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Abstract: Wearable electrocardiogram (ECG) monitoring devices have enabled everyday ECG col-
lection in our daily lives. However, the condition of ECG signal acquisition using wearable devices
varies and wearable ECG signals could be interfered with by severe noises, resulting in great chal-
lenges of computer-aided automated ECG analysis, especially for single-lead ECG signals without
spare channels as references. There remains room for improvement of the beat-level single-lead
ECG diagnosis regarding accuracy and efficiency. In this paper, we propose new morphological
features of heartbeats for an extreme gradient boosting-based beat-level ECG analysis method to
carry out the five-class heartbeat classification according to the Association for the Advancement of
Medical Instrumentation standard. The MIT-BIH Arrhythmia Database (MITDB) and a self-collected
wearable single-lead ECG dataset are used for performance evaluation in the static and wearable
ECG monitoring conditions, respectively. The results show that our method outperforms other
state-of-the-art models with an accuracy of 99.14% on the MITDB and maintains robustness with an
accuracy of 98.68% in the wearable single-lead ECG analysis.

Keywords: heartbeat classification; single-lead ECG; ECG database; wearable; XGBoost

1. Introduction

Arrhythmia refers to any changes of the normal electrocardiography (ECG) signals,
that is, the electrical impulses causing abnormal heart rhythms, which are characterized by
transience, paroxysm, and usually with no obvious symptoms [1]. In the field of arrhythmia
detection, beat-level arrhythmia analysis based on everyday ECG signals has become a
valuable and promising technique for the prevention and early detection of patients with
arrhythmias [2]. With the innovation of mobile health technologies, clinical-level wearable
ECG monitoring devices with limited lead channels have been designed in a variety
of physical forms, e.g., card-type [3], watch-type [4], and patch-type [5] and applied in
dedicated clinical diagnosis and treatment scenes like immediate real-time monitoring and
ultra-long-term monitoring. These devices are now becoming the main source of everyday
ECG signals gradually.

However, as we could obtain massive ECG signals from wearable ECG monitoring
devices nowadays, it remains a challenging task for the computer-aided automated analysis
of arrhythmia based on ECG signals [6]. This is due to the fact that the condition of ECG
signal collection is commonly different and wearable ECG signals could be interfered with
by severe noises, especially for those ECG signals collected using wearable single-lead
ECG monitoring devices deployed in the environment of daily life usage. Automated
wearable single-lead ECG signal analysis is of great significance to the monitoring of
everyday cardiac activity for the detection of abnormal heart conditions, in which case
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human monitoring and interpretation are not feasible for the real-time or ultra-long-term
ECG signal diagnosis requirement regarding the timeliness, efficiency, operability, and
even accuracy [2].

Heartbeat classification, i.e., the beat-level ECG analysis, is the most common way
for automated arrhythmia diagnosis [7]. The generic pipeline of the machine-learning-
based beat-level ECG analysis includes signal denoising, heartbeat detection, handcrafted
feature extraction, and heartbeat classification. For deep-learning-based methods, the
handcrafted feature extraction could be replaced by the data-driven deep feature extraction,
and the given data are usually the beat-by-beat ECG fragments instead of the complete
ECG sequences. Since every cardiac cycle could be diagnosed through beat-level ECG
analyzation and annotation, the heartbeat classification is the most widely applied method
for computer-aided automated ECG analysis. Yet, most methods perform well on ECG
datasets with conventional static ECG signals, while they suffer from the analysis of
wearable single-lead ECGs.

In this paper, we propose an extreme gradient boosting (XGBoost) [8] based beat-level
ECG analysis method with new handcraft features for a robust automated diagnosis of
wearable single-lead ECG. We design a set of five-dimensional morphological features
regarding QRS complexes and RR intervals, as well as some wavelet coefficient charac-
teristics, to build our feature vector for highly efficient heartbeat classification, and we
divide all heartbeats into five classes, i.e., supraventricular ectopic beats (S), ventricular
ectopic beats (V), the fusion of ventricular and normal beats (F), paced beats (Q), and other
types of heartbeats (N), referring to the standard of the Association for the Advancement
of Medical Instrumentation (AAMI) [9].

We adopted the widely used MIT-BIH Arrhythmia Database (MITDB) [10] to evaluate
the performance of beat-level ECG analysis and compare our method with other state-of-
the-art models. Moreover, we built a wearable single-lead ECG database with the beat-level
annotation using a clinical-level patch-type ECG device approved by the National Medical
Products Administration (NMPA) of China, to evaluate different methods in the realistic
wearable ECG monitoring scenario. The results showed that our method achieved the
highest accuracy in both the static and wearable ECG analysis tasks among the state-of-the-
art methods. An overview of our study is shown in Figure 1.
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Figure 1. The overview framework of our study, including the framework of the proposed method (blue) and the overview
of the conducted experiment (green).

The main contributions of this paper are summarized as follows.

1. We proposed three novel morphological features, which form an effective morpho-
logical feature set with two well-used morphological features. Further, we combined
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a morphological feature set and wavelet coefficient characteristics as the handcraft
features of XGBoost to achieve the best performance on both databases;

2. We built a dedicated ECG database to evaluate the performance of the proposed
heartbeat classification method, as well as other state-of-the-art methods, especially
for the accuracy analysis of these methods on wearable single-lead ECG signals under
an everyday ECG monitoring scenario.

2. Related Work
2.1. Arrhythmia Classification Methods

In the recent past, researchers have attempted to classify arrhythmias on the heartbeat
level using many different machine learning algorithms, such as K-nearest neighbors
classifiers [11], the fuzzy clustering neural network [12], the adaptive neural network [13],
decision trees [14], Bayesian classifiers [15], the support vector machine (SVM) [16], the
convolutional neural network (CNN) [17–19], and the deep residual network (ResNet) [20].

For those handcrafted feature-based methods, Jekova et al. [11] applied the K-nearest
neighbors classifier with features including the maximum peak/valley amplitude, the
peak/valley area, RR intervals, the slope of QRS, etc., to classify the heartbeats. Özbay
et al. [12] divided the ECG signals into 200-point heartbeat fragments and sent them to
the fuzzy clustering neural network for a ten-class heartbeat classification with the hidden
layer optimization. Barro et al. [13] created heartbeat templates based on the morpho-
logical characteristics of the heartbeats, and sent them to an adaptive neural network
for multi-lead ECG heartbeat classification. This network could adaptively evaluate the
signal quality of each input lead and select the best lead signal as the main basis for the
classification. Mohanty et al. [14] performed a five-class heartbeat classification by extract-
ing a 13-dimensional feature vector of ECG signals and utilizing the C4.5 decision tree
method; Marinho et al. [15] combined the Fourier transform, Goertzel algorithm, higher-
order statistics, and the structural co-occurrence matrix for feature extraction and analyzed
heartbeats using the Bayesian classifier to achieve a highly efficient classification. Lastly,
Mondéjar-Guerra et al. [16] applied the product rule to fuse SVMs for each type of feature
and carry out the final classification result.

Several studies also introduced deep learning methods into ECG analysis. Zhai
et al. [17] transformed the ECG beats into a dual-beat coupling matrix as two-dimensional
inputs to the CNN (2D CNN) and classified the heartbeats into five categories. Gol-
rizkhatami et al. [18] combined the multi-stage CNN features and the handcrafted features
with a decision-level fusion using three classifiers to achieve the five-class heartbeat classi-
fication. Romdhane et al. [19] applied two CNN blocks with the focal loss function and RR
interval-related segmentation to improve the classification task. Li et al. [20] used ResNet
to process 2-lead ECG signals in combination and achieved a high heartbeat analysis
performance.

In general, the heartbeat classification based on traditional machine learning methods
such as K-nearest neighbors and SVM still has certain room for improvement in classifica-
tion performance, while deep learning methods such as CNN have better performances
as the classifier yet bring in heavy calculation and training time costs at the same time.
Meanwhile, most studies continue to merely use ECG databases with good signal quality,
e.g., the MITDB, to evaluate the performance of heartbeat classification. However, the
situation could be different when facing ECG signals in wearable conditions.

2.2. Database for Evaluating Classification Methods

Due to the unbalanced development of traditional databases and dynamic databases,
most published heartbeat classification methods used the following public standard ECG
database:

1. The MIT-BIH database (MITDB) [10,21] is the first widely referenced database for
arrhythmia classification. This database provides 48 two-channel half-hour ECG
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recordings (360 samples per second), which were annotated by at least two cardiolo-
gists;

2. The MIT-BIH Atrial Fibrillation database (AFDB) [21] includes 25 two-channel ECG
records of subjects with atrial fibrillation. Each ECG record (one per patient) lasts 10 h
and the sampling frequency is 250 samples per second;

3. The St. Petersburg Institute of Cardiological Technics (INCART) [21] contains
75 half-hour ECG recordings, extracted from 32 Holter recordings (one per patient).
The sample rate for the 12-lead ECGs is 257 samples per second;

4. The AHA database [22] can be obtained after paying a fee on the emergency care
Research Institute website. This database contains 155 recordings covering 8 types
of arrhythmias. Each original ECG record (one per patient) lasts 3 h in total and was
divided in periods of at least half an hour. Twelve lead ECGs were collected with a
sampling frequency of 250 samples per second and 12 bits of precision;

5. The Physikalisch-Technische Bundesanstalt database (PTB) [21,23] includes 549
15-channel (12 + 3 Frank-lead) ECG recordings, digitized at 10 kHz per channel
with 16-bit resolution. These recordings were obtained from 290 subjects in the age
range of 17–87 years;

6. The supraventricular arrhythmia database (SUPRA) [21] consists of 78 half-hour ECG
recordings obtained from 78 patients who experienced supraventricular arrhythmia.
The information was digitized in twelve ECG channels with 125 samples per second
and 12 bits of precision;

7. The PHYSIOBC [24] is a new database built in Mexico. This database contains
182 ECG records of 91 patients, ranging in age from 18 to 70.

For the dynamic database, relevant studies have been published in recent years;
however, there remains no public, wearable ECG database. Shen et al. [25] used a limb
two-lead wearable device to collect real-time ECG data and built a wearable ECG database.
The authors claimed that 2000 30-s records were collected from more than 200 subjects
diagnosed with heart disease.

3. Materials and Methods

The proposed XGBoost method shown in the blue box of Figure 1 can realize fast and
effective automatic heartbeat classification. We first preprocess the ECG signal containing
various noises to improve the signal quality, and divides the ECG signal into heartbeat
fragments according to the cardiac cycle; then, we extract the morphological features of
each heartbeat fragment and perform discrete wavelet decomposition to obtain the wavelet
coefficient features, generate heartbeat feature vectors, and use XGBoost classifiers to train
the beat-level classification models; finally, the trained model can automatically divide
heartbeats into five AAMI categories, i.e., N, S, V, F, and Q.

3.1. Signal Preprocessing

The original raw ECG signals, especially wearable ECGs, commonly contain a variety
of noises, such as baseline wandering, power frequency interference, electromyography
(EMG) interference, etc. Signal denoising could contribute to improve the signal-to-noise
ratio and reduce the impact of noises on beat-level classification. In this study, we use
the method we proposed in [26] to preprocess the ECG signals and detect the R-peak.
Several techniques such as de-averaging, median filtering, and finite impulse response
(FIR) filtering are applied to perform primary denoising, as shown in Algorithm 1. Then,
the Kalman filter is used to suppress the EMG noises of ECG signals, while maintaining the
QRS regions for the R-peak detection. The R-wave peak positions are further determined
by the wavelet-based method [27] and used to extract heartbeat fragments of each cardiac
cycle in ECG signals.
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Algorithm 1 The proposed ECG preprocessing algorithm: Primary Denoising

Symbol setting:
sr: the sample rate of ECG signals
yr: raw ECG signals
yf: filtered ECG signals
amedian: the parameter of the median filter
fl/ fu & forder: the lower/upper cut-off frequency and order of the band-pass FIR filter
betaKaiser: the parameter of the Kaiser window
mean(): mean function
round(): rounding function
Process:
A. Remove the direct current (DC) component and baseline drift in ECG signals

Step 1: DC component removing: y1 = yr −mean(yr)
Step 2: Preliminary removal of the baseline wandering:

if round(amedian × sr) is an odd number,
pmedian = round(amedian × sr);

else
pmedian = round(amedian × sr) + 1;

end
Perform pmedian points median filtering on y1 to obtain y2;

B. Filter ECG signals:
Step 3: Construct the FIR filter according to fl , fu and forder;
Step 4: Calculate the Kaiser window according to forder and betaKaiser;
Step 5: Apply the windowed FIR filter to process y2 and obtain y3;

C. Further removal of the baseline drift
Step 6: Perform pmedian points median filtering on y3 to obtain yf.

3.2. Feature Extraction

Many heartbeat features including morphological features and wavelet features were
proposed [28–30] and made different levels of contribution to the beat-level classification
performance. In order to facilitate our feature extraction of ECGs in MITDB, extracted
heartbeat fragments are truncated to 151 sample points, including 50 sample points before
the R-peak point, the R-peak point itself, and 100 sample points after the R-peak point.
Note that we choose the input sample points, the parameters in feature extraction, and
write the experimental code according to the sampling frequency of the most referenced
MITDB, which is 360 Hz. When the sampling frequency of the input signal is not 360 Hz,
we would resample it to 360 Hz or scale the input sample points and the parameters we
provided in this paper.

Morphological features and wavelet features are extracted from each heartbeat frag-
ments. We use a total of five morphological features, including the well-used previous RR
interval, i.e., RRpre and the local heart rate variability HRVloc as in Equation (1):

HRVloc = RRpos − RRpre (1)

where RRpos is the RR interval of the next heartbeat of the current one. In addition, we
present three novel morphological features, i.e., the area ratio of the left and right sides
of the R-peak, i.e., Ratiolr, the area ratio of the above and below the fiducial line, i.e.,
Ratioud, and the amplitude difference within the duration of 220 ms, where the ratio of
the duration before R-wave peak to the duration after R-wave peak is 3:5, i.e., Di f , as in
Equations (2)–(4), where hb(i) is the amplitude of the ith point of a heartbeat fragment.

Ratiolr = ∑ 50
i=1hb(i)/ ∑ 151

i=52hb(i) (2)

Ratioud = ∑ hb(i) > 0/ ∑ hb(i) < 0 (3)

Di f = max[hb]−min[hb], hb = {hb(i)| i ∈ [21, 101]} (4)
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For wavelet features of ECG heartbeats in MITDB, we used the combination of ap-
proximation coefficients at level 4, i.e., a4, and detail coefficients at levels 3 and 4, i.e., d3
and d4, with the wavelet decomposition filter bank as shown in Equations (5) and (6).

LoD = [0.000, 0.125, 0.375, 0.375, 0.125, 0.000] (5)

HiD = [−0.0061,−0.0868,−0.5798, 0.5798, 0.0868, 0.0061] (6)

These 51 coefficients are thus derived as the wavelet features for each heartbeat. Finally,
the morphological features and the wavelet decomposition coefficient features are built
as a 56-dimensional feature vector, which is used for the XGBoost heartbeat classification
training process.

3.3. XGBoost Classifier

XGBoost belongs to the Boosting family, which is fast and can be accelerated by
parallel computing. The objective function of the XGBoost is shown in Equation (7):

Obj(n) = ∑ M
m=1L

(
ym, ŷ(n−1)

m + fn(xm)
)
+ Ω( fn) + constant (7)

where L is the training loss function, ŷ(n−1)
m is the prediction result of the previous n− 1

trees, fn(xm) is the prediction result of the nth tree; β Ω is a regularization term. The
definition of Ω( fn) is as Equations (8) and (9):

Ω( fn) = γT +
1
2

λ ∑ T
t=1ω2

t (8)

fn(x) = ωq(x) (9)

where γ and λ are the pseudo-regularization hyperparameter that controls the complexity
of the model and helps to avoid the overfitting, T is the number of leaves, ω2

t is the L2 norm
for leaf weights ω, which is the classification category in the classification problem, and q
is the mapping relationship between each sample value and the leaf node, representing the
structure of the tree.

Removing the constant in Equation (7) and applying the Taylor expansion approxima-
tion of the loss function, it becomes Equation (10):

Obj(n) = ∑ M
m=1

[
gm fn(xm) +

1
2

hm f 2
n(xm)

]
+ Ω( fn) (10)

where gm and hm are the first- and second-order gradients of the loss function, respectively,
as in Equations (11) and (12):

gm = ∂ŷ(n−1) L(ym, ŷ(n−1)) (11)

hm = ∂2
ŷ(n−1) L(ym, ŷ(n−1)) (12)

Furthermore, we could derive the final objective function by parameterizing the
regularization term and introducing the tree structure q(x), as in Equation (13):

Obj(n) = −1
2 ∑ T

t=1

(
∑m∈It gm

)2

∑m∈It hm + λ
+ γT (13)

where It = {m|q(xm) = t} is the region defined by the leaf node T. The training process
could make full use of the advantages of parallel computing to realize fast model training,
since the XGBoost optimized its performance on multi-core CPUs.
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3.4. Evaluation Metrics

In this paper, the sensitivity (Se), precision (+P), accuracy (Acc), and F1 score (F1) were
derived for the classification performance evaluation of methods, as in Equations (14)–(17).

Se = TP/(TP + FN)× 100% (14)

+ P = TP/(TP + FP)× 100% (15)

Acc = (TP + TN)/(TP + TN + FP + FN)× 100% (16)

F1 = 2× TP/(2× TP + FP + FN)× 100% (17)

where TP is the number of true positive cases, TN is the number of true negative cases, FP
is the number of false positive cases, and FN is the number of false negative cases.

3.5. Study Population

In this paper, both the widely used MITDB [10] and a self-collected wearable single-
lead ECG database were collected using the NMPA-cleared CarePatch™ ECG patch
(NMPA#ZJ20202070050) were adopted for performance evaluation.

3.5.1. MITDB

The MITDB is a dataset of standard test material used for the evaluation of arrhythmia
detectors and classifiers since 1980 in innumerable scientific works. It contains 48 2-channel
ECG signals of 30 min, with a sample rate of 360 Hz and a resolution of 11 bits. According
to the AAMI standard [9], we mapped the MITDB heartbeat classes to the AAMI classes
and divided them into the training set DS1 and the test set DS2 as described in Table 1 [31]
to make a fair comparison with other state-of-the-art methods. The label mapping rule and
the heartbeat distribution of each class are shown in Table 2.

Table 1. Evaluation scheme of the MITDB.

Dataset Index of MITDB Recordings Amount

DS1
101 106 108 109 112 114 115 116 118 119 122

22124 201 203 205 207 208 209 215 220 223 230

DS2
100 103 105 111 113 117 121 123 200 202 210

22212 213 214 219 221 222 228 231 232 233 234

The recordings 102, 104, 107, and 217 were excluded since they are paced ECGs.

Table 2. Evaluation scheme of the MITDB heartbeat samples.

AAMI Class MITDB Class Sum DS1 DS2

N NOR, LBBB, RBBB, AE, NE 91,043 45,486 45,557

S AP, aAP, NP, SP 2791 1411 1380

V PVC, VE 7235 3700 3535

F fVN 797 385 412

Q P, fPN, U 8002 3952 4050

Total amount 109,868 54,934 54,934

3.5.2. CarePatch™ ECG Patch Database

Since wearable ECG monitoring suffers from disturbances introduced by people’s
daily activities, the long-term single-lead ECGs collected by wearable devices usually
contain more heartbeat patterns and noise interference during many days of continuous
wearing than resting ECGs. As wearable ECGs put forward higher requirements on the
ECG analysis algorithms, it is difficult to evaluate the existing algorithms for wearable
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single-lead ECG analysis, due to the lack of such an ECG database with heartbeat anno-
tations. Therefore, building a wearable single-lead ECG database is of great significance
to the feasibility study of the computer-aided automated arrhythmia diagnosis for daily
wearable ECG signals.

The CarePatch™ ECG patch database (CPPDB) contains 123 30-min wearable single-
lead recordings of 123 patients’ daily ECG data collected from July 2017 to February 2020.
Since certain arrhythmias attack occasionally and transiently, these patients were requested
to wear the CarePatch™ ECG patch continuously for as long as possible within 7 days (the
patch is cleared for 7-day continuous ECG monitoring). The device collected the wearable
non-standard lead ECG signals at the recommended electrode location [32] as shown in
Figure 2. The sample rate of the ECG signals is 256 Hz, and the resolution is 12-bit. As a
result, the average duration of the raw ECG data was 104.10 h, and we further selected
30-min continuous ECG fragments from each of these raw data to compose a dataset with
as many arrhythmia heartbeats as possible. The basic information of the CPPDB is listed in
Table 3. Due to the privacy issue, one patient did not register the gender and 29 patients
did not register their age.
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Table 3. The basic statistics of the samples from the CPPDB.

Variables Statistics Remarks

Participant summary 123 patients 55 males, 67 females 1 not registered

Age, years (mean ± SD 1) 49 ± 23 min: 1, max: 93 29 not registered

Raw data duration, hours (mean ± SD 1) 104.10 ± 56.74 min: 1.64, max: 176.95 -
1 “SD” refers to the standard deviation.

Consistent with the MITDB dataset, the heartbeats in these recordings were annotated
as N, S, V, F, and Q, five classes, by a consensus committee of three expert cardiologists.
The examples of the samples in each heartbeat class are shown in Figure 3, where the
background stands for standard ECG paper and the small box represents 40 ms on the
interval and 0.1 mV on the amplitude. Table 4 shows the number of each heartbeat category
in the database and the training set as well as the test set, respectively. In the future,
the CPPDB would be made partially available to other researchers with the same ethical
standards.
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Table 4. Data distribution of the CPPDB

Class Total Amount Training Set Test Set

N 217,165 108,583 108,582

S 3772 1886 1886

V 8031 4015 4016

F 73 37 36

Q 1358 679 679

Sum 230,599 115,300 115,299

4. Results
4.1. Experimental Settings

The system configuration of the test platform was Matlab R2018a and Python 3.6.8
running on Ubuntu 16.4.7. The server featured Intel® Xeon® CPU E5-2678 v3 (12/24
cores/threads, 2.5/3.1 GHz base/turbo) and 112 GB 2400 MHz DDR4 RAM. In addition,
the experiment involving the CNN for comparison used two Nvidia® GeForce® RTX 2080Ti
GPUs (1350/1454 MHz base/boost with 11GB GDDR 6 VRAM).

During the ECG preprocessing stage, we optimized the filter parameters by the grid
search method. The amedian, fl , fu, forder, and betaKaiser were set to 0.9, 0.05 Hz, 40 Hz,
341, and 4.538, respectively. Then we trained our model using the toolkit in the XGBoost
python module. The “objective” refers to the learning task and corresponding target, which
was set to “multi:softmax”, and the “eval_metric” defines the evaluation index used for
the verification, which was set to “merror” to use the multi-classification error rate. The
“min_child_weight” and “scale_pos_weight” refer to the sum of the weight of the smallest
sample in the leaf node and the sample imbalance correction coefficient, respectively, which
were both set to “1”.

For other parameters, we also ran the grid search to find the optimal values, as
shown in Table 5. Estimators are the basic decision tree as the “n_estimators” refers to
the number of trees. Generally, the more basic decision trees, the less likely the model
is overfitted. However, too many decision trees will also result in a more complicated
model. The “max_depth”, “subsample”, and “colsample_bytree” are three important
tree-based parameters. A greater max depth of the tree usually results in a more specific
machine learning model. Yet an overly large “max_depth” may also cause overfitting.
Reducing the proportion of random sampling of subtrees could enhance the generalization
ability of the model. Meanwhile, the parameter “colsample_bytree” is the number of
the feature randomly selected for the training of each tree expressed as a fraction of
features. Two parameters regarding the learning process should be optimized as well. The
parameter “reg_alpha” refers to the L1 regularization term on weights and could help to
reduce overfitting. Finally, ‘eta’ is analogous to the learning rate, which makes the model
more robust by shrinking the weights on each step. The detailed tuning process of these
parameters is presented in Appendix A.
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Table 5. Adjustment process of important parameters of XGBoost.

Parameter Initial Value Tuning Range Step

n_estimators (coarse-grained)
n_estimators (fine-grained)

- 10–300 10
- 160–180 1

max_depth 5 2–20 1
subsample 0.8 0.05–1 0.05

colsample_bytree 44/56 1/56–1 1/56
reg_alpha 0 0–0.05 0.005

eta 0.17 0.01–0.3 0.01

To sum up, the final selected parameters used for model training are illustrated
in Table 6. All parameters were optimized using the MITDB. Furthermore, once these
parameters were set, they were directly applied to the training using the CPPDB without
searching again for a fair comparison with other methods.

Table 6. The optimized parameters of XGBoost.

Parameter Value

n_estimators 164
max_depth 11
subsample 0.6

colsample_bytree 48/56
reg_alpha 0.01

eta 0.2

4.2. Experimental Results

We first analyzed the impact of the proposed morphological features on the XGBoost
method by deriving the relative importance based on the weight of features, which is the
number of times a feature is used to split the data across all trees. As shown in Figure 4,
although the morphological features only had five dimensions, they played an important
role in heartbeat classification as each feature contributed 6.74% of the feature weight on
average. Meanwhile, the average contribution of the feature weight for wavelet features
was 1.3%. Therefore, the morphological features had a significant effect on the model.
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Figure 5 presents the confusion matrix of our method on the MITDB and Table 7 gives
the averaged Acc and detailed results of Se, +P, as well as F1 for each type of heartbeats
among different methods. Our method outperforms other state-of-the-art methods re-
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garding the averaged classification accuracy and achieves the highest performance for the
remaining three indicators in N-type and Q-type heartbeats among these methods.

Sensors 2021, 21, x FOR PEER REVIEW 11 of 20 
 

 

Figure 5 presents the confusion matrix of our method on the MITDB and Table 7 
gives the averaged 𝐴𝑐𝑐 and detailed results of 𝑆𝑒, +𝑃, as well as 𝐹1 for each type of 
heartbeats among different methods. Our method outperforms other state-of-the-art 
methods regarding the averaged classification accuracy and achieves the highest 
performance for the remaining three indicators in N-type and Q-type heartbeats among 
these methods. 

 
Figure 5. The confusion matrix of the proposed method on the MITDB. 

Table 7. The performance comparison with the state-of-the-art methods on the MITDB 

Ref. 
𝑨𝒄𝒄 
(%) 

N S V F Q 𝑺𝒆 
(%) 

+𝑷 
(%) 

𝑭𝟏 
(%) 

𝑺𝒆 
(%) 

+𝑷 
(%) 

𝑭𝟏 
(%) 

𝑺𝒆 
(%) 

+𝑷 
(%) 

𝑭𝟏 
(%) 

𝑺𝒆 
(%) 

+𝑷 
(%) 

𝑭𝟏 
(%) 

𝑺𝒆 
(%) 

+𝑷 
(%) 

𝑭𝟏 
(%) 

[16] 94.47 95.9 98.2 - 78.1 49.7 - 94.7 93.9 - 12.4 23.6 - - - - 
[17] 96.58 97.6 98.5 - 76.8 74.0 - 93.8 92.4 - 79.6 62.4 - - - - 
[18] 98.00 99.4 98.6 99.0 75.6 96.8 84.9 93.8 95.1 94.4 85.8 65.7 74.4 - - - 
[19] 98.41 99.5 99.0 99.2 77.9 87.7 82.3 94.5 95.7 95.1 82.1 83.7 82.9 98.5 99.3 98.9 
[20] 99.06 99.7 99.3 99.5 89.3 95.0 92.0 97.8 97.7 97.7 80.4 92.0 85.8 98.9 99.7 99.3 

Ours 99.14 99.8 99.3 99.6 87.1 97.6 92.1 97.4 97.9 97.6 78.2 93.9 85.3 99.0 99.7 99.4 
“-” means the corresponding value was not provided originally or could not be calculated. 

For the S-type and V-type heartbeats, our method is better than [16–19] for sensitivity, 
precision, and F1 score. The sensitivity of the 2-lead ResNet method [20] is higher than 
that of ours by 2.2% and 0.4% for S-type and V-type heartbeats, respectively. However, 
the corresponding precision of our method is higher than that of [20] by 2.6% and 0.2%, 
where the F1 scores are very close to each other. For the F-type heartbeats, although CNN 
methods [18,19] have a higher sensitivity than our methods, their precision is significantly 
lower; the 2-lead ResNet method [20] has a higher sensitivity and F1 score than our 
method, while our method has higher precision. Nevertheless, different from other 
methods, the ResNet method in [20] used the 2-lead ECG signals to analyze the heartbeat, 
where combining the heartbeat classification probabilities provided by the corresponding 
heartbeats in the two leads of the MITDB should improve the heartbeat analysis 
performance. However, when facing single-lead ECG signals, the lack of additional lead 
information would affect the performance of the multi-lead ECG-based method and limit 
its application in wearable ECG monitoring scenarios. 

To further evaluate methods for the wearable single-lead ECG signals, we trained 
our method on the self-collected wearable single-lead ECG databases, i.e., the CPPDB. 

Figure 5. The confusion matrix of the proposed method on the MITDB.

Table 7. The performance comparison with the state-of-the-art methods on the MITDB

Ref.
Acc
(%)

N S V F Q

Se
(%)

+P
(%)

F1
(%)

Se
(%)

+P
(%)

F1
(%)

Se
(%)

+P
(%)

F1
(%)

Se
(%)

+P
(%)

F1
(%)

Se
(%)

+P
(%)

F1
(%)

[16] 94.47 95.9 98.2 - 78.1 49.7 - 94.7 93.9 - 12.4 23.6 - - - -
[17] 96.58 97.6 98.5 - 76.8 74.0 - 93.8 92.4 - 79.6 62.4 - - - -
[18] 98.00 99.4 98.6 99.0 75.6 96.8 84.9 93.8 95.1 94.4 85.8 65.7 74.4 - - -
[19] 98.41 99.5 99.0 99.2 77.9 87.7 82.3 94.5 95.7 95.1 82.1 83.7 82.9 98.5 99.3 98.9
[20] 99.06 99.7 99.3 99.5 89.3 95.0 92.0 97.8 97.7 97.7 80.4 92.0 85.8 98.9 99.7 99.3
Ours 99.14 99.8 99.3 99.6 87.1 97.6 92.1 97.4 97.9 97.6 78.2 93.9 85.3 99.0 99.7 99.4

“-” means the corresponding value was not provided originally or could not be calculated.

For the S-type and V-type heartbeats, our method is better than [16–19] for sensitivity,
precision, and F1 score. The sensitivity of the 2-lead ResNet method [20] is higher than
that of ours by 2.2% and 0.4% for S-type and V-type heartbeats, respectively. However, the
corresponding precision of our method is higher than that of [20] by 2.6% and 0.2%, where
the F1 scores are very close to each other. For the F-type heartbeats, although CNN meth-
ods [18,19] have a higher sensitivity than our methods, their precision is significantly lower;
the 2-lead ResNet method [20] has a higher sensitivity and F1 score than our method, while
our method has higher precision. Nevertheless, different from other methods, the ResNet
method in [20] used the 2-lead ECG signals to analyze the heartbeat, where combining the
heartbeat classification probabilities provided by the corresponding heartbeats in the two
leads of the MITDB should improve the heartbeat analysis performance. However, when
facing single-lead ECG signals, the lack of additional lead information would affect the
performance of the multi-lead ECG-based method and limit its application in wearable
ECG monitoring scenarios.

To further evaluate methods for the wearable single-lead ECG signals, we trained our
method on the self-collected wearable single-lead ECG databases, i.e., the CPPDB. Since
we collected these ECG recordings in a daily, unlimited-use environment, the signals could
well reflect the real-world wearing situation, and they were introduced to complicated noise
situation as well. As can be seen in Figure 6, the relative importance of the morphological
features saw a further rise by a total of 3.7% when facing the wearable single-lead ECG
signals, suggesting these features could better distinguish different types of heartbeats
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from ECG signals in daily monitoring condition and help maintain the robustness of the
algorithm for wearable single-lead ECG. The confusion matrix of the proposed method on
the CPPDB is shown in Figure 7. Since the amount of the F-type heartbeats in CPPDB is
significantly less than that of the MITDB, the F-type classification in CPPDB could benefit
from smaller intra-class differences and result in improved performance. Regarding the
heartbeat classification of the remaining four classes, there existed varying degrees of
performance loss due to more complicated daily environmental noises and more heartbeat
patterns that wearable devices can obtain in long-term monitoring.
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We also reproduced the open-source methods above [16,17] on the CPPDB. Notice
that the algorithm parameters of our method were determined using the MITDB to avoid
data leakage in parameter tuning for a fair comparison with the provided open-source
models. The results in Table 8 indicate that all three methods suffered from the realistic fair
signal quality of the wearable single-lead ECG with the accuracy loss. Still, our method
outperforms the hand-crafted feature-based SVM method [16] and the deep-learning-based
CNN method [17] for all four performance indicators in the average of the five heartbeat
classes.
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Table 8. The performance comparison on the CPPDB.

Ref. Acc (%) Se (%) +P (%) F1 (%)

[16] 94.39 90.75 88.94 89.20

[17] 95.31 87.32 84.17 85.83

Ours 98.68 91.03 91.89 91.39

Table 9 listed the running time of the three methods tested on the baseline MITDB.
The running time was calculated by first obtaining the start time and end time of the
corresponding code of different methods, and then subtracting the two time points. The
MATLAB code was realized through the combination of function “tic” and function “toc”,
and the Python code was realized through the function “time”. Notice that the CNN
method [17] required GPU for training, while the SVM method [16] and our method only
relied on CPU. We could observe that our method cost less training time than the other two
methods without the GPU acceleration, where the feature extraction stage occupied about
90% of the duration. For the test phase, the ECG analysis time of our method was also the
least among these three methods with less than a second for 30-min single-lead ECGs with
CPU only, and the proportion of the feature extraction time consumed decreased to about
60%. On the other hand, the CNN method spent an average time of 8.55 s for a 30-min
single-lead ECG analysis, even though it benefited from the parallel computing of GPU.

Table 9. The running time comparison for different methods on the MITDB.

Ref.
Time of the Training Phase 1 (min) Time of the Test Phase 1,2 (s)

Feature
Extraction

Classifier
Training Total Time Feature

Extraction
Classifier
Inference Total Time

[16] 23.36 ± 0.56 4.69 ± 0.01 28.05 ± 0.58 0.51 ± 0.00 0.63 ± 0.00 1.15 ± 0.00

[17] - - 28.74 ± 0.35 - - 8.55 ± 0.02

Ours 22.11 ± 0.11 2.42 ± 0.02 24.53 ± 0.13 0.49 ± 0.00 0.33 ± 0.00 0.82 ± 0.00
1 The data are presented in the form of “average value ± standard deviation”. 2 The test time was the average analysis duration for each
lead of MITDB recordings that contains 30-min ECG.

We also discussed the performance of our method under long-term monitoring and
whether our method can analyze input signals in real time. Specifically, we measured the
inference time of our method when the duration of the input signal is different. The five
ECG recordings with durations from 30 min to 360 min were selected from the CarePatch™
ECG patch database. For each recording, we conducted five repeated experiments on the
same hardware environment. It can be seen from Table 10 that the inference time basically
increases linearly with the duration of the input signal, which is consistent with the time
complexity O(n) of our method, indicating that our method could process ECG signals
under long-term monitoring conditions.

For the “real-time”, there remain no unified provisions on whether the heartbeat
classification method is real-time. It is generally believed that when the collected ECG
segment (the duration is usually 500 ms or 1 s) was input to the heartbeat classification
method, if the method can obtain the results before the input of the next ECG segment,
the method is considered to be real-time. We used the test set DS2 of MITDB to conduct
the real-time experiment. We divided 22 ECG recordings into 500 ms or 1 s segments,
respectively, and input them into our trained method to obtain the average inference time.
The inference time in Table 11 indicates that our method could classify the heart beats in
real time in the test environment.



Sensors 2021, 21, 5290 14 of 20

Table 10. The inference time for different duration of input signals.

ECG Recording
Duration

Time of the Method Inference 1 (s)

Feature Extraction Classifier Inference Total Time

30min 0.52 ± 0.08 0.32 ± 0.04 0.84 ± 0.14

60min 0.99 ± 0.11 0.59 ± 0.07 1.59 ± 0.19

90min 1.59 ± 0.13 0.91 ± 0.06 2.50 ± 0.20

120min 2.12 ± 0.13 1.22 ± 0.05 3.34 ± 0.19

180min 3.28 ± 0.16 1.79. ± 0.07 5.08 ± 0.26

360min 6.72 ± 0.21 3.56 ± 0.09 10.30 ± 0.34
1 The data are presented in the form of “average value ± standard deviation”.

Table 11. The inference time for different duration of ECG segments.

Duration
Time of the Method Inference 1 (ms)

Feature Extraction Classifier Inference Total Time

500 ms 26.34 ± 0.11 16.25 ± 0.05 42.62 ± 0.17

1 s 33.21 ± 0.12 17.28 ± 0.04 51.07 ± 0.19
1 The data are presented in the form of “average value ± standard deviation”.

5. Discussion
5.1. Pros and Cons of the XGBoost Method

Compared with traditional machine learning methods, the proposed XGBoost-based
beat-level ECG analysis further improved the accuracy of the heartbeat classification by
mining the morphological characteristics and wavelet coefficient characteristics in the
heartbeat fragments. The XGBoost algorithm avoids model redundancy as well as the
over-fitting problem, and reduces the feature dimension required for the model training by
adding a regular term about the model to the objective function; in addition, since XGBoost
aims at parallelization, the processing is optimized with the feature blocks preferentially
generated at the feature level, so that the feature blocks in the iterative process could be
called repeatedly, and the gain calculation of each feature could be derived in parallel
through multi-threading. Therefore, compared with the beat-level ECG analysis method
based on deep learning, the XGBoost method has a more concise model description and
lower training cost, which would enable future high-accuracy personalized ECG models
and algorithm deployment in mobile computing scenarios.

Since the feature vector generation of the algorithm proposed in this paper is based
on each heartbeat fragment, this method is more feasible for the short-term ECG analysis,
while the long-term one based on the heartbeat feature extraction would introduce high
computational costs for heartbeat segmentation and feature deriving. Furthermore, S and V
heartbeats as well as F and V heartbeats have similar characteristics, hence the handcrafted
features might limit the performance of the classifier for these two groups of different
heartbeats. New heartbeat features could be introduced for the above categories, such as
the indicator of the P wave existence, etc., to improve the accuracy of the beat-level ECG
analysis.

5.2. The Wearable Single-Lead ECG Database

The results showed that all the methods suffered from performance loss on the self-
collected wearable single-lead ECG database. Although various algorithms have been
proposed and evaluated on widely used open-source ECG databases like MITDB and
achieved high accuracies, the studies on automated ECG analysis are still limited by the
lack of ECG data, resulting in decreasing performance in realistic clinical applications
and a massive proofreading workload of ECG interpretations for medical staff. Most of
the publicly available ECG databases contained few subjects, i.e., less than 200 persons,
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and were collected in the resting condition [33] with relatively good signal quality. Not
to mention, the channels of the ECG recordings were mostly based on certain leads of
the standard 12-lead ECG system. Therefore, these ECG databases could be the baseline
for algorithm evaluation yet are not feasible enough for smart model training to process
single-lead ECGs, especially for the ambulatory ECG signals collected by wearable devices
with a variety of forms of non-standard ECG leads.

We built the wearable single-lead ECG database using the clinical patch-type wearable
ECG device. The recordings in the CPPDB referred to the non-standard lead and signals
were collected in people’s daily life. Hence, the CPPDB could be used to better evaluate
the performance of the algorithm on wearable ECG signals. However, our database
currently has an imbalance problem for the certain heartbeat and segment classes, which
would affect the classification performance of algorithms for these categories. To sum
up, the construction of a public wearable single-lead ECG database is significant to the
development of the automated wearable single-lead ECG analysis, yet still has a long way
to go regarding the status quo.

6. Conclusions

In this paper, we propose novel morphological features for the XGBoost beat-level
ECG analysis to achieve a robust heartbeat classification for everyday wearable single-lead
ECGs. The widely used public ECG database and a self-collected wearable single-lead
ECG database were applied for methods evaluation. The results showed that our method
outperformed other state-of-the-art methods regarding the accuracy of both databases. As
clinical wearable ECG monitoring devices are getting mature, both highly robust beat-level
wearable ECG analysis methods and new ECG signal analysis modes like segment-based
ECG classification should be further explored to adapt to wearable ECG signal acquisition
modes, e.g., the immediate real-time and ultra-long-term ECG monitoring.
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Appendix A

In this section, we show the optimization process of parameters in detail. The number
of estimators is usually the first parameter to be tuned in XGBoost, and it is better to
be below 300. We applied the hierarchical search method to screen the “n_estimators”
efficiently. We first set the tuning range to 10–300 with the granularity of 10 in the coarse-
grained stage. As shown in Figure A1, we got the highest performance when the number
of estimators was 170. Then we started the fine-grained search with a limited tuning
range of 160–180 and a reduced granularity of 1. It can be observed in Figure A2 that the

https://www.physionet.org/physiobank/database/mitdb/
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comprehensive performance (the highest Acc with a larger Se, +P, and F1) was optimal
when the number of estimators was 164.
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After fixing the number of estimators, we could adjust tree-based parameters, i.e., the
“max_depth”, “subsample”, and “colsample_bytree”. Figure A3 showed that all the four
indicators increased at the beginning as the max depth increased, and Acc obtained its max
results when the max depth was 5. Hereafter, the indicators started to fluctuate with the
further increase of max depth due to the effect of overfitting. As a result, Acc, +P, and F1
reached their optimal value as the max depth was 11.
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We then used a sampling scale ranging from 0.05 to 1, and a step size of 0.05 in the
training model. As shown in Figure A4, when the sampling ratio was 0.1, all four indicators
exceeded 90%, and Acc reached the highest value of 99.08% when the sampling ratio was
0.6, and the other three indicators were also competitive. Meanwhile, it could be seen in
Figure A5 that as the number of features increased, the performance indicators showed an
increasing trend. Acc, Se, and F1 reached their optimized values and +P was very close to
the max, when the “colsample_bytree” got 48/56.
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The next step was to fine-tune the regularization parameters. Figure A6 presents the
experimental results corresponding to different “reg_alpha” values, from which we could
see that when the value is 0.01, Acc, Se, and F1 achieved their highest value, and +P was
competitive as well. Lastly, we should tune “eta”. Figure A7 shows the effect of eta on the
algorithm. All four indicators obtained the highest value when “eta” was 0.2.
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