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Abstract

Summary: Highly multiplexed imaging technologies enable spatial profiling of dozens of biomarkers in situ. Here,
we describe cytomapper, a computational tool written in R, that enables visualization of pixel- and cell-level informa-
tion obtained by multiplexed imaging. To illustrate its utility, we analysed 100 images obtained by imaging mass
cytometry from a cohort of type 1 diabetes patients. In addition, cytomapper includes a Shiny application that allows
hierarchical gating of cells based on marker expression and visualization of selected cells in corresponding images.

Availability and implementation: The cytomapper package can be installed via https://www.bioconductor.org/pack
ages/release/bioc/html/cytomapper.html. Code for analysis and further instructions can be found at https://github.
com/BodenmillerGroup/cytomapper_publication.

Contact: nils.eling@dqbm.uzh.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Immunohistochemistry (IHC) and immunofluorescence (IF) are
common approaches for visualization of proteins in tissues. Highly
multiplexed IHC and IF methods have recently been developed to in-
crease the number of proteins being measured in parallel (Gerdes
et al., 2013; Huang et al., 2013). Multiplexing using antibodies
labelled with fluorescent dyes, oligonucleotides or metal tags allows
high-resolution imaging of tens of proteins simultaneously (Angelo
et al., 2014; Giesen et al., 2014; Goltsev et al., 2018; Lin et al.,
2018; Saka et al., 2019).

One of the latter approaches is imaging mass cytometry (IMC),
during which tissues are stained using metal-conjugated antibodies
(Giesen et al., 2014). After data acquisition, raw output files are
processed to create multi-channel images and segmentation masks.
This enables the extraction of cell-specific measurements, such as
mean ion counts per marker and morphological features (Damond
et al., 2019). Custom scripts (Jackson et al., 2020; Keren et al.,
2018), image analysis software such as CellProfiler (Carpenter
et al., 2006), and specialized tools based on graphical user interfaces
(GUIs) (Schapiro et al., 2017; Somarakis et al., 2019; Stoltzfus et al.,
2020) are used to process and analyse high-dimensional spatial ex-
pression data.

Here, we combine the image and single-cell data analysis capa-
bilities of Bioconductor (Gentleman et al., 2004) to allow visualiza-
tion of pixel- and cell-level information obtained by highly
multiplexed imaging technologies such as IMC. The R/Bioconductor

package cytomapper allows high flexibility in terms of image ma-
nipulation (e.g. transformations), integrates with common single-
cell data analysis strategies (e.g. cell phenotyping), and includes a
Shiny application to enable hierarchical gating and visualization of
selected cells. We demonstrate the utility of cytomapper by using it
for biological exploration of type 1 diabetes progression and quality
control of segmentation results.

2 Results

Single-cell expression values and cell-specific metadata such as cell
type information are stored in a SingleCellExperiment class object
(Amezquita et al., 2020) (Fig. 1A). The cytomapper package pro-
vides the CytoImageList container that stores single- or multi-
channel images (Supplementary Note S1.2 and Fig. 1A and B).
These objects contain segmentation masks represented as single-
channel images; or multi-channel images where each channel con-
tains pixel intensities of an individual marker. By providing informa-
tion regarding a cell’s object identifier and a unique image name, the
plotCells function colours segmentation masks by marker expres-
sion or cell-specific metadata (Fig. 1A). Multi-channel images are
visualized as composites of up to six channels using the plotPixels
function (Fig. 1B).

To demonstrate the functionality of the cytomapper package
we used it to visualize type 1 diabetes (T1D) samples acquired
by IMC (Supplementary Note S1.1). T1D is characterized by b
cell loss caused by autoreactive immune cell infiltration
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(Atkinson et al., 2014) and we previously imaged pancreatic
samples from patients with recent-onset and long-duration, as
well as healthy controls. We ranked images based on the density

of cytotoxic and helper T cells and selected the image with
highest density per condition. Using the cytomapper package, we
visualized all islet cell types, and cytotoxic and helper T cells in

selected images (Fig. 1C). To visually confirm cell phenotypes,
we further displayed cell type specific markers [proinsulin (PIN):

b cells; CD4: helper T cells; CD8a: cytotoxic T cells] as com-
posite images (Fig. 1D). By visualizing selected images, we ob-
serve, as expected, that (i) b cells and proinsulin expression are

lost during T1D progression and (ii) T cells invade the micro-
environment during early onset of T1D (Damond et al., 2019).
The cytomapper package also allows the visualization of tens to

hundreds of images in parallel. As described in Supplementary
Note S2.1 and Supplementary Figures S1 and S2, the loss of b
cells and reduction of PIN expression was observed across 100

selected images from the full set of 845 images acquired
(Damond et al., 2019).

Segmentation and labelling of cell phenotypes are essential steps
of most multiplexed imaging pipelines. The cytomapper package
provides function settings to outline cells on composite images based

on their segmentation results. Furthermore, outlines can be coloured
based on cell-specific metadata, such as cell type information
(Supplementary Fig. S3). This visual quality control step is

recommended prior to downstream analyses such as clustering or
the testing of associations with clinical data.

Cell phenotyping is commonly performed by clustering and clus-
ter annotation. However, a number of classification strategies have
recently been developed to label cells based on a given reference
(Abdelaal et al., 2019). To facilitate cell labelling, we developed the
cytomapperShiny function, which opens a Shiny GUI that allows
hierarchical gating on the expression levels of up to 24 markers.
Selected cells are either visualized as coloured objects on segmenta-
tion masks or as outlines on composite images (Supplementary Fig.
S4). Furthermore, selected cells can be downloaded in form of a
SingleCellExperiment object for use in downstream processes such
as training and cell type classification. The ease of generation and
improved quality of training data enabled by this function will meet
the growing demand for supervised classification methods (Abdelaal
et al., 2019).

3 Conclusion

The cytomapper package offers a set of functions to visualize cell-
and pixel-level information obtained using highly multiplexed imag-
ing technologies across tens to hundreds of images. We demon-
strated the use of cytomapper with IMC data. However, data
obtained using other multiplexed imaging technologies such as MIBI
(Angelo et al., 2014), 4i (Gut et al., 2018), t-CyCIF (Lin et al., 2018)
and CODEX (Goltsev et al., 2018) could be visualized using the
cytomapper package. The only requirements are single-cell read-
outs, multi-channel tiff stacks and/or segmentation masks. By using
the SingleCellExperiment object as data container, cytomapper inte-
grates with an extensive set of single-cell data analysis tools as well
as other R packages designed for spatial data analysis (Dries et al.,
2019; Yang et al., 2020). Finally, we provide the
SingleCellExperiment and CytoImageList objects containing the
presented data in form of the newly developed imcdatasets package
on Bioconductor.
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S1.6). Scale bars: 20mm. (C, D) For each condition (healthy, recent onset and long-

duration T1D), images with the highest density of cytotoxic and helper T cells were
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helper T cells) by their cell type and leaves all other cells white. (D) Proinsulin (PIN)
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