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On the basis of scene visual understanding technology, the research aims to further improve the classification efficiency and
classification accuracy of art design scenes. +e lightweight deep learning (DL) model based on big data is used as the main
method to achieve real-time detection and recognition of multiple targets and classification of the multilabel scene. +is research
introduces the related foundations of the DL network and the lightweight object detection involved.+e data for a multilabel scene
classifier are constructed and the design of the convolutional neural network (CNN) model is described. On public datasets, the
effectiveness of the lightweight object detection algorithm is verified to ensure its feasibility in the classification of actual scenes.
+e simulation results indicate that compared with the YOLOv3-Tiny model, the improved IRDA-YOLOv3 model reduces the
number of parameters by 56.2%, the amount of computation by 46.3%, and the forward computation time of the network by
0.2ms. It means that the IRDA-YOLOv3 network obtained after the improvement can realize the lightweight of the network. In
the scene classification of complex traffic roads, the classification model of the multilabel scene can predict all kinds of semantic
information of a single image and the classification accuracy for the four scenes is more than 90%. In summary, the discussed
classification method based on the lightweight DL model is suitable for complex practical scenes. +e constructed lightweight
network improves the representational ability of the network and has certain research value for scene classification problems.

1. Introduction

+e environmental art design is an artistic activity that
comprehensively utilizes various artistic means and engi-
neering techniques to create a scientific living environment
for people [1]. +e purpose of the environmental art design
is to increase the beauty of the scene space through sys-
tematic art design while continuously meeting the functional
needs of human beings. Whether it is interior design or
exterior design, it is the goal of the environmental art design
to strive to make the space environment have a beautiful
sense of the times.+e concept of modern environmental art
design calls for returning to nature and pursuing simplicity
and fashion [2, 3]. With ecological balance as the core,
human activities are integrated into the objective laws of
nature, to realize the humanization of nature and the nat-
uralization of human beings. It is neither the solipsistic

mentality of conquering nature and looking down on ev-
erything, nor the fear and compromise of natural forces but
the true unity of man and nature.

Using the combination of emerging scientific and
technological achievements and historical culture to meet
the aesthetic pursuit of human beings in the new era is the
new requirement of aesthetic design in environmental art
design. Environmental art design delights body and mind,
beautifies life, and improves the sustainability of life through
the aesthetic characteristics of design works. It is the role of
design aesthetics in the application of environmental art
design [4–6]. Among the computer technologies that inte-
grate art and design, scene visual understanding is the most
widely used technology. In the current era of big data, the
application of deep learning (DL) technology in various
visual tasks and the analysis of massive data have a certain
role in promoting. In the problem of environmental art
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scene classification, it needs to be based on object detection.
Since object detection based on handcrafted features is easily
affected by the quality of feature selection. +erefore, it is
easy to cause poor application effects in actual scenarios.
Using the feature extraction method based on DL, the
convolutional neural network (CNN) can be used to extract
deeper features, which has the advantages of high detection
accuracy and automatic feature extraction [7–9].

Considering the scene classification problem in envi-
ronmental art design, it is of great significance for multilabel
scene analysis and subsequent intelligent decision-making in
real life. Since CNN can be used for model training through
massive data, in the scene classification, the lightweight DL
model based on big data is used as the main method to
realize the real-time detection and recognition of multiple
targets and the classification of multilabel scenes. Firstly, the
involved DL network and the relevant basics of lightweight
object detection are introduced; secondly, the data of the
multilabel scene classifier is constructed, and the design of
the CNN model is described. Finally, the effectiveness of the
lightweight object detection algorithm is verified on public
datasets to ensure its feasibility in practical scene classifi-
cation. +e innovation lies in the improvements to the
YOLOv3-Tiny network. A lightweight network architecture
IRDA-YOLOv3 with a stable detection effect and small
computing requirement is proposed, which improves the
representational ability of the network and can more ef-
fectively solve the problem of scene classification.

2. Materials and Methods

2.1. SceneVisualUnderstanding in Environmental ArtDesign.
With the gradual development of society, politics, economy,
and culture, the relationship between environmental design
and human beings has become closer. It transforms the
environment of people’s production, life, work, and study by
means of technology and art to create a place suitable for
various needs of human beings and to achieve a beautiful
environment that meets people’s spiritual and material
needs [10]. +e direct purpose of the environmental art
design is to make the space atmosphere harmonious and
orderly while expressing the design concept. Environmental
design uses certain organization and enclosure methods to
artistically process the space interface and uses natural light,
artificial lighting, furniture, decorations, layout, modeling,
and other design languages, as well as the configuration of
plants and flowers, water bodies, sculptures, etc. [11–13].
+e indoor and outdoor space environment of the building
reflects a specific atmosphere and a certain style to meet
people’s functional use and visual aesthetic needs.

In complex scenes and images of the environmental art
design, there are usually situations such as occlusion of
target objects, different shapes, and changes in color dif-
ference. +ese factors directly affect the feature extraction
effect of target information [14]. +erefore, the application
of scene visual understanding algorithm in art-aided design
plays an important role in extracting scene information and
outputting clear images. +e main design process is shown
in Figure 1. In the process of art-aided design, first, the color

of the scene image should be segmented based on the set
threshold; next, a series of morphological processing is
performed on the effective description area to obtain the
candidate region; finally, the local feature extraction is
performed. +e relevant algorithm is used to obtain the
features of the candidate region, and the combination design
is carried out according to the feature results.

In scene understanding, image segmentation plays a
crucial role as a preprocessing step of the algorithm. +e
specific scene image segmentation algorithm is shown in the
following equation:

(x, y) � f1(x, y),

f2(x, y).
(1)

Here, x, y refers to the horizontal and vertical coordinates of
the plane where the image is located. +rough f1(x, y) can
achieve the effect of effectively eliminating the interference
of the blue area in the image, and by introducing f2(x, y),
the interference of colors with a large color difference with
blue, such as black, red, and green can be eliminated.

After the color segmentation of the image is completed, a
series of morphological processing needs to be performed on
the regions that effectively describe the shape in the image, to
reduce or avoid the influence of noise as much as possible. A
and B are set to be a set in two-dimensional space, and the
fractured parts of some candidate regions are recleaved
through the expansion operation. B dilation A is defined as
the set of all Z displacements. To make sure that there is at
least one overlapping element in A and B, and then the
morphological operation is performed, which includes
corrosion expansion operations, contour smoothing oper-
ations, and breaking narrow gaps. To reduce the influence of
interference on the effect of acquiring candidate scene re-
gions, it is necessary to clarify the rules for extracting
candidate scene regions. +e connected area is set as Ci

(where i refers to the first connected area). Li, Wi, and Si
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Regions of Scene Images
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Figure 1: Art-aided design process incorporating a visual un-
derstanding of the scene.
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represent the width, height, and area of the connected area,
respectively. When the three meet the conditions of equa-
tions (2) to (4), it means that the connected area is a can-
didate region.

Si ≥ Smin ∩ Si ≤ Smax, (2)

Li

Wi

≥
L

W
􏼒 􏼓

min
∩Li/Wi ≤

L

W
􏼒 􏼓

max
, (3)

Si

Li

× Wi ≥
S

L
× W􏼒 􏼓

min
. (4)

Here, Smin and Smax express the minimum and maxi-
mum value of the area of the connected area, respectively;
(L/W)min and (L/W)max refer to the minimum and maxi-
mum value of the aspect ratio, respectively.

To complete the extraction of target features inside the
scene in a more detailed manner, the gradient and direction
of each pixel in the 16×16 window range are usually cal-
culated with the Scale Invariant Feature Transform (SIFT)
feature point as the center in the candidate region. SIFT
features not only have scale invariance, even if the rotation
angle, image brightness, or shooting angle of view are
changed, but good detection results can also still be obtained
[15–17]. +e SIFT algorithm takes the detected key points as
the center, selects a 16×16 neighborhood, and then divides
the neighborhood into 4 ∗ 4 subregions. +en, the gradient
direction is divided into 8 intervals, so that a 4× 4× 8�128-
dimensional feature vector will be obtained in each subarea.
It is proposed that the eigenvectors of the neighborhood
should be normalized after the eigenvectors are obtained,
and the normalization direction is the main direction of
calculating the neighborhood key points. +e neighborhood
is rotated to a specific direction according to the principal
direction, which makes the feature rotation-invariant. +en,
according to the size of each pixel in the neighborhood, the
neighborhood is scaled to the specified scale, which further
makes the feature description scale-invariant. +e core idea
of the SIFT algorithm is shown in Figure 2.

+e SIFT algorithm can be decomposed into the fol-
lowing four steps: (1) detection of extremum in scale-space:
search for image locations on all scales. +e potential scale
and rotation invariant points of interest are identified by
a Gaussian differential function. (2) Localization of key
points: at each candidate location, the location and scale
are determined by a well-fitted model. +e selection of key
points is based on the degree of stability. (3) Determi-
nation of the direction: based on the local gradient di-
rection of the image, one or more directions are assigned
to each key point position. All subsequent operations on
image data are transformed relative to the orientation,
scale, and position of key points, thereby providing in-
variance to these transformations. (4) Description of key
points: in the neighborhood around each key point, the
local gradient of the image is measured at the selected
scale. +ese gradients are transformed into a represen-
tation that allows for relatively large local shape defor-
mations and lighting changes.

2.2. SceneDescription andTargetDetectionBasedonDLunder
Big Data. In the context of big data, raw video is a kind of
unstructured data, the content of which cannot be directly
understood by the computer and reflects the relevant
content [18]. +e structured description of the scene mainly
includes three levels, which are the description of the essence
of the object, the description of the attributes of the object,
and the description of the attribute relationship between the
objects. It has become the latest technological progress to
extract high-level semantic features with DL, so as to
structure the description of video scenes. +e structured
description model of scene video is essentially a rich se-
mantic model, which is used to parse the content of video
events until intuitive text information is obtained [19–21]. It
can describe the semantics of video events and save them
into text information, so that it can be understood by
humans and computers.

A Video Structurized Description (VSD) model is
proposed, and its framework is shown in Figure 3. +e video
streaming of the scene is used as the input information of the
input terminal, which mainly refers to the video semantic
content including objects, attributes, and features, including
low-level semantics and high-level semantics [22, 23]. +e
VSD model framework includes three parts: basic module,
content analysis module, and application module, and its
general structure is shown in Figure 3. +ese three parts are
combined with ontology knowledge and reasoning logic to
construct the basis of VSD. Among them, the focus of the
semantic module is the structured class of the video on-
tology, and the partial data obtained after the preprocessing
of the video is used as the input information of the input
terminal of the module, and then a structured description
ontology of the video event is formed.+e structure of video
can be regarded as a semantic web, which is essentially a
nonrelational data set. +e specific structured classes mainly
include objects, events, activity networks, spatial relation-
ships, and motion states. +e use of these structured classes
to generate event ontology is the key link in the process of
VSD [24–26]. After the event ontology instance is created,
the content analysis module needs to complete the reasoning
of the ontology data.+e basis for realizing event description
lies in object semantics, so it is necessary to transform se-
mantics into textual information that can be understood by
humans through the basis of objects and related descrip-
tions. +e final application module is mainly responsible for

Figure 2: +e core idea of the SIFT algorithm.
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fully realizing and applying the information inferred from
the model in the upper-layer application. +e application
module can convert the input video streaming into the
output of related events by adjusting the application in-
terface of video structured description.

Object recognition in VSD is very critical. Since the
operation of traditional object detection and recognition
methods requires the extraction of many different features,
DL technology has become the current research focus in the
field of computer vision. For the CNN in DL, its basic
structure mainly includes two modules: feature extraction
and feature mapping [27–30]. In the part of feature ex-
traction, the input of each layer of nodes and the upper local
receptive field are correlated with each other, to obtain the
corresponding features and clarify the positional relation-
ship between the features. In the part of feature mapping, the
computation in the neural network (NN) can be regarded as
being composed of multiple feature maps and all nodes have
the same weights [31, 32]. Considering the hardware
equipment of the experiment, the designed network struc-
ture is composed of two convolutional layers, two pooling
layers, and two fully connected layers. +e size of the
convolution kernel is 5× 5, and the network structure is
shown in Figure 4. +e ReLU function is selected as the
activation function of the convolutional layer, the data set is
divided into training set and test set, and the mean value is
processed in the data preprocessing link.

Because CNN needs a large number of samples, when the
positive samples are set to be B Bounding Boxes, the effect is
very poor. To further improve the accuracy of positioning,
RCNN performs Bounding Box regression after non-
maximum suppression (NMS) and further fine-tuning the
location of the Bounding Box. Unlike the Bounding Box
regression of the Deformable Parts Model (DPM), RCNN is
a regression performed at the Pool5 layer.+e Bounding Box
is category-related, that is, the parameters of the Bounding
Box regression of different categories are diverse.

2.3. Scene Classification Algorithm Based on Lightweight DL.
Network lightweight is talking about using fewer network
parameters to meet or exceed the performance of existing
CNN. At present, many target detection and classification
based on CNN have problems of low storage, low energy
consumption, and low computing power. Due to resource
constraints, the model is difficult to implement in terms of
deployment and usage. +erefore, in the task of target

detection, the NN needs to be light-weighted to better realize
the feature extraction task of the detector. Among the re-
gression-based target detection algorithms, the YOLO-Tiny
series of lightweight detection algorithms are proposed for
embedded devices [33–35]. Similar to the YOLO series of
algorithms, the classification problem in images needs to be
transformed into a regression problem first. +e specific
operation is to divide the input image into S× S grids, each
grid generates a Bounding Box according to the prior in-
formation and predicts and outputs 4 position information
for each Bounding Box, as well as the category of the pre-
dicted Bounding Box.

YOLOv3-Tiny removes some feature layers on the basis
of YOLOv3 and only retains 2 independent prediction
branches. YOLOv3-Tiny is a multitask, end-to-end, atten-
tionmechanism, andmultiscale. Multitask is to complete the
classification and regression of the target at the same time,
realize parameter sharing, and avoid overfitting. End-to-end
means that the model directly gives the prediction infor-
mation of classification and regression after receiving the
image data. +e attention mechanism is to focus on the
features of the target region for detailed processing and to
improve the processing speed. +e feature of multiscale is to
fuse downsampling and upsampling data with each other,
and its function is to segment objects of various scales.

When training the model, methods such as Mosaic data
augmentation, label smoothing, and cosine annealing with
learning rate decay can be used to improve the training speed
and detection accuracy of the model. Since the same target
will predict multiple candidate Bounding Boxes, the NMS
method is used to suppress redundant candidate regions,
and the final predicted Bounding Box is output.+e network
structure of YOLOv3-Tiny is shown in Figure 5. +ree re-
sidual units are used, Leaky ReLU is used as the activation
function, two feature layers are used for the classification and
regression of the target, and the Feature Pyramid Network
(FPN) is used when merging the effective feature layers. It
also uses the CSPNet structure and performs channel seg-
mentation on the feature extraction network. +e feature
layer channel output after 3× 3 convolutions is divided into
two parts, and the second part is taken.

To ensure that the accuracy and real-time performance
of the model are in a balanced state when dealing with object
detection problems, the YOLOv3-Tiny network is improved.
A lightweight network architecture IRDA-YOLOv3 with a
stable detection effect and small computing power re-
quirement is proposed. +e network uses a multilayer fea-
ture map fusion algorithm for feature fusion, makes full use
of multilayer shallow network features to improve the ac-
curacy of target detection, and uses point convolution to
increase the depth of the network structure. When designing
a lightweight network structure, the original part of the
convolutional layer is retained as much as possible, and the
increase in the number of convolutional layers is avoided.
Using the weight feature in the attention mechanism of the
IRDA module, the spatial features of the deep network are
recalibrated, so that the network can learn more useful
feature information before the output layer features and
improve the final classification effect.
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Figure 3: Rough framework of the VSD model.
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+e Pytorch DL framework is used to build independent
data loading methods for each category. Meanwhile, to solve
the problem of unbalanced samples, the weight processing
method of weighted cross entropy loss is adopted.+e cross-
entropy loss function can be expressed as follows:

L � − 􏽘
i

ti ∗ log yi, (5)

where yi is the output value of the NN, and ti is the correct
label value.

When using weighted cross-entropy loss, its equation is
shown as follows:

L � − 􏽘
i

a∗ ti ∗ log yi, (6)

a> 1, if i � k,

a � 1, if i≠ k,
􏼨 (7)

where a is the weight parameter, when the category is k class,
the weight value of a is greater than 1, and when the category
is not k class, the weight value of a is equal to 1.

2.4. Design of Simulation Experiment. +e performance of
the improved lightweight target pretest algorithm is mainly
verified on the International Open Autonomous Driving
Database (KITTI). +e KITTI dataset was cofounded by the
Karlsruhe Institute of Technology in Germany and Toyota
American Institute of Technology. It is currently the largest

evaluation dataset of computer vision algorithms in the world
for autonomous driving scenarios. +e hardware equipment
of the relevant experiments is GeForce GTX TITAN X, the
graphics chip is Intel Core i7 CPU@3,40GHz 3.40GHz, the
system is Ubuntu16.04, the programming language is Python,
the training framework is Pytorch, and the DL framework is
tensorflow1.12.0. +e training batch of the model is set to 32,
the learning rate is 0.001, the weight decay factor is 0.0005,
and the maximum number of iterations is 60000.

On the VOC2007 test data, the performance of several
lightweight YOLO series models is compared and analyzed.
+e evaluation indicators include model scale, forward in-
ference time, and mAP.

Several networks such as SqueezeNet, YOLOv-Tiny, and
YOLOv3-Tiny are selected as controls to evaluate the per-
formance of the improved IRDA-YOLOv3 lightweight de-
tection algorithm. Evaluation indicators include structural
parameters (Params), moving average confluence statistics
(MACS), and inference speed (Speed).

3. Results and Discussion

3.1. Performance Comparison of Different Networks in YOLO
DetectionAlgorithm. +e performance of different networks
in the YOLO detection algorithm is compared, and the
results are shown in Figures 6 and 7. Among them, Params
represents the weight parameters of all parameterized layers
of the model in the network; MACS expresses the number of
fixed-point multiply-accumulate operations performed per

Input

CONV*5
POOL*4 Mid CONV*3

POOL*2 Mid CONV*2

Last

Yolo
Concat CONV*2

Last

Figure 5: +e network structure of YOLOv3-tiny.

Figure 4: +e network structure of CNN.
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second; Speed refers to the forward inference time of the
network processing an image when the input image is input.
In the process of improving the model, the feature layer of
the high-dimensional channel is recalibrated with dimen-
sion features mainly for the part near the output layer at the
back end of the network. According to the results in the
figure, it demotes that although SqueezeNet has advantages
in Params and MACS, which is slightly higher than
YOLOv3-Tiny, its Speed indicator is lower than IRDA-
YOLOv3. +e calculation shows that compared with the
YOLOv3-Tiny model, the improved IRDA-YOLOv3 model
reduces the number of parameters by 56.2%, the amount of
computation by 46.3%, and the forward computation time of
the network by 0.2ms. It means that the improved IRDA-
YOLOv3 network can achieve network lightweight.

3.2. Multitarget Detection Performance of Lightweight DL
Networks. Based on the above-given experimental results,
several lightweight models are compared with the IRDA-
YOLOv3model and the performance is evaluated in terms of
the model scale, forward inference time, and mAP. +e
specific results are shown in Figures 8 and 9. +e experi-
mental results indicate that the constructed IRDA-YOLOv3
model incorporates the inverse residual depth, so its

performance is better than that of YOLOv3-Tiny, with a
56.0% reduction in size and parameter performance and a
3.9mAP improvement in detection accuracy.

To more intuitively compare the improvement in de-
tection accuracy performance of IRDA-YOLOv3, the per-
formance of YOLOv3-Tiny and IRDA-YOLOv3 are
compared in different categories of the test set. +e
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Figure 6: Parameter calculation comparison of different networks.
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comparison results of the average accuracies of the two
algorithms on the test set in the car and pedestrian databases
are shown in Figure 10.

3.3. Performance Evaluation of Scene Classification. In the
complex traffic road scene classification, it is very important
to extract effective road scene information from a single
image and train an efficient classification model to

understand the real complex scene. +e multilabel scene
classification model based on the multibranch task approach
achieves the best performance of the model on the 56th
Epoch. In the test set, the comparison of the correct rate of
scene classification for four categories is evaluated, and the
results are shown in Figure 11. It demonstrates that the
multilabel scene classification model can predict various
semantic information of a single image. In practical appli-
cations, it can help the system to determine whether the
current road scene will affect the visual warning.

4. Conclusions

Structural description of scenes in environmental art design
is a comprehensive problem. For detecting objects in a video
scene, it is necessary to organize the relationship between
objects through an appropriate logical language. +e input
image is taken as a feature and extracts low-dimensional
features that can generalize the image statistics or semantics.
+e purpose of this class of methods is to improve the
robustness of scene classification. +e traditional artificial
design features are mostly based on the underlying semantic
feature information of the image, so it is difficult to describe
the high-level semantic information of the image. +e CNN
in DL is used to complete feature extraction, and the learned
features have strong generalization performance.

To ensure that the accuracy and real-time performance
of the model are in a balanced state when dealing with object
detection problems, the YOLOv3-Tiny network is improved.
A lightweight network architecture IRDA-YOLOv3 with a
stable detection effect and small computing power re-
quirement is proposed. +e network uses a multilayer fea-
ture map fusion algorithm for feature fusion, makes full use
of multilayer shallow network features to improve the ac-
curacy of target detection, and uses point convolution to
increase the depth of the network structure. +e constructed
IRDA-YOLOv3 model incorporates the inverse residual
depth, so its performance is better than that of YOLOv3-
Tiny, with a 56.0% reduction in size and parameter per-
formance, and a 3.9mAP improvement in detection accu-
racy. In the scene classification of complex traffic roads, the
classification model of the multilabel scene can predict all
kinds of semantic information of a single image, and the
classification accuracy for the four scenes is more than 90%.
+e constructed lightweight network integrates contextual
feature information, improves the representation ability of
the network, and has a certain value for solving scene
classification problems. However, there is no in-depth
discussion on how to further optimize CNN. +erefore, it is
still a significant direction to improve the performance and
stability of the algorithm in the followup research.
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