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Protein coding and promoter region predictions are very important challenges of bioinformatics (Attwood and Teresa, 2000). The
identification of these regions plays a crucial role in understanding the genes.Manynovel computational andmathematicalmethods
are introduced as well as existing methods that are getting refined for predicting both of the regions separately; still there is a scope
for improvement.We propose a classifier that is built withMACA (multiple attractor cellular automata) andMCC (modified clonal
classifier) to predict both regions with a single classifier. The proposed classifier is trained and tested with Fickett and Tung (1992)
datasets for protein coding region prediction for DNA sequences of lengths 54, 108, and 162. This classifier is trained and tested
with MMCRI datasets for protein coding region prediction for DNA sequences of lengths 252 and 354. The proposed classifier is
trained and tested with promoter sequences from DBTSS (Yamashita et al., 2006) dataset and nonpromoters from EID (Saxonov
et al., 2000) and UTRdb (Pesole et al., 2002) datasets. The proposed model can predict both regions with an average accuracy of
90.5% for promoter and 89.6% for protein coding region predictions.The specificity and sensitivity values of promoter and protein
coding region predictions are 0.89 and 0.92, respectively.

1. Introduction

Many of the important problems [1] in bioinformatics can
beaddressed with our computing techniques very easily. So
we have identified two major problems in bioinformatics
and worked on them basically to understand the logicalities
in these two problems. After an extensive literature survey
we have developed the frame work for addressing these
problems. This frame work developed can be useful for
addressing other problems in bioinformatics like splice junc-
tion prediction, secondary structure prediction of protein,
and so forth. The proposed (IN-MACA-MCC) classifier can
predict both promoter and protein coding regions very easily
with more accuracy when compared with existing literature
with less time.

DNA is an important component of a cell and genes
will be found in specific portion of DNA which will contain

the information as explicit sequences of bases (A, G, C,
and T). These explicit sequences of nucleotides will have
instructions to build the proteins. But the region which
will have the instructions which is called protein coding
regions occupies very less space in a DNA sequence. The
identification of protein coding regions plays a vital role in
understanding the genes. We can extract lot of information
like what is the disease causing gene, whether it is inherited
from father or mother and a promoter can regulate the
growth of disease slowly, and how one cell is going to
control another cell. Although the entire human genome is
sequenced, identifying the protein coding region as well as
finding the gene is still a complicated process.

DNA contains lots of information. We need promoter for
DNA transcription to from RNA. So promoter plays a vital
role in DNA transcription. It is defined as “the sequence in
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the region of the upstream of the transcriptional start site
(TSS).” Identifying a new promoter in a DNA sequence will
lead to finding a new protein. If we identify the promoter
region we can extract information regarding gene expression
patterns, cell specificity, and development. Promoters will
regulate a gene expression. Some of the genetic diseases
which are associatedwith variations in promoters are asthma,
beta thalassemia, and Rubinstein-Taybi syndrome. Promoter
sequence can be used to control the speed of translation from
DNA into protein. It is also used in genetically modified
foods.

In vertebrates only five percent of the gene is made up
of exons. Genes mostly will have seven to eight exons with
145 bp length at an average. Introns have 3365 bp length at
an average. Promoter comprises a small percentage of entire
genome. The features of promoters are different from other
functional regions like exons, introns, and 3UTRs. These
facts make protein coding and promoter region predictions
very difficult tasks.

This paper is organized in the followingmanner. Section 2
provides the entire literature survey of both protein coding
and promoter regions. Section 3 provides the design of the
proposed system. Section 4 presents the MACA-MCC clas-
sifier for promoter and protein coding prediction. Section 5
provides the experimental results with discussion. Section 6
provides the future extensions and conclusion to the pro-
posed classifier.

2. Literature Survey

Salzberg has used a decision tree algorithm [2] for locating
protein coding regions in DNA sequences, which is adaptable
and can process DNA sequences of lengths 54 bp, 108 bp and
162 bp. Maji and Paul [3] have developed neural network tree
classifier for prediction of splice junction and coding regions
in genomic DNA. A decision tree named NNTree (neural
network tree) is constructed by dividing the training set with
their corresponding labels to recursively generate a tree. Xu
et al. [4] have developed an improved systemGRAIL II which
is a hybrid AI system which can predict the number of exons
in a human DNA sequence and also supports gene modeling.
This process combines edge signal like accepter, donor,
translation start site detection, and coding feature analysis.

Snyder and Stormo [5] have applied dynamic program-
ming and neural networks for predicting protein coding
regions from a genomic DNA. They have developed a pro-
gramGeneParserwhich first scores theDNAsequences based
on exon-intron specific measures like local compositional
complexity, codon usage, length distribution, 6-tuple fre-
quency, and periodic asymmetry. Uberbacher and Mural [6]
have proposed a method which combines some set of sensor
algorithms and neural network to predict the protein coding
regions in eukaryotes.The programs developed will calculate
the values of seven sensors that were considered by the
authors. The measures are frame bias matrix, Fickett (three-
periodicity), dinucleotide fractal dimension, coding six tuple
word preferences, coding six tuples in frame preferences,
word commonality, and repetitive six tuple word preferences.

Pinho et al. [7] have proposed a three-state model for
protein coding region prediction. Authors have considered
three-base periodicity property. Zhang [8] has used quadratic
discriminant analysis method named MZEF for identifying
protein coding regions in genomic human DNA. Gish and
States [9] proposed a computer program named BLASTC
which uses sequence similarity and codon utilization for
predicting the protein coding regions.

Method in [3] takes more time to construct a tree for
sequences of length 162.The height of the trees is also a major
concern for using this algorithm with DNA sequences of
more length. Method in [4] suffers with less accuracy due to
more error rate at classifier nodes. Methods in [5–7] depend
more on the statistical information. After this literature
survey the concern of a new classifier is to achieve good
classifier accuracy and develop a classifier which can handle
DNA sequences of length more than 162 with fewer nodes.

Zeng et al. [10] have proposed a hierarchical promoter
prediction system named SCS where they have used signal,
structure, and context features. Li et al. [11] have proposed
a method PCA-HPR (principal component analysis-human
promoter recognition) to predict the promoters and tran-
scription sites (TSS). Hannenhalli and Levy [12] tried to
enhance the accuracy of promoter prediction by combining
CpG island feature with information of independent signals
which are biologically motivated and these cover most of the
knowledge to predict the promoter in human genome.

Wu et al. have proposed a method [13] for enhancing
the performance of human promoter region identification by
selecting the most important features of DNA sequence for
each different functional region. Ohler et al. have proposed a
model [14] which integrates physical properties ofDNA into a
probabilistic eukaryotic promoter prediction system. Goñi et
al. have proposed a system ProStar [15] which uses structural
parameters for promoter region identification. Authors only
used descriptors derived from physical first principles.

Bajic et al. [16] have developed new software for iden-
tifying promoters in a DNA sequence of vertebrates. This
program takes input as DNA sequence and generates a list
of predicted TSS (transcription stating site). Zhang [17] has
proposed a new program for predicting a core promoter in
human gene named as CorePromoter. After the literature
survey on promoter prediction, the main goal of proposed
classifier is to reduce the false prediction rates and improve
specificity and sensitivity values.

3. Design of IN-MACA-MCC

IN-MACA-MACC basic processing as shown in Figure 1
starts with identification promoter considering features like
TATA, CAAT, Inr, and n-mers unlike AIX-MACA-Y [18], for
predicting both regions. IN-MACA-MCC takes a DNA input
and checks whether it belongs to a promoter or not. If it
belongs to promoter the exact boundaries are provided. If the
given input is a nonpromoter sequence it checks whether it
belongs to intron or exon or 3UTR. If it belongs to an exon
IN-MACA-MCC reports the boundaries of the first exon.
These boundaries will be used by the nextmodule as shown in
Figure 2 to trace the protein coding region starting from that
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Figure 1: IN-MACA-MCC architecture—front.
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Figure 2: IN-MACA-MCC architecture—rear.

boundary. If the input does not belong to exons, it will check
with introns and 3UTRs and outputs the class accordingly.

The design rear IN-MACA-MACC is indicated in
Figure 2. Input to IN-MACA-MACC algorithm and its vari-
ations will be DNA sequence and amino acid sequences.
Input processing unit will process sequences three at a time
as three neighborhood cellular automata are considered for
processingDNA sequences.The rule generatorwill transform
the complemented and noncomplemented rules in the form
of matrix, so that we can apply the rules to the corresponding
sequence positions very easily. IN-MACA-MACC basins are
calculated as per the instructions of proposed algorithm.

Table 1: Example rules.

SNO Rule number General representation
1 254 𝑞

𝑖−1
+ 𝑞
𝑖
+ 𝑞
𝑖+1

2 252 𝑞
𝑖−1
+ 𝑞
𝑖

3 238 𝑞
𝑖
+ 𝑞
𝑖+1

4 250 𝑞
𝑖−1
+ 𝑞
𝑖+1

5 204 𝑞
𝑖

6 240 𝑞
𝑖−1

7 170 𝑞
𝑖+1

Cellular automata that use fuzzy logic are an array of
cells arranged in linear fashion evolving with time. Every
cell of this array assumes a rational value in the interval of
zero and one. All these cells change their states according
to the local evaluation function which is a function of its
state and its neighboring states. The synchronous application
of the local rules to all the cells of array will depict the
global evolution. Table 1 shows some rules for developing the
proposed classifier.

Example 1. Consider the rule ⟨170, 238, 204⟩ and corre-
sponding transition matrix is shown below.

If𝑃(0) is the initial state with real values (0, 0.25, 0.50) the
successive three steps are defined below.

The transitions from one state to another state are defined
as

𝑇 = [

[

0 1 0

0 1 1

0 0 1

]

]

𝑃 (0) = (0, 0.25, 0.50) .

(1)

Step 1. Apply rule 170 for the first cell. Rule 170 says that the
next state depends on the right neighbor. Consider

𝑃 (1) = (0.25, 0.25, 0.50) . (2)
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Figure 3: Attractor state (1.0, 1.0, and 0.2)—B formed with rule
⟨170, 252, 204⟩.

Apply rule 238 to the second cell. Rule 238 says that the next
state depends on its state and the right neighbor. Consider

𝑃 (1) = (0.25, 0.75, 0.50) (0.25 + 0.50) . (3)

Apply rule 204 to the third cell. Rule 204 says that the next
state depends only on its state.

After applying the rule for all the cells in the state is (0.25,
0.75, 0.50) that is the resultant state after first iteration

𝑃 (1) = (0.25, 0.75, 0.50) . (4)

Similarly, one has the following.

Step 2. Consider.

𝑃 (2) = (0.75, 1.0, 0.50) . (5)

Step 3. Consider.

𝑃 (3) = (1.0, 1.0, 0.50) . (6)

Likewise we can construct IN-MACA-MCC for a sample
dataset as shown in Figure 3.

4. Modified Clonal Classifier with MACA

4.1. Simplified Modified Clonal Algorithm

(1) Generate initial antibody population (AIS-MACA
rules) randomly and call it Ab. It consists of two
subsets memory population Ab

𝑚
and reservoir pop-

ulation Ab
𝑟
.

(2) Construct a set of antigens population and call it Ag
(DNA sequence with class/input).

Table 2: Execution time for prediction of both protein andpromoter
regions.

Size of dataset Prediction time of integrated
algorithm in ms

5000 1064
6000 1389
10000 2002
20000 2545

(3) Select an antigenAg
𝑗
fromAg the antigen population.

(4) Apply every member of antibody population to the
selected antigen Ag

𝑗
, check whether it is predicting

the correct class, and calculate affinity of the rule with
the antigen via fitness equation.

(5) Select 𝑚 highest affinity antibodies (AIS-MACA
rules) from Ab and place them in 𝑃

𝑚
.

(6) Generate clones for each antibody, which will be
proportional to the affinity as per fitness. Place the
clones in the new population 𝑃

𝑖
.

(7) Apply mutation to the newly formed population 𝑃
𝑖

where the degree is inversely proportional to their
affinity. This produces a more mature population 𝑃∗

𝑖
.

(8) 𝑅
𝑒
calculate the affinity of the rule with the corre-

sponding antigen as we did it in step four. Order the
antibodies in descending order (high fitness antibody
will be on top).

(9) Compare the antibodies from 𝑃∗
𝑖
with the antibodies

population from Ab
𝑚
. Select the better fitness rules,

remove them from 𝑃∗
𝑖
, and place them in Ab

𝑚
.

(10) Randomly generate antibodies for introducing diver-
sity. Compare the antibodies in Abr, the left-out
antibodies in 𝑃∗

𝑖
, and randomly generate antibodies.

Select the better fitness rules among three and place
them in Abr.

(11) For every generation, compare the antibodies in Ab
𝑚

and Ab
𝑟
and place the best in Ab

𝑚
.

4.2. Difference betweenClonal andModifiedClonal Algorithm.
The difference between original clonal algorithm and the
modified algorithm proposed by us lies on how efficiently
we are managing the use of generated antibodies. Original
clonal algorithm will not take advantage of the antibodies
generated by every cloned population. Once the comparison
of antibodies in 𝑃∗

𝑖
and Ab

𝑚
gets completed, the best will

be placed in Ab
𝑚

and the rest of antibodies in 𝑃∗
𝑖

are
omitted. Even the reservoir antibodies are poorlymaintained.
So we try to use the best antibodies in 𝑃∗

𝑖
left out after

placing them in Abm. For this purpose we are comparing
the antibodies already in Ab

𝑟
with left-out antibodies in

𝑃
∗

𝑖
and newly generated antibodies which were meant for

introducing diversity. After comparing the three sets the best
will be placed in Abr. In the original clonal algorithm step 11
will not exit. Step 11 will ensure the best fitness rules stay in
Ab
𝑚
which will be solution of the entire problem.
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Figure 4: Basin calculation.

Figure 5: Training interface.

Table 3: IN-MACA-MCC protein coding comparison with existing
approaches.

Algorithm/coding measure Sensitivity Specificity
OC1 65.3 66.4
Hexamer 68.36 70.2
Position asymmetry 72.3 74.5
Dicodon usage 81.3 82.3
CRITICA 82.5 84.9
IN-MACA-MCC 89.6 89.3

Table 4: IN-MACA-MCC promoter comparison with existing
approaches.

Method Sensitivity Specificity
Promoter inspector 56.9 46.9
Dragon promoter finder 62.3 59.3
Promo predictor 65.3 66.9
CNN-promoter 76.3 82.3
SPANN 68.9 84
IMC 76 86
IN-MACA-MCC 88.5 92.7

5. Experimental Results

The proposed classifier is trained and tested with Fickett
and Tung [19] datasets for protein coding region prediction
for DNA sequences of lengths 54, 108, and 162. All the 21
measures reported in [19] were considered for developing the
classifier. This classifier is trained and tested with MMCRI
(http://www.mmchri.res.in/) [20] datasets for protein coding
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Figure 6: Predictive accuracy for protein coding regions.
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Figure 7: Predictive accuracy for promoter regions.

region prediction for DNA sequences of lengths 252 and 354.
The proposed classifier is trained and tested with promoter
sequences from DBTSS [21] dataset and nonpromoters from
EID [22] and UTRdb [23] datasets. Figures 4 and 5 show the
developed interfaces. Table 2 shows the execution time for
predicting both protein and promoter regions which is very
promising. Tables 3 and 4 show the sensitivity and specificity
of both predictions. All the experiments are performed in
SUN with Solaris 5.8, 445MHz clock. Figures 6 and 7 show
the accuracy of prediction separately which is the important
output of our work.

5.1. Specific Output of 54 Length DNA Sequence with Bound-
aries. See Box 1, Figures 4, 5, 6, and 7, and Table 2.

5.2. Human Promoter Output. See Box 2 and Tables 3 and 4.
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DNA Sequence: # Sequence Kiran12 jntuh - Length = 54 bps

AGGGGCAGCAACCAGAGCAGCAGCAGTGGCAGCAGTAGCAGGCGCCGGCCGCCG
Reverse Complement:
CGGCGGCCGGCGCCTGCTACTGCTGCCACTGCTGCTGCTCTGGTTGCTGCCCCT

Sequence Name Program Type of Exon Boundary Strand

kiran12 jntuh AIS MACA Internal 3 25 +

kiran12 jntuh AIS MACA Internal 3 25 +

kiran12 jntuh AIS MACA Internal 3 25 +

kiran12 jntuh AIS MACA Internal 3 34 +

kiran12 jntuh AIS MACA Internal 3 34 +

kiran12 jntuh AIS MACA Internal 3 34 +

kiran12 jntuh AIS MACA Internal 9 34 +

Box 1

DNA Seq: Sequence human Kiran promoter 223jntuh

CGCAGCAAAATGCACGGGCTTCTGCAGCCCACATGACTTTATTCTGAACGGACACAAGTCTGCTCGCTGGGCCGTTC

GCTTTTGGGCCAAAAACACGGCTCCGTCGGTGACTTTTGGCCCGATATTGGCGACCAGAAAACACAAGTGAAAGAGC

ATTTGGCCAGCCCGGAGAAGCCGAGCTGGGTGGCTTGAGTCTACATGGTTCTCATGTCGCGTTTAAGGCCAGCCCCC

TGCACGGTGTGGAGCTTCAA

Reverse Complement of DNA Seq: Sequence human Kiran promoter 223jntuh

TTGAAGCTCCACACCGTGCAGGGGGCTGGCCTTAAACGCGACATGAGAACCATGTAGACTCAAGCCACCCAGCTCGG

CTTCTCCGGGCTGGCCAAATGCTCTTTCACTTGTGTTTTCTGGTCGCCAATATCGGGCCAAAAGTCACCGACGGAGC

CGTGTTTTTGGCCCAAAAGCGAACGGCCCAGCGAGCAGACTTGTGTCCGTTCAGAATAAAGTCATGTGGGCTGCAGA

AGCCCGTGCATTTTGCTGCG

# Sequence Sequence human Kiran promoter 223jntuh - Length = 251 bps

Sequence human Kiran promoter 223jntuh, Human Promoter Prediction

Start End Score Promoter Sequence

78 128 0.61 GCTTTTGGGCCAAAAACACGGCTCCGTCGGTGACTTTTGGCCCGATATTG

201 251 0.46 GGTTCTCATGTCGCGTTTAAGGCCAGCCCCCTGCACGGTGTGGAGCTTCA
Kiran promoter 223jntuh, Promoter Prediction, Reverse Strand

Start End Score Promoter Sequence

230 180 0.59 GGGGCTGGCCTTAAACGCGACATGAGAACCATGTAGACTCAAGCCACCCA

137 87 0.60 TTCTGGTCGCCAATATCGGGCCAAAAGTCACCGACGGAGCCGTGTTTTTG

Box 2

6. Conclusion

We have successfully developed a classifier which can predict
promoter and protein coding regions with higher accuracy
than reported earlier. The sensitivity and specificity values
for both predictions are also promising.There is considerable
improvement in the reduction of false prediction rate. IN-
MACA-MCC attains highest accuracy of 92.3% for sequences
more than 108 bp and less than 552 bp for protein coding
region prediction. IN-MACA-MCC attains highest accuracy
of 93.6% for sequences of length 251 for promoter regions.
We are trying to apply this classifier for most of the species in
eukaryotes in future.
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