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Abstract Neurons in the medial entorhinal cortex encode location through spatial firing fields
that have a grid-like organisation. The challenge of identifying mechanisms for grid firing has
been addressed through experimental and theoretical investigations of medial entorhinal circuits.
Here, we discuss evidence for continuous attractor network models that account for grid firing by
synaptic interactions between excitatory and inhibitory cells. These models assume that grid-like
firing patterns are the result of computation of location from velocity inputs, with additional
spatial input required to oppose drift in the attractor state. We focus on properties of continuous
attractor networks that are revealed by explicitly considering excitatory and inhibitory neurons,
their connectivity and their membrane potential dynamics. Models at this level of detail can
account for theta-nested gamma oscillations as well as grid firing, predict spatial firing of inter-
neurons as well as excitatory cells, show how gamma oscillations can be modulated independently
from spatial computations, reveal critical roles for neuronal noise, and demonstrate that only a
subset of excitatory cells in a network need have grid-like firing fields. Evaluating experimental
data against predictions from detailed network models will be important for establishing the
mechanisms mediating grid firing.

(Received 28 August 2015; accepted after revision 4 December 2015; first published online 14 January 2016)
Corresponding author M. F. Nolan: Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building,
Edinburgh EH8 9XD, UK. Email: mattnolan@ed.ac.uk

Abstract figure legend Models based on excitatory-inhibitory interactions in layer 2 of the medial entorhinal cortex
integrate velocity, oscillatory and spatial input to generate bump attractor states, grid firing patterns and theta-nested
gamma oscillations.

Abbreviations E–I, excitatory–inhibitory; L2PCs, layer 2 pyramidal cells; L2SCs, layer 2 stellate cells; MEC, medial
entorhinal cortex.

Introduction

Neural representations of space within the hippocampus
and medial entorhinal cortex (MEC) are critical for
navigation and memory. Grid cells in the MEC have firing
fields that encode position using an allocentric, regular
triangular matrix or grid-like firing pattern (Hafting et al.
2005). Grid representations have the properties of a high
capacity, high resolution and error correcting code for
self-localisation (Fiete et al. 2008; Sreenivasan & Fiete,
2011; Mathis et al. 2012). The spatially periodic features
of grid firing fields have led to the view that they are
the output of computation by a path integrator that
translates self-motion signals into estimates of location
(McNaughton et al. 2006). In this review, we will consider
evidence that network attractor dynamics arising from
excitatory–inhibitory interactions account for grid firing
patterns within MEC circuits.

The organisation within the MEC of spatial firing
properties is an important constraint on mechanistic
models for grid firing. Grid cells form networks
in anatomically overlapping but functionally discrete
modules, with cells of the same module sharing their grid
spacing and orientation but having randomly distributed
phases (relative offset of grid apices) (Hafting et al. 2005;
Barry et al. 2007; Stensola et al. 2012). The highest density
of grid cells is in layer 2 of the MEC (Sargolini et al.
2006). Grid cells in this layer also show the greatest

prospective bias in their code for location (Kropff et al.
2015). There are two major populations of excitatory cells
in this layer. Neurons positive for the marker reelin have
stellate morphology and project to the dentate gyrus of
the hippocampus (Klink & Alonso, 1997; Varga et al.
2010), while neurons positive for calbindin have a more
pyramidal morphology and project to the CA1 region of
the hippocampus (Varga et al. 2010; Kitamura et al. 2014;
Ray et al. 2014). We will refer to these cell populations as
layer 2 stellate cells (L2SCs) and layer 2 pyramidal cells
(L2PCs), respectively (Klink & Alonso, 1997) (L2SCs and
L2PCs have also been referred to as ‘Ocean’ and ‘Island’
cells; Kitamura et al. 2014). Both L2SCs and L2PCs may
have grid firing fields, although the majority of neurons
in each population do not appear to generate typical grid
firing patterns (Tang et al. 2014; Sun et al. 2015). During
behaviours that produce grid firing, neurons in superficial
layers of the MEC also generate fast gamma frequency
(60–140 Hz) oscillations that are modulated by the slower
theta rhythm (Chrobak & Buzsaki, 1998; Colgin et al.
2009). While all grid cells encode location through their
firing rate, some also represent location through timing of
their action potentials relative to the network theta rhythm
(Hafting et al. 2008; Reifenstein et al. 2012).

Several conceptual models have been proposed to
explain grid firing patterns (for reviews see Burgess &
O’Keefe, 2011; Giocomo et al. 2011; Zilli, 2012). However,
implementing models in ways that are consistent with
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the biophysics and connectivity of entorhinal neurons is
challenging (Remme et al. 2010; Pastoll et al. 2012). Here,
we will explore insights from models in which grid-like
firing patterns emerge as a result of path integration in
continuous attractor networks composed of excitatory and
inhibitory neurons, with membrane potential dynamics
that approximate real neurons (Fig. 1). We will argue
that this class of models is particularly useful as they
can be constrained by experimentally measured synaptic
connectivity and oscillatory network activity, as well as
by action potential firing during spatial behaviours. They
therefore generate specific predictions that are testable by
diverse experimental approaches from anatomical analysis
through to electrophysiological recordings of single cell
and network activity.

Continuous attractor networks as models for grid
generation

Continuous attractor networks are dynamical systems
whose intrinsic properties drive activity towards a stable
state; this can be visualised in a state space comprising an
energy surface upon which stable states are represented
by low energy regions (Brody et al. 2003). States
existing outwith these regions will decay ‘downwards’
towards the low energy points. A network’s intrinsic
connections can be configured so its preferred states will
correspond to localised bumps of activity. Mathematical
functions can then be implemented in the network’s
state space by movement of the bumps of activity in
response to inputs to the network (Conklin & Eliasmith,
2005; Eliasmith, 2005). In continuous attractor network

models of spatial coding, the computation performed
is integration of velocity input to generate an estimate
of location relative to a known start point, referred
to as path integration (McNaughton et al. 1996, 2006;
Zhang, 1996; Samsonovich & McNaughton, 1997). Such
networks do not necessarily generate triangular grid-like
firing fields, but can do so with appropriately configured
connections. In networks that model grid firing, stable
states manifest either as a bump (Fig. 2A) or as multiple
bumps of activity (Fig. 2B) on a two-dimensional sheet
of phase-arranged grid cells (Fuhs & Touretzky, 2006;
Guanella et al. 2007). Given velocity inputs the activity
bump(s) represent movement in space by propagating
across the sheet. This mechanism for path integration
can be implemented by networks in which individual
grid cells receive velocity inputs tuned to a particular
movement direction, with the local connections of each
grid cell offset so that an increase in its input will tend to
push the activity bump in an appropriate direction across
the neural sheet (Fuhs & Touretzky, 2006; Guanella et al.
2007; Burak & Fiete, 2009). Alternatively, path integration
could be achieved through interactions between a layer
of heading-independent grid cells and multiple layers
of head direction-modulated grid cells, which each
integrate a single head direction input with speed signals
and feedback from the heading-independent grid layer
(Samsonovich & McNaughton, 1997). While the latter
class of models require many more neurons to account
for path integration, because separate layers are required
for each heading direction, they have the advantage
that they naturally account for direction modulated (or
conjunctive) grid cells as well as pure grid cells.

Spatial

Velocity

8-12Hz

E I

Figure 1. Components of a generic E–I model for
generation of grid firing and nested gamma oscillations
Integration of velocity input by continuous attractor networks
built from interacting excitatory and inhibitory neurons can
generate grid firing fields. When the networks receive a theta
modulated input they generate gamma frequency output
that is modulated at theta frequency. A spatial input is
required to oppose drift in the grid representation. Data are
from Pastoll et al. (2013).
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Continuous attractor network models have been
implemented at various levels of detail and a close
correspondence to known neural connectivity or
dynamics is not necessary to generate grid-like firing fields.
Indeed, experimental observations have corroborated a
number of generic predictions that are independent of
the details of the circuitry used for model implementation
(McNaughton et al. 2006). (1) Populations of grid cells

are organised into modules in which each neuron has
a common spatial phase and orientation (Stensola et al.
2012). (2) The spatial phase relationship between cells is
maintained even following environmental manipulations
that restructure the spatial firing pattern of individual
cells (Yoon et al. 2013). (3) The envelope of the
membrane potential of grid cells changes slowly on entry
to and exit from their firing fields (Domnisoru et al.
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Figure 2. Single- and multi-bump attractor models of grid firing have distinct circuit organisation
A, In single bump models grid firing of excitatory cells can be generated by synaptic profiles that produce either
surround excitation or surround inhibition. The surround connectivity is strongest for connections to neurons at
a distance of about one-half the width of the sheet. Each neuron makes divergent connections to many target
neurons, and receives convergent input from many presynaptic neurons. B, In multi-bump networks the strongest
connections are onto neurons at a much shorter distance relative to the size of the sheet. The upper graphs
plot synaptic strength as a function of position in the neural sheet, which is given a width of one. The plots
below schematise the resulting E–I connectivity, illustrate the organisation of activity in the neural sheet and the
organisation of excitatory cell activity in three dimensions. The connectivity profiles shown for the multi-bump
models are based on networks containing only inhibitory neurons, with either surround inhibition (Burak & Fiete,
2009) or local inhibition (Couey et al. 2013). The networks could be considered as having dedicated interneurons
receiving input from each excitatory neuron.
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2013; Schmidt-Hieber & Hausser, 2013). (4) Removal
of excitatory drive causes cells that previously had grid
fields to encode head direction (Bonnevie et al. 2013),
which is consistent with movement of activity bumps in
continuous attractor networks relying on each grid cell
receiving a tuned head direction input (Fuhs & Touretzky,
2006; Guanella et al. 2007; Burak & Fiete, 2009; Bonnevie
et al. 2013; Pastoll et al. 2013).

While these observations are consistent with contin-
uous attractor network models accounting for rate coded
grid fields, most existing models do not readily account
for precession in the timing of action potentials fired
by some grid cells relative to the theta rhythm (Hafting
et al. 2008; Reifenstein et al. 2012). One-dimensional
attractor networks, based on interaction between a
direction-independent cell population and direction
modulated cell populations, can generate repeating firing
fields and phase precession (Navratilova et al. 2012).
Extension of this mechanism to two dimensions will
require additional neuronal layers for each heading
direction (Samsonovich & McNaughton, 1997). An
alternative is that phase precession and attractor states
are established independently. For example, phase pre-
cession can be explained by hybrid models that include a
mechanism for grid firing based on interference between
oscillations (Burgess et al. 2007; Hasselmo et al. 2007),
in addition to mechanisms for generation of network
attractor states (Schmidt-Hieber & Hausser, 2013; Bush
& Burgess, 2014).

Emergence of attractor states through
excitatory–inhibitory interactions

How might attractor mechanisms for grid firing be
implemented in networks of neurons? Do the properties
of neural circuitry in the MEC constrain models or lead
to predictions that distinguish between different models?
Grid computation in continuous attractor networks
requires emergence of stable bumps of activity. This can
be achieved using reduced models in which separate
populations of excitatory and inhibitory neurons are
not explicitly considered. In these models, either each
neuron locally excites nearby neurons and inhibits more
distant neurons (Fuhs & Touretzky, 2006), or spatially
structured inhibitory connections act in concert with
excitatory drive to the whole network (Burak & Fiete,
2009; Couey et al. 2013). However, use of local excitatory
connections is inconsistent with evidence that L2SCs are
not directly connected to one another (Dhillon & Jones,
2000; Couey et al. 2013; Pastoll et al. 2013), but instead
interact indirectly via inhibitory interneurons (Couey et al.
2013; Pastoll et al. 2013). Moreover, because grid cells are
excitatory neurons, an inhibitory output from grid cells is
inevitably an over-simplification. One could address this
by assuming that the inhibitory output from grid cells

is equivalent to an excitatory connection to a dedicated
inhibitory interneuron. However, this is inconsistent with
convergent (many to one) and divergent (one to many)
connectivity between excitatory and inhibitory networks
(Couey et al. 2013), and with there being many more
excitatory than inhibitory neurons in layer 2 of the MEC
(Canto et al. 2008). Thus, while offering conceptually
important explanations for grid firing, reduced models
are limited in their ability to evaluate consequences of
experimentally determined connectivity.

Models that explicitly consider interactions between
separate populations of excitatory and inhibitory neurons
inevitably differ from reduced models, leading to
new insights and predictions (Pastoll et al. 2013;
Widloski & Fiete, 2014; Solanka et al. 2015). Given
appropriately structured network connectivity these
excitatory–inhibitory (E–I) models generate network
attractor states (Fig. 2). Structured connectivity can be
implemented by varying the strength of connections
between neurons according to their position in the
network, while maintaining a fixed probability of a
connection being present (Pastoll et al. 2013; Widloski
& Fiete, 2014; Solanka et al. 2015). Alternatively,
synaptic strength can remain fixed but the probability
of connections varied as a function of distance between
pre- and postsynaptic neurons on the neural sheet
(Solanka et al. 2015). Evidence that the amplitude
of inhibitory inputs to stellate cells has a bimodal
distribution is consistent with structuring of connection
probability rather than the strength of connections (Couey
et al. 2013). Models based on E–I interactions also
demonstrate that velocity inputs, which are required for
movement-dependent translation of their activity bumps,
may target either interneurons or excitatory cells (Pastoll
et al. 2013). While spatial firing of cells with inhibitory
output is implicit in reduced models, in E–I models inter-
neurons have spatial firing fields that depend on the wiring
of the network. For example, either surround inhibition
or surround excitation supports grid firing by excitatory
cells, but in the latter case interneurons have inverted grid
fields, whereas in the former they have grid-like fields
(Pastoll et al. 2013).

Two important recent experimental studies introduce
challenges beyond simply accounting for grid firing
by excitatory cells. First, while the firing fields
of parvalbumin-positive interneurons have significant
spatial stability, they typically have grid scores below
the threshold for grid firing, only rarely appear to have
a clear grid-like organisation (Buetfering et al. 2014),
and on visual inspection also do not appear to have
inverted firing fields, although this is difficult to establish
quantitatively. Second, when layer 2 cells are imaged in
freely moving animals, only about 10% of identified L2SCs
and L2PCs have grid-like firing fields (Sun et al. 2015). This
is surprising given that neurons within each population
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appear to have similar synaptic connectivity and intrinsic
properties. This could suggest that the grid firing neurons
correspond to sub-groups of cells with distinct, but not
yet identified, cellular or circuit properties. Otherwise,
models for grid firing must explain how grid patterns are
produced by only a subset of neurons that at a cellular
and circuit level are indistinguishable from non-grid
cells.

These challenges may be addressed using E–I networks
and by considering that in vivo entorhinal neurons may
receive spatial signals that can be considered as noise
in the sense that they are not used to promote grid
firing. Thus, when E–I models are extended to include
random spatial input to interneurons, excitatory neurons
in these networks continue to generate grid-like firing
fields, but the hexagonal symmetry of interneuron firing
fields is reduced (Fig. 3) (Solanka et al. 2015). In these
networks the fraction of excitatory and inhibitory cells
classified as grid cells drops substantially, with almost
no interneurons classified as having grid fields (Fig. 3).
Thus, the finding that only a subset of layer 2 cells
has grid-like firing fields need not imply that grid and
non-grid cells are distinguished by distinct cellular or
circuit properties, while the absence of a clear grid
signature in the firing of individual interneurons may
nevertheless be compatible with models based on E–I
interactions.

Single- and multi-bump networks differ in their local
and long-range connectivity

Continuous attractor network models for grid firing
exist in versions that differ in their number of activity
bumps. These functional differences result primarily from
connections spanning different distances relative to the
size of the network.

In single bump networks (also referred to as peri-
odic networks, cf. Widlowski & Fiete, 2015) the planar
attractor manifold is wrapped into a torus (Samsonovich
& McNaughton, 1997; Guanella et al. 2007; Pastoll et al.
2013). This conceptual torus structure is actuated in the
synaptic connectivity of the network, with cells on one
edge of the sheet connected to those on the opposite
side (Fig. 2A). When an animal travels continuously
in one direction the activity bump moves periodically
around the network. Generation of a triangular rather
than rectangular organisation of grid fields is dependent
on the addition of a phase shift in one axis resulting in a
twisted torus attractor manifold (Fig. 2A).

Networks with multiple bumps of activity also
have their neurons arranged on a two-dimensional
manifold; however, a hexagonal population activity bump
organisation arises from the most energetically efficient
packing of the rings of inhibition; each circle of inhibition
repels neighbouring circles to a maximal distance until
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Figure 3. Spatial firing of interneurons in E–I attractor models
A, schematic organisation of an E–I network with additional random place field inputs to each interneuron
(left). Example firing fields of I cells (middle) and E cells (right) are shown adjacent to the schematised neurons.
B, histograms of the spatial sparsity (upper) and gridness score (lower) for E–I networks simulated as in A. Note
that most interneurons and many excitatory cells have grid scores <0.5. Data are from Solanka et al. 2015. r in
“r(Hz)” is spike rate.
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stabilising into a grid of activity bumps (Fig. 2B) (Fuhs
& Touretzky, 2006; Burak & Fiete, 2009; Couey et al.
2013). During movement the bumps of activity propagate
across the network and individual neurons generate
grid firing patterns. Multi-bump networks can either be
implemented with periodic boundaries (also referred to
as partially periodic networks), so that, much as in single
bump models, the activity bump wraps to the other side of
the network, or they can have boundaries (also referred to
as aperiodic networks). In this case, when bumps reach the
edge of the network they disappear, while on the opposite
side of the network local competitive synaptic interactions
cause new bumps to spontaneously form as existing bumps
move away (Fuhs & Touretzky, 2006; Burak & Fiete, 2009).

When single bump attractors are implemented in
E–I networks, each neuron’s connections extend over a
relatively large fraction of the network (Fig. 2A). Thus,
neurons making surround connections have their highest
connection probability, or connection strength, with
neurons at a distance of approximately half the width of the

untwisted neural sheet. This distance refers to separation
based on the order of connectivity in the network rather
than anatomical distance (cf. Widloski & Fiete, 2014).
Indeed the anatomical organisation of cell bodies of
neurons with repeating firing fields appears relatively
weak compared to the organisation of neural sheets in
continuous attractor network models (Heys et al. 2014),
suggesting that synaptic connectivity required for grid
firing can be established without ordering of neuronal cell
bodies (Widloski & Fiete, 2014). In contrast to single bump
networks, the connectivity in multi-bump attractors is
much more localised relative to the overall size of the
network (Fig. 2B). This suggests that quantification of the
extent of connectivity between excitatory and inhibitory
neurons could be used to distinguish between single-
and multi-bump models. Local circuit perturbations
through thermo- or chemomodulation in conjunction
with multi-unit recordings might also distinguish between
single- and multi-bump networks (Widloski & Fiete,
2015).

Excitatory Cell
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Inhibitory Cell
Spikes
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Interneuron
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Figure 4. Theta nested gamma activity in
E–I models
Spike rasters for E cells (red) and I cells (blue)
during two theta cycles (grey). The excitatory
synaptic input to a representative I cell is
illustrated below. Note that a substantial
residual inward current (blue shading) is
maintained during the phase of the theta
oscillation when spike activity of excitatory cells
is reduced. The residual current enables the
bump of activity to be maintained across theta
cycles. Data are from Pastoll et al. (2013) and
Solanka et al. (2015).
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Excitatory–inhibitory interactions provide a common
mechanism for grid firing and network oscillations

Successful models of brain circuits should account for
network dynamics as well as the firing patterns of
individual cells. Dynamics can be modelled by simulating
networks of integrate and fire neurons. In these models
synaptic input to a neuron charges its membrane
capacitance, which is in turn discharged through a
resistance. Action potentials occur when the membrane
potential crosses a threshold. In exponential integrate
and fire neurons the spike threshold has been replaced
with an exponential function in order to obtain more
realistic spike initiation dynamics (Fourcaud-Trocme et al.
2003). Although integrate and fire models neglect details
of morphology and ion channel biophysics, their dynamics
are a good approximation for physiological synaptic
integration, making them an important bridge between
abstract theoretical and more detailed cellular models.

Models of interacting populations of excitatory and
inhibitory exponential integrate and fire neurons can
account for both grid firing and gamma oscillations
(Pastoll et al. 2013; Solanka et al. 2015). When the models
receive theta modulated input the gamma oscillations are
nested at a fixed phase within each theta cycle (Fig. 4).
This is consistent with experimental findings that theta
modulated optogenetic activation of layer 2 circuits is
sufficient to generate nested gamma activity resembling
that observed in behaving animals (Chrobak & Buzsaki,
1998; Pastoll et al. 2013). In these experiments, and in
the corresponding models, gamma oscillations emerge
through fast time scale E–I interactions. On each gamma
cycle a subset of excitatory neurons fire action potentials.
Because the output from each excitatory neuron diverges
to many interneurons (Fig. 2A), and as each inter-
neuron receives convergent input from many excitatory
cells (Fig. 2A), this output is sufficient to rapidly trigger
action potentials in a large fraction of interneurons.
Divergent projections from interneurons send inhibitory
feedback to excitatory cells, including those that did not
spike. A second gamma cycle is initiated on recovery
from this inhibition. The divergent connectivity effectively
implements a competitive mechanism that limits the
number of excitatory cells active on each theta cycle
(Tiesinga & Sejnowski, 2009). While E–I models account
for both rate coded firing and nested gamma oscillations,
a possible limitation of existing models is that theta
input is implemented as a common drive to E and I
cells. In contrast, only interneurons in the MEC appear
to receive inhibitory pacemaker input from the medial
septum (Gonzalez-Sulser et al. 2014) while the origin of
excitation during theta is currently unknown.

Models that account for grid firing and nested gamma
oscillations exclusively through E–I interactions have
been extended to incorporate additional features of MEC

circuitry (Solanka et al. 2015). Experimental observations
indicate that inhibitory neurons in layer 2 of the MEC
may synapse with one another (Pastoll et al. 2013).
Addition to E–I models of connections between inter-
neurons stabilises grid firing and increases the frequency
of nested gamma oscillations (Solanka et al. 2015).
The resulting E–I–I models more easily produce theta
oscillations with a frequency that matches that of gamma
activity in vivo (cf. Chrobak & Buzsaki, 1998; Colgin et al.
2009). Although E–I models were initially motivated by
the indirect connectivity between L2SCs, grid cells are
found in deeper layers in which excitatory cells are likely to
communicate directly with one another (Dhillon & Jones,
2000). Moreover, while many models for grid firing have
focused on L2SCs, L2PCs also have grid firing fields (Sun
et al. 2015), and the synaptic mechanisms through which
they interact may differ. When E–I models are extended
to include structured connectivity between excitatory
neurons in addition to structured E–I interactions they
continue to generate grid firing patterns (Widloski & Fiete,
2014) and nested gamma oscillations (Solanka et al. 2015).
However, when these models were modified further so that
inhibitory connectivity was random and only excitatory
connectivity was structured they were unable to generate
stable grid firing fields (Solanka et al. 2015). We suspect
this results from the requirement for precise tuning of
connections in continuous attractor networks based on
structured excitation (cf. Seung et al. 2000).

The strong theta frequency modulation of activity in
the MEC raises the question of how attractor states might
be maintained during phases of the theta cycle in which
activity is suppressed. In principle if activity is suppressed
for a sufficient duration then when activity resumes the
network has no memory of the location of the pre-
vious bump. The spatial representation necessary for path
integration is then lost. This loss of bump stability can
be prevented by synaptic or intrinsic conductances with
slow dynamics (Navratilova et al. 2012; Pastoll et al.
2013; Solanka et al. 2015). For example, on the start
of each new theta cycle the residual excitatory NMDA
receptor current ensures bumps re-form in their previous
location (Fig. 4). While there is evidence that NMDA
receptors in entorhinal interneurons have sufficiently slow
kinetics to perform this role (Jones & Buhl, 1993), it
is possible that other biophysical processes that have
slow dynamics such as intracellular Ca2+ signalling or
kinetics of the action potential after-hyperpolarisation
could also stabilise attractor states across theta cycles
(Navratilova et al. 2012). Alternatively, theta modulation
may not completely inactivate entorhinal networks, in
which case bump location could be maintained through
neurons that remain active across the full theta cycle.
Further experimental testing of these ideas will require
a better understanding of cellular mechanisms underlying
modulation of entorhinal activity during theta states.
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Noise enables independent control of theta nested
gamma oscillations and grid firing by modulation
of excitatory–inhibitory interactions

Because E–I models account for rate coded grid
computation and gamma frequency network activity,
they provide an opportunity to investigate relationships
between these phenomena. Many cognitive functions, in
addition to spatial computation by grid networks, are
associated with modulation of gamma activity (Uhlhaas
& Singer, 2012). In turn, both cognitive function and
gamma activity correlate with changes in E–I inter-
actions. However, the causal relationships between the
strength of excitatory and inhibitory synapses, gamma
oscillations and computations that might underlie key
cognitive functions have been difficult to establish.
Systematic investigation of E–I models suggests that
these relationships are complex (Solanka et al. 2015).
First, nested gamma oscillations and grid firing are
both promoted by an optimal level of noise within
a network. If noise is too low seizure-like states that
suppress grid firing tend to emerge, whereas if noise is too
high grid fields drift and gamma becomes less coherent.
Second, intermediate noise levels maximise the range of
excitatory and inhibitory synaptic strengths that support
grid firing. Third, gamma activity is a poor predictor
of grid firing. Thus, varying the strength of inhibitory
or excitatory connections can tune the frequency and
power of gamma oscillations without affecting grid firing.
Fourth, tuning of intrinsic connections could be used
to modulate oscillation-based codes while maintaining
grid firing, for example to determine the response of
downstream neurons to convergent input from different
grid modules. Thus, synchronisation of gamma activity
between grid modules might promote, and discordant
tuning of gamma activity between modules might oppose,
downstream integration. Therefore, the potential for
independent control of gamma oscillations and grid
firing, even when both phenomena arise from a common
circuit mechanism, has implications for physiological and
pathological states of MEC circuits.

Conclusion

Because multiple abstract models are able to produce
grid-like periodic spatial firing patterns, additional
experimental constraints are required to establish
mechanisms used by the brain to generate grid firing.
We have considered evidence that continuous attractor
networks that use velocity inputs to compute grid
codes for location can be implemented through E–I
interactions that are consistent with known properties
of microcircuits in the MEC. When implemented with
realistic neuronal dynamics these models also account for
theta nested gamma oscillations, although so far they are

unable to explain theta phase precession in two dimensions
without incorporation of additional mechanisms for path
integration. Critical future tests of continuous attractor
network hypotheses for grid firing include evaluation of
predictions for the firing patterns and connectivity of
excitatory and inhibitory cell populations. E–I models
make further assumptions concerning integration of
velocity signals (Pastoll et al. 2013), error correction by
place and border input (Guanella et al. 2007; Sreenivasan
& Fiete, 2011; Pastoll et al. 2013; Hardcastle et al. 2015)
and sources of tonic drive (Burak & Fiete, 2009; Bonnevie
et al. 2013; Pastoll et al. 2013) that we have not considered
here. Experimental evidence for how these signals
are integrated by MEC circuits will further constrain
possible models. Progress in establishing experimentally
constrained models for spatial representation by cell
populations in the MEC may serve as a proof of principle
for understanding cellular and synaptic mechanisms for
high-level computations by cortical circuits in general.
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