hepatotoxicity, TRUE = hepatotoxic, FALSE = non-hepatotoxic. f PBB, plasma protein binding, FALSE means less
than 90%, TRUE means more than 90%.
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3.5. Toxicity Studies

A toxicity prediction was carried out for the 15 guanidine alkaloids based on validated
models in Discovery Studio software [86,87] as follows: (i) FDA rodent carcinogenicity
which computes the probability of a chemical being a carcinogen; (ii) carcinogenic potency
TD50 which predicts the tumorigenic dose rate 50 (TD50) of a chemical in a rodent chronic
exposure toxicity test [88]; (iii) rat maximum tolerated dose which predicts the rat maximum
tolerated dose (MTD) of a chemical [89,90]; (iv) rat oral LD50 which predicts the rat oral
acute median lethal dose (LD50) in the toxicity test of a chemical [91]; and (v) rat chronic
lowest observed adverse effect level (LOAEL) which predicts the rat chronic LOAEL value
of a chemical [92,93]. As shown in Table 3, the tested compounds showed in silico expected
low toxicity against the tested models. For the FDA rodent carcinogenicity model, the tested
compounds were expected to be non-carcinogenic. For the carcinogenic potency TD50
mouse model, all compounds showed TD50 values higher than that of the reference drug,
Daclatasvir. Regarding the rat maximum tolerated dose model, the compounds showed



Biomolecules 2021, 11, 460 19 of 26

maximum tolerated doses with a range of 0.027–0.350 g/kg body weight, which are all
higher than Daclatasvir (0.022 g/kg body weight). For the rat oral LD50 model, compounds
4–15 showed oral LD50 values ranging from 1.829 to 13.415 mg/kg body weight/day.
These values are higher than that of Daclatasvir (0.677 mg/kg body weight/day). For
the rat chronic LOAEL model, compounds 1–4 and 8–11 showed LOAEL values ranging
from 0.0165 to 0.0450 g/kg body weight. These values are similar or higher than that of
Daclatasvir (0.0063 g/kg body weight). Compounds 5–7 and 12–15 showed LOAEL values
of ranging from 0.0012 to 0.0019 g/kg body weight, which is less than Daclatasvir.

Table 3. Toxicity properties of the most promising compounds (1–15).

Compounds FDA Rodent
Carcinogenicity

Carcinogenic
Potency TD50

Mouse a

Rat Maximum
Tolerated Dose

(Feed) b

Rat Oral
LD50

b
Rat Chronic
LOAEL b,*

Monanchoradin A (1) Non-Carcinogen 51.0661 0.085 0.399 0.0168
Monanchoradin B (2) Non-Carcinogen 52.712 0.091 0.457 0.0167
Monanchoradin C (3) Non-Carcinogen 54.2866 0.098 0.509 0.0166

Dehydrocrambescin A2 418 (4) Non-Carcinogen 19.5925 0.573 10.139 0.0450
Crambescidin 786 (5) Non-Carcinogen 1.91771 0.063 10.559 0.0019
Crambescidin 814 (6) Non-Carcinogen 1.91977 0.071 13.415 0.0017

Norcrambescidic acid (7) Non-Carcinogen 5.77105 0.043 11.836 0.0013
Monalidine A (8) Non-Carcinogen 32.2161 0.123 3.156 0.0448

(-)-crambescin A2 392 (9) Non-Carcinogen 39.9613 0.310 2.634 0.0171
(-)-crambescin A2 406 (10) Non-Carcinogen 40.6645 0.329 2.970 0.0168
(-)-crambescin A2 420 (11) Non-Carcinogen 41.3406 0.350 3.269 0.0165

Crambescidin 800 (12) Non-Carcinogen 1.91899 0.065 11.440 0.0018
Crambescidin 826 (13) Non-Carcinogen 1.30045 0.042 14.200 0.0012
Crambescidic acid (14) Non-Carcinogen 5.07065 0.040 8.153 0.0018
Crambescidin 359 (15) Non-Carcinogen 0.779067 0.027 1.829 0.0021

Daclatasvir Non-Carcinogen 0.970599 0.022 0.677 0.0063
a mg/kg body weight/day, b Unit: g/kg body weight, * Lowest-observed-adverse-effect level (LOAEL).

3.6. Molecular Dynamics Simulation for Compounds 5 and 13

Six MD simulations were performed to confirm the stability of the ligands binding
to their biological targets over a 100 ns time frame. Compound 5 was subjected to MD
with the COVID-19 main protease (PDB ID: 6lu7), nucleocapsid phosphoprotein (PDB ID:
6VYO), and nsp10 (PDB ID: 6W4H), and compound 13 was assessed on the COVID-19
main protease (PDB ID: 6lu7), spike glycoproteins (PDB 30 ID: 6VYB) and nucleocapsid
phosphoprotein (PDB ID: 6VYO).

To analyze the stability of the simulated system, the conformational changes of protein-
ligand complexes were analyzed over the course of the 100 ns MD simulation using two
methods: RMSD with respect to the initial structure and the radius of gyration shown in
(Figures 17 and 18), respectively.

Compound 5 reached a stable conformation after 30 ns on the COVID-19 main protease
active site (Figure 17A) with RMSD fluctuating around 3.5 Å and radius of gyration
fluctuating around 2.24 nm (Figure 18A). When it binds to nucleocapsid phosphoprotein,
compound 5 shows two stable conformations; one at the first 20 ns of the simulation and
the other after 50 ns from the beginning of the simulation with average RMSD of 1.5 Å
(Figure 17B) and its radius of gyration fluctuates between 1.5 and 1.55 nm (Figure 18B)
indicating its relative stability throughout the last 50 ns of the simulation. Similar results
have been obtained when it binds to nsp10, RMSD reaches stability after 50 ns of the
simulation with average RMSD 1.5 Å (Figure 17C) and the radius of gyration is fluctuating
between 1.88 and 1.93 nm (Figure 18C).

Regarding compound 13, it shows very stable binding with the COVID-19 main pro-
tease with a very stable conformation after only 20 ns with an average RMSD of 2.3 Å
(Figure 17D) and a radius of gyration fluctuating between 2.22 and 2.28 nm (Figure 18D).
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Furthermore, it reached a stable binding conformation with the nucleocapsid phospho-
protein active site after 50 ns with RMSD fluctuating around 2 Å, indicating its relative
stability throughout the last 50 ns of the simulation (Figure 17E). Regarding the radius of
gyration, it fluctuates between 1.5 and 1.55 nm throughout the whole simulation showing
only minor fluctuations which further confirms the stability of the simulations (Figure 18E).
Finally, compound 15’s complex with spike glycoprotein reaches two stable structures
after 40 ns with a RMSD fluctuating between 1.5 and 2 Å (Figure 17F) and with very small
fluctuations of radius of gyration ranging between 2.2 and 2.25 nm (Figure 18F).

Protein-ligand interactions were calculated to quantify the strength of the interaction
between each ligand and its biotarget through computing the energies of the nonbonded
interactions. Compound 5 showed very low energy with all the targets; −150 kJ/mol
with the COVID-19 main protease, −150 kJ/mol with nucleocapsid phosphoprotein and
−200 kJ/mol with nsp10 (Figure 19A–C). Similarly, compound 13 shows very low binding
energy: −200 kJ/mol with the COVID-19 main protease, −150 kJ/mol with nucleocapsid
phosphoprotein and −200 kJ/mol with spike glycoproteins (Figure 19D–F). These results
further confirm the stability of the formed protein-ligand complexes.
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compound 13 bound to PDB ID. 6lu7 (D), 6VYB (E), and 6VYO (F). RMSD analysis of compounds 5 and 13 binding with
their biotarget proteins showing the most stable ligand conformers.
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Figure 18. Molecular dynamics of compound 5 bound to PDB ID. 6lu7 (A), 6VYO (B) and 6W4H (C) and compound 13
bound to PDB ID. 6lu7 (D), 6VYB (E) and 6VYO (F). Radius of gyration of the protein along the simulation time.
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bound to PDB ID. 6lu7 (D), 6VYB (E) and 6VYO (F). Binding energy using LJ-SR.

4. Conclusions

Fifteen structurally divergent polycyclic guanidine alkaloids were comprehensively
investigated for their virtual antiviral potentials against five SARS-Cov-2 (COVID-19)
proteins. The pentacyclic guanidinic scaffolds, crambescidins 786 (5) and 826 (13) displayed
the best binding modes and free energies among the 15 investigated compounds. These
docking results were confirmed with the very stable molecular dynamics simulation,
opening the door to conduct more research (in vitro and in vivo) on compounds 5 and 13
as expected anti COVID-19 candidates. Compounds 5 and 13 exhibited very promising in
silico ADMET results as well as showing high safety margins against five toxicity models.
The promising ADMET and toxicity results increase the likelihood of compounds 5 and 13
being used as drugs.
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