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)is study is associated to solve the nonlinear SIR dengue fever system using a computational methodology by operating the
neural networks based on the designed Morlet wavelet (MWNNs), global scheme as genetic algorithm (GA), and rapid local
search scheme as interior-point algorithm (IPA), i.e., GA-IPA. )e optimization of fitness function based on MWNNs is
performed for solving the nonlinear SIR dengue fever system. )is MWNNs-based fitness function is accessible using the
differential system and initial conditions of the nonlinear SIR dengue fever system. )e designed procedures based on the
MWNN-GA-IPA are applied to solve the nonlinear SIR dengue fever system to check the exactness, precision, constancy, and
efficiency. )e achieved numerical form of the nonlinear SIR dengue fever system via MWNN-GA-IPA was compared with the
Runge–Kutta numerical results that verify the significance of MWNN-GA-IPA. Moreover, statistical reflections through different
measures for the nonlinear SIR dengue fever system endorse the precision and convergence of the computational MWNN-GA-
IPA.

1. Introduction

Dengue fever disease (DFD) is one of the epidemics, in-
fectious, and serious diseases that disturbed about 2.5 billion
individuals all over the world. DFD occurred in some main
countries of Southeast Asia due to the hot seasons. )e
infectious DFD grows fast, when the environment alters and
becomes dangerous because of the shortage of information
amongst the individuals [1]. DFD is an epidemiologic
transmittable fever formed by dengue infection (DI) that is
conveyed throughmosquitoes to humans and apes [2]. Some
symptoms scientifically produced by DFD are headache,
joint pain, skin rash, and DI. )e global World Health
Organization (WHO) classified DI into a hemorrhagic

dengue fever before one decade [3]. DI is categorized into
three organizational proteins, membrane protein (M), en-
velope protein (E), and capsid protein (C), while it has seven
proteins that are nonstructural and their names are NS-I,
NS-IIA, NS-III, NS-IIB, NS-IVA, NS-IVB, and NS-V [4].
According to envelope protein antigenicity, DI is ordered
into four classes of microorganisms, which are infected as
well as pathogenic [5].

DI has been reported in several zones of China and still
any scientific report cannot prove it a confined endemic [6],
whereas all other subgroups of DI have been imported; DI-I
and DI-II are considered in China one of the main ste-
reotypes endemic. In the Chinese province Guangdong, DV-
I reported around 70% in 2014 and 80% in 2015. Presently,
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an amino-based acid localizes transformation in NS-I of the
Asian “Zika” inheritance, which has been described to grow
the production of NS-I in the diseased host to make the virus
convenient to Aedes type of mosquitoes, which is the focal
wide spreading cause of virus “Zika” since 2015 [7].

Some epidemic infections such as COVID-19 are the
existing transferred diseases, which have covered the whole
world and the infection rate along with the number of deaths
from COVID-19 increased steadily [8]. Another common
disease is malaria, which is not directly transmitted from
host to host. Protozoa is one of the transferred diseases,
which spreads due to the anopheles of the female mosquito.
According to the WHO report, almost 1/3 million indi-
viduals per year die from malaria. It distresses the children
and pregnant women, mostly in the South African and
American countries. Many chemical sprays have been widely
implemented to control the mosquito population. Similarly,
nonpolluting types of biological arrangements normally
accomplished to emphasis the ecosystem of complicated
kinds. )e sterile insect apparatus (SIA) is a proficient
nonpolluting scheme of insect control, which depends on
the sterile male’s release. Consequently, adequately sterile

males discharging causes the elimination of the wild’s
population. Over a half century ago, SIA has been recognized
in the Curacao Island to adjust the screwworm hover [9, 10].

)e aim of this study is to solve the nonlinear SIR dengue
fever system using a computational methodology by oper-
ating the MWNNs, global search GA, and rapid local search
IPA, i.e., MWNN-GA-IPA. )e stochastic approaches have
been investigated normally to solve a number of applications
directed to the differential linear/nonlinear systems [11, 12].
However, no one has applied the MWNNs to solve the
nonlinear SIR dengue fever system. Few recent reported
submissions of stochastic solvers are eye surgery model,
functional singular system, )omas–Fermi singular equa-
tion, HIV-based infection system, biological form of the
prey-predator system, periodic singular problems, singular
three-point differential model, COVID-19 SITR system,
multifractional singular models, system of heat transmission
in human head, and mosquito spreading in heterogeneous
conditions [13–15]. )e intention of this study is to solve the
nonlinear SIR dengue fever system using the MWNN-GA-
IPA. )e literature form of nonlinear SIR dengue fever
system is written as [16]

dX(τ)

dτ
� μh − μhX(τ) − αX(τ)Z(τ), X(0) � I1,

dY(t)

dτ
� αX(τ)Z(τ) − βY(τ), Y(0) � I2,

dZ(t)

dτ
� cY(τ) − cY(τ)Z(τ) − δ1Z(τ), Z(0) � I3,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where the susceptible class, infected class, and recovered
class are X(τ), Y(τ), and Z(τ), respectively. )e terms
c, μh, δ1, α, and β used in system (1) are constant, whereas the
initial conditions are I1, I2, and I3, respectively. Few major
geographies of the MWNN-GA-IPA are concisely given as
follows:

(i) Design ofMorlet wavelet is presented successfully as
an activation function to solve the nonlinear SIR
dengue fever system

(ii) )e reliable, consistent, and stable overlapped re-
sults obtained by the MWNN-GA-IPA and the true
solutions validate the exactness of the proposed
approach

(iii) )e authentication of the presentation is trained via
different statistical valuations to get the solutions of
the nonlinear SIR dengue fever system on multiple
executions of the MWNN-GA-IPA

)e rest of this paper is reported as follows: Section 2
indicates the proposed MWNN-GA-IPA along with the
statistical measures. Section 3 shows the results simulations.

Section 4 describes the final remarks and future research
reports.

2. Designed Procedure

)e proposed structure of the MW-GA-IPA is used to solve
the nonlinear SIR dengue fever system described in two
phases as follows:

(i) An objective function using theMW is considered to
activate the neural networks

(ii) Necessary clarifications are provided to enhance
the merit function by applying the hybrid of GA-
IPA

2.1. Designed Procedure Using MW Function. )e mathe-
matical design of the nonlinear SIR dengue fever system is
described by using the achieved results of susceptible 􏽢X(τ),
infected 􏽢Y(τ), and recovered 􏽢Z(τ) with the derivatives of
these classes, written as [17]

2 Journal of Healthcare Engineering



[ 􏽢X(τ), 􏽢Y(τ), 􏽢Z(τ)] �

􏽘

m

i�1
vX,iH wX,iτ + uX,i􏼐 􏼑, 􏽘

m

i�1
vY,iH wY,iτ + uY,i􏼐 􏼑,

􏽘

m

i� 1
vZ,iH wZ,iτ + uZ,i􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

􏽢X
(n)

(τ), 􏽢Y
(n)

(τ), 􏽢Z
(n)

(τ)􏼔 􏼕 �

􏽘

m

i�1
vX,iH

(n)
wX,iτ + uX,i􏼐 􏼑, 􏽘

m

i�1
vY,iH

(n)
wY,iτ + uY,i􏼐 􏼑,

􏽘

m

i�1
vZ,iH

(n)
wZ,iτ + uZ,i􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(2)

W is the unknown weight vector given as
W � [WX;WY;WZ], for WX � [vX,ωX,uX],
WY � [vY,ωY, uY], and WZ � [vZ,ωZ, uZ], where

vX � vX,1; vX,2; . . . ; vX,m􏽨 􏽩, vY � vY,1; vY,2; . . . ; vY,m􏽨 􏽩, vZ � vZ,1; vZ,2; . . . ; vZ,m􏽨 􏽩,

wX � wX,1; wX,2; . . . ; wX,m􏽨 􏽩, wY � wY,1; wY,2; . . . ; wY,m􏽨 􏽩, wZ � wZ,1; wZ,2; . . . ; wZ,m􏽨 􏽩,

uX � uX,1; uX,2; . . . ; uX,m􏽨 􏽩, uY � uY,1; uY,2; . . . ; uY,m􏽨 􏽩, uZ � uZ,1; uZ,2; . . . ; uZ,m􏽨 􏽩.

(3)

)e MWNN has not been implemented before to solve
the nonlinear SIR dengue fever system. )e mathematical
form of MW function is written as [18]

H(τ) � cos(1.75)e
− 0.5τ2

. (4)

)e simplified form of system (2) using the above MW
function is given as

[ 􏽢X(τ), 􏽢Y(τ), 􏽢Z(τ)] �

􏽘

m

i�1
vX,i cos 1.75 wX,iτ + uX,i􏼐 􏼑􏼐 􏼑e

− 0.5 wX,iτ+uX,i( )
2

,

􏽘

m

i�1
vY,i cos 1.75 wY,iτ + uY,i􏼐 􏼑􏼐 􏼑e

− 0.5 wY,iτ+uY,i( )
2

,

􏽘

m

i�1
vZ,i cos 1.75 wZ,iτ + uZ,i􏼐 􏼑􏼐 􏼑e

− 0.5 wZ,iτ+uZ,i( )
2

,
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,

􏽢X
(n)

(τ), 􏽢Y
(n)

(τ), 􏽢Z
(n)

(τ)􏼔 􏼕 �
d

dτ

􏽘

m

i�1
vX,i cos 1.75 wX,iτ + uX,i􏼐 􏼑􏼐 􏼑e

− 0.5 wX,iτ+uX,i( )
2

,

􏽘

m

i�1
vY,i cos 1.75 wY,iτ + uY,i􏼐 􏼑􏼐 􏼑e

− 0.5 wY,iτ+uY,i( )
2

,

􏽘

m

i�1
vZ,i cos 1.75 wZ,iτ + uZ,i􏼐 􏼑􏼐 􏼑e

− 0.5 wZ,iτ+uZ,i( )
2

.
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(5)
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An error function based on the merit function is given as

e � 􏽘

4

j�i

ej, (6)

e1 �
1
N

􏽘

N

i�1

􏽣X′i − μh + μh
􏽢Xi + α 􏽢Xi

􏽢Zi􏼔 􏼕
2
, (7)

e2 �
1
N

􏽘

N

i�1

􏽢Y′i − α 􏽢Xi
􏽢Zi + β􏽢Yi􏽨 􏽩

2
, (8)

e3 �
1
N

􏽘

N

i�1

􏽢Z′i − c􏽢Yi + c􏽢Zi
􏽢Yi + δ1 􏽢Zi􏽨 􏽩

2
, (9)

e4 �
1
3

􏽢X0 − I1􏼐 􏼑
2

+ 􏽢Y0 − I2􏼐 􏼑
2

+ 􏽢Z0 − I3􏼐 􏼑
2

􏼔 􏼕, (10)

where 􏽢Xi � X(τi),
􏽢Yi � 􏽢Y(τi),

􏽢Zi � Z(τi), Nh � 1, and
τi � ih. 􏽢Xi, 􏽢Yi and 􏽢Zi show the proposed results of the
susceptible class, infected class, and recovered class. Like-
wise, e1,e2, and e3 denote the error function related to system
(1), whereas e4 denotes the error function on the basis of
initial conditions.

2.2. Optimization: MWNN-GA-IPA. )e optimization per-
formance is presented for solving the nonlinear SIR dengue
fever system using the MWNN-GA-IPA. )e structure of
the present approach to solve the nonlinear SIR dengue fever
system is provided in Figure 1.

GA is a global optimization procedure, which is executed
to solve the nonlinear SIR dengue fever system by imple-
menting the usual selection procedures. GA is pragmatic
frequently to regulate the accurate population to solve several

complicated or stiff systems. To attain the best model out-
comes, GAs operate through the operators based on selection,
reproduction, crossover, and mutation. Few existing GA’s
applications are the hospitalization expenditure system [19],
feature assortment in cancer microarray [20], organization of
irregular magnetic character brain tumor imageries [21],
vehicle routing system [22], prediction-based traffic flow
system [23], radiation shielding optimizations in the bismuth-
borate spectacles [24], prediction of air blast [25], compo-
sition optimization of cloud service [26], task arrangement
models in phased range radar [27], arrangement system of
microarray cancer [28], system dynamics of monorail vehicle
[17], and prediction system of liver disease [29].

IPA is known as an optimized local search approach,
which is performed broadly in both types of models (con-
strained/unconstrained). IPA is used in the optimization of
various complicated and nonstiff natured systems. Recently,
IPA is executed for image restoration [30], multistage non-
linear nonconvex models [31], viscoplastic fluid flows [32],
nonsmooth contact dynamics [33], power systems [34], and
dynamic flux balance analysis models [35]. )e hybridization
process of GA-IPA is applied to remove the laziness of GA,
i.e., global approach. )e pseudocode based on the designed
approach MWNN-GA-IPA is provided in Table 1.

2.3. Performance Measures. )e mathematical measures
using the statistical operators for variance accounted for
(VAF), semi-interquartile (S.I) range, )eil’s inequality
coefficient (T.I.C), and mean absolute deviation (M.A.D)
along with the Global VAF (G-VAF), Global M.A.D (G-
M.A.D), and Global T.I.C to solve the nonlinear SIR dengue
fever system which is given as

V.A.FX, V.A.FY, V.A.FZ􏼂 􏼃 �

1 −
var Xr − 􏽢Xr􏼐 􏼑

var Xr( 􏼁
⎛⎝ ⎞⎠∗ 100, 1 −

var Yr − 􏽢Yr􏼐 􏼑

var Yr( 􏼁
⎛⎝ ⎞⎠∗ 100,

1 −
var Zr − 􏽢Zr􏼐 􏼑

var Zr( 􏼁
⎛⎝ ⎞⎠∗ 100,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

E − V.A.FX, E − V.A.FY, E − V.A.FZ􏼂 􏼃 � 100 − V.A.FX, 100 − V.A.FY, 100 − V.A.FZ

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽨 􏽩.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, (11)

S.I Range � − 0.5 × Q1 − Q3( 􏼁,

Q1 � 1st quartile &Q1 � 3rd quartile,
􏼨 , (12)

T.I.CX,T.I.CY,T.I.CZ􏼂 􏼃 �

������������������
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�����������

(1/n) 􏽐
n
r�1 X

2
r

􏽱

+

�����������

(1/n) 􏽐
n
r�1

􏽢X
2
r

􏽱

􏼒 􏼓

,

������������������

(1/n) 􏽐
n
r�1 Yr − 􏽢Yr􏼐 􏼑

2
􏽱

�����������

(1/n) 􏽐
n
r�1 Y

2
r

􏽱

+
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2
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􏽱
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,
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(13)
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Figure 1: Structure of the present approach to solve the nonlinear SIR dengue fever system.
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where the approximate solutions are 􏽢X, 􏽢Y, and 􏽢Z,
respectively.

3. Simulations of the Results

)e current work is associated to solve the nonlinear SIR
dengue fever system shown in system (1). )e relative

presentation of the obtained results using the Runge–Kutta
solutions is tested to form the correctness of MWNN-GA-
IPA. Additionally, statistical operators indicate the precision
and accuracy of MWNN-GA-IPA. )e simplified measures
of the nonlinear SIR dengue fever system using the suitable
values are given as

􏽣X′(τ) � 0.000046 − (0.000046 + 0.375Z(τ))X(τ), X(0) � 0.9999,

􏽢Y′(τ) � 0.375X(τ)Z(τ) − 0.0323Y(τ) Y(0) � 0.0006,

􏽢Z′(τ) � 0.328833 − (0.328833Y(τ) + 0.0001)Z(τ), Z(0) � 0.0560.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(14)

)e fitness function for system (14) is written as

e �
1
N

􏽘

N

i�1

􏽣X′r − 0.000046 + 0.375􏽢Zr􏼐 􏼑 􏽢Xr􏼔 􏼕
2

+ 􏽢Y′r − 0.375 􏽢Xr
􏽢Zr + 0.0323􏽢Yr􏽨 􏽩

2

+ 􏽢Z′r − 0.328833􏽢Yr + 0.0001􏼐 􏼑􏽢Zr􏽨 􏽩
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+
1
3

􏽢X0 −
9999
10000

􏼒 􏼓
2

+ 􏽢Y0 −
6

10000
􏼒 􏼓

2
+ 􏽢Z0 −

56
1000

􏼒 􏼓
2

􏼢 􏼣.

(15)

)e nonlinear SIR dengue fever system given in system
(1) is optimized using the MWNN-GA-IPA for 100 trials to
attain ANN model parameters for 10 neurons. Figure 1 is

drawn using the best outputs of the weight vector, i.e.,W for
the MWNN-GA-IPA. )ese best weights of the output are
applied to solve the estimated outcomes of the nonlinear SIR

Table 1: Optimization performance taking the MWNN-GA-IPA for the nonlinear SIR dengue fever system.

Start of GA
Inputs: the chromosomes are characterized with the same system element as
W� [v, w, u]
Population: the chromosomes set is written as
WX � [vX,ωX, uX], WY � [vY,ωY, uY] and
Output: global values of the weight are represented as WGA-Best
Initialization: for the selection of chromosomes, select the weight vector values.
Fit evaluation: modify the values of fitness “e” in population “P” for each vector with the use of systems 4–8

(i) Stopping criteria: terminate when [e� 10− 21], [Generations� 55], [StallLimit� 140], [PopSize� 285], and [TolFun�TolCon� 10− 21]
Move to storage
Ranking: rank individual weight vector in population using the values of the fitness
Storage: save WGA-Best, iterations, time, e, and count of function for the presence of GA

End of GA
IPA starts
Inputs: start point: WGA-Best
Output: WGA-IPA shows the best weight values of GA-IPA
Initialize: WGA-Best, iterations, assignments, and other values
Terminate: stop, when [e� 10− 20], [Iterations� 750], [MaxFunEvals� 267000], [TolCon�TolX� 10− 22], and [TolFun� 10− 22] achieved.
Evaluation of fitness: compute W and e using equations (8)–(12)
Amendments: adjust “fmincon” for IPA, compute e of better-quality of ‘W’ using systems 4–8
Accumulate: transmute WGA-IPA, e, function counts, iterations, and time for the existing IPA runs

IPA process ends
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Figure 2: Best weight vector set and result comparison for each class of nonlinear SIR dengue fever system. (a) Best weights of X (τ) for 10
neurons. (b) Best weights of Y (τ) for 10 neurons. (c) Best weights of Z (τ) for 10 neurons. (d) Comparison for X (τ) class. (e) Comparison
for Y (τ) class. (f ) Comparison for Z(T) class.
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dengue fever system. )e mathematical illustrations of these
estimated results from MWNN-GA-IPA are given as

􏽢X(τ) � 0.067 cos(1.75(0.2561τ − 0.2972))e
− 0.5(0.2561τ− 0.2972)2

− 0.1262 cos(1.75(− 0.957τ − 0.6639))e
− 0.5(− 0.957τ− 0.6639)2

+ 0.0208 cos(1.75(0.6513τ − 0.0050))e
− 0.5(0.6513τ− 0.0050)2

− 0.3607 cos(1.75(0.7574τ − 0.8275))e
− 0.5(0.7574τ− 0.8275)2

+ 1.7204 cos(1.75(− 0.058τ − 0.3235))e
− 0.5(− 0.058τ− 0.3235)2

− 0.1039 cos(1.75(− 0.271τ − 0.5232))e
− 0.5(− 0.271τ− 0.5232)2

+ 1.5608 cos(1.75(− 0.3176τ − 1.242))e
− 0.5(− 0.3176τ− 1.242)2

+ 0.3663 cos(1.75(− 0.8974τ − 0.693))e
− 0.5(− 0.8974τ− 0.693)2

− 0.0041 cos(1.75(− 2.0010τ − 1.863))e
− 0.5(− 2.0010τ− 1.863)2

− 0.1883 cos(1.75(0.61200τ + 0.813))e
− 0.5(0.61200τ+0.813)2

,

(16)

􏽢Y(τ) � 0.0097 cos(1.75(1.0108τ + 0.8687))e
− 0.5(1.0108τ+0.8687)2

+ 0.6808 cos(1.75(− 0.475τ + 0.1533))e
− 0.5(− 0.475τ+0.1533)2

+ 1.3976 cos(1.75(− 0.107τ + 1.5804))e
− 0.5(− 0.107τ+1.5804)2

− 0.5523 cos(1.75(− 0.066τ − 0.3244))e
− 0.5(− 0.066τ− 0.3244)2

+ 0.2293 cos(1.75(0.3343τ + 0.1346))e
− 0.5(0.3343τ+0.1346)2

+ 0.8040 cos(1.75(0.5024τ + 0.8675))e
− 0.5(0.5024τ+0.8675)2

+ 0.1466 cos(1.75(− 0.761τ + 1.5040))e
− 0.5(− 0.761τ+1.5040)2

+ 0.9269 cos(1.75(0.3945τ − 1.1415))e
− 0.5(0.3945τ− 1.1415)2

+ 0.0374 cos(1.75(0.9908τ − 1.2051))e
− 0.5(0.9908τ− 1.2051)2

+ 0.1970 cos(1.75(− 0.764τ + 0.2823))e
− 0.5(− 0.764τ+0.2823)2

,

(17)

􏽢Z(τ) � 0.607 cos(1.75(0.1112τ + 1.3610))e
− 0.5(0.1112τ+1.3610)2

− 0.0384 cos(1.75(0.1343τ + 1.1398))e
− 0.5(0.1343τ+1.1398)2

+ 0.0150 cos(1.75(0.7727τ + 2.2949))e
− 0.5(0.7727τ+2.2949)2

− 0.0024 cos(1.75(− 0.829τ + 0.0417))e
− 0.5(− 0.829τ+0.0417)2

+ 0.3144 cos(1.75(− 0.365τ + 1.4552))e
− 0.5(− 0.365τ+1.4552)2

− 1.1990 cos(1.75(0.2513τ − 1.1402))e
− 0.5(0.2513τ− 1.1402)2

+ 0.1784 cos(1.75(0.0640τ − 0.1835))e
− 0.5(0.0640τ− 0.1835)2

+ 1.3200 cos(1.75(0.0134τ − 0.5702))e
− 0.5(0.0134τ− 0.5702)2

− 0.0002 cos(1.75(1.5840τ − 1.8226))e
− 0.5(1.5840τ− 1.8226)2

− 0.8039 cos(1.75(0.2124τ + 0.2349))e
− 0.5(0.2124τ+0.2349)2

.

(18)

Systems (16)–(18) are implemented to solve the non-
linear SIR dengue fever system given in system (1) using the
MWNN-GA-IPA and the acquired results are plotted in

Figures 2–4. Figure 2 shows the set of best weights and
comparison of the best obtained results with the Run-
ge–Kutta numerical results. It is seen that the proposed and
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reference results overlapped each other for 􏽢X(τ), 􏽢Y(τ), and
􏽢Z(τ) classes to solve the nonlinear SIR dengue fever system.
)e plots of the AE for 􏽢X(τ), 􏽢Y(τ), and 􏽢Z(τ) classes to solve
the nonlinear SIR dengue fever system are reported in

Figure 3. For the 􏽢X(τ) class, 􏽢Y(τ) class, and 􏽢Z(τ) class, the
AE best values lie about 10− 6–10− 8, 10− 3–10− 5, and
10− 4–10− 6, and the AE mean values lie around 10− 1-10− 2,
10− 2-10− 3, and 10− 3-10− 4, respectively. )e performance

0 0.2 0.4 0.6 0.8 1
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Figure 3: AE values for each class of the nonlinear SIR dengue fever system. (a) AE for X (τ) class. (b) AE for Y (τ) class. (c) AE for Z (τ)

class.
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plots of the E-VAF and T.I.C indices for each class of the
nonlinear SIR dengue fever system are plotted in Figure 4.
For 􏽢X(τ) category, the best E-VAF, M.A.D, and T.I.C values

lie around 10− 6–10− 8, 10− 5-10− 6, and 10− 9-10− 10. For 􏽢Y(τ)

category, the best E-VAF, M.A.D, and T.I.C values lie
around 10− 5-10− 6, 10− 3-10− 4, and 10− 8-10− 9. Similarly, for

V
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Figure 4: Performance of the E-VAF, M.A.D, and T.I.C operators for solving each class of the nonlinear SIR dengue fever system. (a)
Performance for each class of the nonlinear SIR system.
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Figure 5: Convergence of T.I.C plots along with the histogram usingMWNN-GA-IPA to solve each class of the nonlinear SIR dengue fever
system. (a) T.I.C for each class of the nonlinear SIR system. (b) Histogram for X (τ) class. (c) Histogram for Y (τ) class. (d) Histogram for Z
(τ) class.
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􏽢Z(τ) class, the best E-VAF, M.A.D, and T.I.C values lie
around 10− 3-10− 4, 10− 4-10− 5, and 10− 9-10− 10.

)e graphical representations of the statistical trials
along with the values of histograms are shown in Figures 5
and 6 for each class of nonlinear SIR dengue fever system.
)e convergence based on the E-VAF, M.A.D, and T.I.C
operators is accomplished for independent trials to the
nonlinear SIR dengue fever system. )e achieved results
from MWNN-GA-IPA are calculated satisfactory based on
the T.I.C, M.A.D, and E-VAF operators.

For the accurateness and precision measures, statistical
studies are provided in Tables 2–4 to solve each class of the
nonlinear SIR dengue fever using the operatives minimum
(Min), S.I range, maximum (Max), standard deviation
(S.T.D), and median. )e Min and Max standards show the
best results and poorest results in the 100 executions. For
X(τ) category, the Min, Max, median, S.I range, and S.T.D
values lie around 10− 7–10− 12, 10− 1-10− 2, 10− 5–10− 7, 10− 5-
10− 6, and 10− 1-10− 2, respectively. For the category Y(τ), the
Min, Max, median, S.I range, and S.T.D values lie around

Table 2: Statistical presentations of the nonlinear SIR dengue fever system for the category X (τ).

τ
X(τ)

Min Max Median S.I range S.T.D
0 4.0423220E − 12 9.9990000E − 01 2.2132198E − 07 3.3825540E − 06 2.9955460E − 01
0.1 1.8562196E − 08 9.9800585E − 01 2.2575664E − 06 9.2252690E − 06 3.1917267E − 01
0.2 1.1989577E − 08 9.9570595E − 02 2.8147596E − 06 7.3089931E − 06 3.1842462E − 02
0.3 3.2594992E − 07 9.9360942E − 01 3.6204945E − 06 5.6263588E − 06 3.1769837E − 01
0.4 9.7767938E − 08 9.9151010E − 01 5.4797252E − 06 5.1357097E − 06 3.1697503E − 01
0.5 3.2511304E − 06 9.8940563E − 02 8.1700536E − 06 7.3575618E − 06 3.1625439E − 02
0.6 2.8132523E − 06 9.8729376E − 01 1.1797241E − 05 1.1757718E − 05 3.1554735E − 01
0.7 6.9767773E − 07 9.8517226E − 01 1.5987828E − 05 9.1401060E − 06 3.1478449E − 01
0.8 6.3270889E − 06 9.8303897E − 02 2.0912004E − 05 1.0215585E − 05 3.1411641E − 02
0.9 4.5794286E − 06 9.8089357E − 01 2.5581289E − 05 9.6963771E − 06 3.1339004E − 01
1 3.0336439E − 06 9.7981727E − 01 3.1364852E − 05 1.1245408E − 05 3.1271044E − 02

Table 4: Statistical presentations of the nonlinear SIR dengue fever system for the category Z (τ).

τ
Z(τ)

Min Max Median S.I range S.T.D
0 2.7359906E − 11 6.0293074E − 02 2.1020438E − 07 1.4892650E − 06 1.6947015E − 02
0.1 1.2779827E − 06 6.0606789E − 02 1.7227698E − 05 2.9467734E − 06 1.8379946E − 02
0.2 9.8289161E − 07 6.0932383E − 02 3.4063897E − 05 4.1260050E − 06 1.8423547E − 02
0.3 7.8962744E − 06 6.1220946E − 02 5.0622682E − 05 2.7004041E − 06 1.8477633E − 02
0.4 2.8442743E − 05 6.1487380E − 02 6.6956094E − 05 1.7144321E − 06 1.8548676E − 02
0.5 4.3296911E − 05 6.1745495E − 02 8.3558913E − 05 2.8627209E − 06 1.8637956E − 02
0.6 6.4428148E − 05 6.2007841E − 02 1.0025700E − 04 3.3723574E − 06 1.8746689E − 02
0.7 7.8570024E − 05 6.2285742E − 02 1.1721379E − 04 3.3496552E − 06 1.8875847E − 02
0.8 8.0198804E − 05 6.2589332E − 02 1.3406477E − 04 3.9024126E − 06 1.9025869E − 02
0.9 4.5991286E − 05 6.2927739E − 02 1.5084468E − 04 2.3165808E − 06 1.9198331E − 02
1 4.4797926E − 05 6.3311235E − 02 1.6779808E − 04 4.5753017E − 06 1.9389410E − 02

Table 3: Statistical presentations of the nonlinear SIR dengue fever system for the category Y (τ).

τ
Y(τ)

Min Max Median S.I range S.T.D
0 4.7826156E − 05 1.2441636E − 03 5.3999940E − 04 2.1685104E − 07 1.9190429E − 04
0.1 2.2617648E − 04 3.1953335E − 03 5.3868377E − 04 2.2227911E − 06 6.0207993E − 04
0.2 2.4551957E − 04 5.1214677E − 03 5.3800062E − 04 2.9618951E − 06 1.3159469E − 03
0.3 2.1066905E − 04 7.0066945E − 03 5.3756084E − 04 2.1655938E − 06 2.0394513E − 03
0.4 1.7704587E − 04 8.9185145E − 03 5.3809794E − 04 1.9832062E − 06 2.7655709E − 03
0.5 1.7527548E − 04 1.0862314E − 02 5.3919348E − 04 1.6099165E − 06 3.4944298E − 03
0.6 1.5351687E − 04 1.2834137E − 02 5.4066226E − 04 1.7106495E − 06 4.2264704E − 03
0.7 4.2598412E − 05 1.4831228E − 02 5.4286714E − 04 2.3156731E − 06 4.9614134E − 03
0.8 1.2432002E − 04 1.6851840E − 02 5.4585539E − 04 3.3573941E − 06 5.6986905E − 03
0.9 1.2880654E − 04 1.8894845E − 02 5.4928063E − 04 3.3031846E − 06 6.4404297E − 03
1 9.7394166E − 05 2.0992829E − 02 5.5344362E − 04 2.9146189E − 06 7.1876800E − 03
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10− 4-10− 5, 10− 2-10− 3, 10− 4-10− 5, 10− 6-10− 7, and 10− 3-10− 4,
respectively. Likewise, the Min, Max, median, S.I range, and
S.T.D values for the category Z(τ) lie around 10− 5–10− 11,
10− 2-10− 3, 10− 4–10− 7, 10− 6-10− 7, and 10− 2-10− 3, respectively.
)ese calculated presentations found the worth and value of
the proposed MWNN-GA-IPA to solve the nonlinear SIR
dengue fever system. One can establish through the achieved
results that the MWNN-GA-IPA is stable and precise.

)e global performance of the operators [G-M.A.D], [G-
T.I.C], and [G-E.VAF] for 100 trials of MWNN-GA-IPA is
plotted in Table 5 to solve each category of the nonlinear SIR
dengue fever system. )e global-based mean [G-M.A.D], [G-
T.I.C], and [G-E.VAF] values are found to be 10− 4-10− 5, 10− 8-
10− 9, and 10− 5–10− 7, whereas the global values of the S.I Range
lie in the interval 10− 6-10− 7, 10− 10-10− 11, and 10− 6-10− 7 for each
category of the nonlinear SIR dengue fever system. )e close
optimal outcomes acquired by the global measures approve the
accurateness, correctness, and precision of MWNN-GA-IPA.

4. Conclusions

)e current investigations are linked to design a neural
network based on Morlet wavelet (MWNN) function for
solving the nonlinear SIR dengue fever system based on
dengue infection using the optimization procedures of global
and local search approaches, i.e., GA-IPA. )e nonlinear SIR
dengue fever system is capable to evaluate through GA-IPA
using the layer arrangement of Morlet wavelet neural net-
works taking 10 neurons. )e overlapped results through
MWNN-GA-IPA and the reference results show the good
accuracy level to solve the nonlinear SIR dengue fever system
based on dengue infection. )e performance measures based
on T.I.C, M.A.D, and E-VAF have been calculated satisfac-
torily. )e statistical assessments for 100 independent trials
using MWNN-GA-IPA in terms of minimum, S.I range,
median, standard deviation, andmaximum operatives further
validate the worth and correctness of the proposed MWNN-
GA-IPA. Furthermore, statistics analysis has been performed
in the case of SIR dengue fever model based on dengue
infection.

In future, the proposed MWNN-GA-IPA is proficient to
solve the biological nonlinear systems, singular higher order
nonlinear systems, and fluid dynamic systems.
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