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Abstract: In this work, we employ computational modeling techniques to study the defect chemistry,
Na ion diffusion paths, and dopant properties in sodium iron phosphate [Na3Fe2(PO4)3] cathode
material. The lowest intrinsic defect energy process (0.45 eV/defect) is calculated to be the Na Frenkel,
which ensures the formation of Na vacancies required for the vacancy-assisted Na ion diffusion.
A small percentage of Na-Fe anti-site defects would be expected in Na3Fe2(PO4)3 at high temperatures.
Long-range diffusion of Na is found to be low and its activation energy is calculated to be 0.45 eV.
Isovalent dopants Sc, La, Gd, and Y on the Fe site are exoergic, meaning that they can be substituted
experimentally and should be examined further. The formation of Na vacancies and Na interstitials
in this material can be facilitated by doping with Zr on the Fe site and Si on the P site, respectively.
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1. Introduction

Rechargeable sodium ion batteries (SIBs) have gained considerable attention for the development
of large-scale energy storage applications due to the high abundance, low cost, and non-toxicity of
sodium [1–5]. In practice, there are only a few electrode materials that have been reported. This is due
to the larger ionic radius of Na compared to that of Li. Designing a new Na-based electrode material
consisting of an appropriate transition metal with a high electrochemical performance could make this
material promising.

A number of iron-based phosphate cathode materials [6–10] were proposed for Li-ion batteries
due to the structural stability and high redox potential provided by the PO4

3− matrix. Although
similar iron-based cathode materials can be prepared for NIBs in theory, only a few of them, including
NaFePO4 [11], Na2FeP2O7 [12], Na3V2(PO4)3 [13] and Na4Fe3(PO4)2P2O7 [14], have been reported in
the literature.

Recently, monoclinic phase Na3Fe2(PO4)3 was synthesized using the solid state method and
examined as a cathode material for SIBs [15]. This material showed a very high cyclic stability and a
reversible discharge capacity of 40 mA·h·g−1 with a flat plateau at about 2.5 V. Rajagopalan et al. [16]
studied the electrochemical performance and reversible capacity of Na3Fe2(PO4)3. Their study shows
that the discharge specific capacity and cycling stability can be improved by wrapping Na3Fe2(PO4)3

with conducting carbon. There are no further experimental or theoretical studies available on
Na3Fe2(PO4)3 for the use of this material in rechargeable SIBs.

A fundamental understanding of Na3Fe2(PO4)3 gained through computational simulation
techniques based on the classical pair-potentials can be used to optimize its performance as these
techniques have been useful in experimental characterization, the prediction of ion pathways, and the
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determination of promising dopants. This technique has been used in a variety of oxide materials,
including electrode materials for lithium and sodium ion batteries [17–38]. In this work, we have used
classical pair-potential simulation to examine possible defects that can be observed in Na3Fe2(PO4)3,
Na ion migration pathways and the solution of trivalent dopants (Al3+, Ga3+, Sc3+, Y3+, Gd3+ and
La3+) on the Fe site and tetravalent dopants (Si4+, Ge4+, Ti4+, Sn4+, Zr4+ and Ce4+) on the Fe and P sites.

2. Computational Methods

The calculations employed in this study are based on the classical pair wise potentials. The General
Utility Lattice Program (GULP) [39] was used. This code uses ion-ion interactions in the form of
long-range (i.e., Coulombic) attraction and short-range repulsion (i.e., Pauli electron-electron) and
attraction (dispersion). We used the Buckingham potentials (refer to Table S1 in the Supplementary
Information) to model short-range interaction.

Bulk Na3Fe2(PO4)3 and defect configurations were optimized using the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm [40], as implemented in the GULP code. The forces on the atoms were
below 0.001 eV/Å in all cases. The Mott-Littleton method [41] was employed to model point defects.
This methodology has been well-explained in previous studies. The current simulation is expected
to overestimate the defect enthalpies. This is due to the spherical shape of the ions with a low
concentration. Nevertheless, trends in relative energies are expected to be consistent.

The present atomistic simulations use isobaric parameters in the calculations of formation and
migration energies. The detailed thermodynamic relations associated with isobaric parameters are
discussed in previous theoretical work [42–47].

3. Results and Discussion

3.1. Bulk Na3Fe2(PO4)3 Structure

Bulk Na3Fe2 (PO4)3 belongs to the monoclinic crystal system (space group C2/c). The crystal
structure of Na3Fe2(PO4)3 is shown in Figure 1. Its lattice parameters (a = 15.070 Å, b = 8.740 Å,
c = 8.724 Å, α = γ = 90.0◦ and β = 125.1◦) were determined by Fanjet et al. [48] in their powder neutron
diffraction study. The crystal structure consists of FeO6 octahedra and PO4 tetrahedra units sharing
their corners.
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In order to validate the interatomic potentials used in this study, a bulk Na3Fe2(PO4)3 structure
was optimized under constant pressure. The difference between the calculated equilibrium lattice
constants and its corresponding experimental values is less than 1.5%, showing the good reproduction
and the suitability of these potential parameters for defect modeling. Table 1 lists the calculated and
experimental values together with the error percentages.

Table 1. Comparison of experimental and calculated values of monoclinic (C2/c) Na3Fe2(PO4)3.

Parameter Calc Exp [48] |∆| (%)

a (Å) 15.106 15.070 0.24
b (Å) 8.720 8.740 0.23
c (Å) 8.853 8.724 1.49
α (◦) 90.0 90.0 0.00
β (◦) 124.98 125.10 0.09
γ (◦) 90.0 90.0 0.00

3.2. Intrinsic Defect Process

Here, we consider the formation of point defects (vacancies and interstitials) to calculate the
Schottky and Frenkel defect processes. The Na-Fe anti-site defect process is also considered. The intrinsic
point defects are important as they stimulate the ions to diffuse in the lattice. The point defects were
combined to construct reaction energy processes (Schottky, Frenkel and anti-site) using Kröger-Vink
notation [49]. The reaction equations are as follows:

Na Frenkel : NaX
Na → V′Na + Na•i (1)

Fe Frenkel : FeX
Fe → V′′′Fe + Fe•••i (2)

P Frenkel : PX
P → V′′′′′P + P•••••i (3)

O Frenkel : OX
O → V••O + O′′i (4)

Schottky : 3NaX
Na + 2FeX

Fe + 3PX
P + 12OX

O → 3V′Na + 2V′′′Fe + 3V′′′′′P + 12V••O + Na3Fe2(PO4)3 (5)

Na2O Schottky : 2NaX
Na + OX

O → 2V′Na + V••O + Na2O (6)

Na/Fe antisite (isolated) : NaX
Na + FeX

Fe → Na′′Fe + Fe••Na (7)

Na/Fe antisite (cluster) : NaX
Na + FeX

Fe →
{
Na′′Fe : Fe••Na}X (8)

The energetics for the defect processes are shown in Figure 2. Our calculations show that the Na
Frenkel is the lowest defect energy process (0.45 eV/defect), indicating that the formation of Na vacancies
is facilitated by this process. Thus, this process would accelerate the vacancy-aided Na diffusion.
The Na-Fe anti-site defect is found to be the second most favorable defect energy process (1.12 eV/defect).
In this defect, a small population of Na on the Fe site and Fe on the Na site would be observed. This defect
has been found in a variety of battery materials both experimentally and theoretically [17–19,50–53].
The formation of Na2O is calculated to be a 2.46 eV/defect, suggesting that there is a possibility of
Na2O loss in this material at high temperatures. Other defect processes are relatively high energy,
meaning that they cannot be observed under standard battery operating conditions.
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3.3. Sodium Ion Diffusion

The diffusion of Na ions with a low migration barrier is a key requirement for a promising cathode
material. There is no experimental report on the Na ion migration pathways in Na3Fe2(PO4)3. Using
the current methodology, it is possible to calculate the Na ion diffusion pathways and activation
energies. Three different local Na vacancy migration hops (refer to Figure 3) were calculated. Table 2
lists the Na-Na separations together with the activation energies. Energy profile diagrams together
with activation energies for local Na hops are shown in Figure 4. The lowest activation energy (0.44 eV)
is calculated for hop A in which Na migrates along the bc plane. Hop B exhibits an activation energy of
0.45 eV, which is very close to the value calculated for hop B. The highest activation energy (2.37 eV) is
calculated for hop C. Both hops B and C are also along the bc plane.
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to the local Na–Na hops.

Table 2. Na-Na separations and their activation energies for the Na ion migration, as shown in Figure 3.

Migration Path Na-Na Separation (Å) Activation Energy (eV)

A 3.31 0.44

B 3.37 0.45

C 4.61 2.37

We examined possible long-range Na ion pathways linked by local Na hops. Three possible
long-range Na ion paths and their corresponding overall activation energies are listed in Table 3.
The lowest activation energy of the migration (0.45) pathway consists of local hops A and B (A–A–B–B)
along the bc plane. The other two pathways have higher activation energies of 2.37 eV due to the
presence of local hop C.

Clark et al. [54] used classical atomistic simulation to calculate the activation energy of Na ions
in Na2FeP2O7. In their study, three-dimensional long-range Na ion migration paths were observed
in different directions with activation energies in the range of 0.33–0.49 eV. Sodium ion migration
paths together with activation energies were calculated in “olivine” NaFePO4 material [55]. The lowest
energy path was observed along the [010] direction with the activation energy of 0.30 eV. The current
activation energy value of 0.45 eV calculated for long-range Na ion migration in Na3Fe2(PO4)3 suggests
that this material is also a promising cathode material competitive with the other Fe-based polyanions
materials for Na-ion batteries.

Table 3. Long-range Na ion diffusion paths and their overall activation energies.

Long-Range Path Direction Overall Activation Energy (eV)

A→A→B→B bc plane 0.45

A→C→C→ A bc plane 2.37

C→C→C→C bc plane 2.37

3.4. Isovalent Doping

Solutions of isovalent dopants (Al, Ga, Sc, Y, Gd, and La) were considered on the Fe site.
The selection of trivalent dopants with a wide range of ionic radii is based on previous studies that
considered these dopants in different materials, including phosphate-based battery materials [23,56–58].
Though they exhibit a high atomic weight, low abundance, or high cost, low-level doping of
Na3Fe2(PO4)3 can exhibit improvement in electronic conductivity. The solution enthalpy was calculated
using the following reaction:

R2O3 + 2FeX
Fe → 2RX

Fe + 2Fe2O3 (9)

Figure 5 reports the solution enthalpies of M3+ ions on the Fe site. The lowest solution energy
is calculated for Sc. Solutions of La and Gd are also promising as they exhibit negative values.
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Yttrium shows a small but negative solution enthalpy. The solution enthalpy of Al is highly endoergic,
suggesting that it cannot be doped under normal conditions. Dopants exhibiting endoergic solution
enthalpies can be doped experimentally to prepare [Na3(FexM1−x)2(PO4)3; M = Sc, La, Gd and Y; x = 0–1]
composites. Such composites may have the different chemical, electronic, and mechanical properties
required for different purposes. Gaining knowledge on the exact composition requires experiments.
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3.5. Tetravalent Doping

Both the Fe and P sites were considered for tetravalent dopants (Si, Ge, Ti, Sn, Zr, and C). It is
possible to form Na vacancies by doping with M4+ ions on the Fe site. Such vacancies facilitate Na ion
migration in this material. The following reaction equation was constructed:

RO2 + 2FeX
Fe + 2NaX

Na → 2R•Fe + 2V′Na + 2Fe2O3 + Na2O (10)

Solution enthalpies are shown in Figure 6a. In all cases, high solution enthalpies (>3 eV)
are observed, suggesting that the formation of Na vacancies are unlikely at normal temperatures.
The lowest solution enthalpy is calculated for Zr. Solution enthalpies for Ge and Sn are very close to
the value calculated for Zr. The Si exhibits the highest solution enthalpy.
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the P site with respect to the M4+ radius in an octahedral and tetrahedral coordination, respectively.

Doping with M4+ ions on the P site can lead to the formation of Na interstitials, as shown in
Equation (11). This engineering strategy in turn would enhance the capacity of Na3Fe2(PO4)3.

2RO2 + 2PX
P + Na2O → 2R′P + 2Na•i + P2O5 (11)
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Solution enthalpies calculated for this process are shown in Figure 6b. The promising candidate
is Si as its solution enthalpy is 0.41 eV. The Ge exhibits a slightly higher (1.23 eV) solution enthalpy.
Other dopants have solution enthalpies greater than 2.50 eV, meaning that they should be doped at
high temperatures. The highest solution enthalpy (5.98 eV) is calculated for Ce.

4. Conclusions

Atomistic simulation techniques were employed to examine the defects, Na ion migration
pathways, and a variety of isovalent and isovalent dopants on the Fe site in Na3Fe2(PO4)3. The lowest
energy defect process is the Na Frenkel, suggesting that the Na diffusion in this material would be
assisted by Na vacancies. The Na-Fe anti-site defect is calculated to be the second lowest energy
process, meaning that a small population of Na and Fe ions exchange their positions. The diffusion of
Na is calculated to be low in this material and Na ion migrates via the bc plane with the activation
energy of 0.45 eV. The favorable isovalent dopants on the Fe site are Sc, La, Gd, and Y, meaning that
the synthesis of [Na3(FexM1−x)2(PO4)3 M = Sc, La, Gd and Y] is worth investigating experimentally.
Doping with Zr on the Fe site can increase the concentration of Na vacancies needed for the Na ion
diffusion, while doping with Si on the P site can facilitate the formation of Na interstitials required for
the improvement in the capacity of Na3Fe2(PO4)3.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/12/8/1348/s1:
Table S1: Interatomic potential parameters used in the atomistic simulations of Na3Fe2(PO4)3.
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