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Abstract: High temperatures affect the yield and quality of vegetable crops. Unlike thermosensi-
tive plants, thermotolerant plants have excellent systems for withstanding heat stress. This study
evaluated various heat resistance indexes of the thermotolerant cucumber (TT) and thermosensitive
cucumber (TS) plants at the seedling stage. The similarities and differences between the regulatory
genes were assessed through transcriptome analysis to understand the mechanisms for heat stress
resistance in cucumber. The TT plants exhibited enhanced leaf status, photosystem, root viability,
and ROS scavenging under high temperature compared to the TS plants. Additionally, transcriptome
analysis showed that the genes involved in photosynthesis, the chlorophyll metabolism, and defense
responses were upregulated in TT plants but downregulated in TS plants. Zeatin riboside (ZR),
brassinosteroid (BR), and jasmonic acid (JA) levels were higher in TT plants than in TS. The heat
stress increased gibberellic acid (GA) and indoleacetic acid (IAA) levels in both plant lines; however,
the level of GA was higher in TT. Correlation and interaction analyses revealed that heat cucumber
heat resistance is regulated by a few transcription factor family genes and metabolic pathways.
Our study revealed different phenotypic and physiological mechanisms of the heat response by the
thermotolerant and thermosensitive cucumber plants. The plants were also shown to exhibit different
expression profiles and metabolic pathways. The heat resistant pathways and genes of two cucumber
varieties were also identified. These results enhance our understanding of the molecular mechanisms
of cucumber response to high-temperature stress.

Keywords: heat stress; thermotolerance; transcriptome; hormone; transcription factors

1. Introduction

Extreme climate changes threaten agriculture and food safety. High temperature
(HT) stress limits plant growth and productivity and even causes deaths under extreme
conditions [1,2]. In the tropical and subtropical regions, vegetable crops, such as tomato,
pepper, and cucumber, had reduced fruit number, weight, and morphology during spring
and autumn due to global warming [3,4]. Moreover, the high temperature environment will
also aggravate the impact of abiotic stresses, such as drought stress on plants, and induce
the outbreak of a series of diseases [5,6]. Thus, a proper understanding of the molecular
mechanisms of plant thermotolerance is needed for mitigating the negative effects of HT
on crops.

Cucumber is an annual vine originating from the foothills of the Himalayas [7]. Natural
and artificial selection has contributed to the genetic differences observed between the
cultivated and wild cucumber varieties [8]. Currently, China is the largest cucumber
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producer, contributing to more than two-thirds of the global output, followed by the
European Union, Turkey, the United States, and other countries.

Cucumber was introduced into China from Central Asia two thousand years ago.
Two cucumber varieties are currently cultivated in China, the North China type (located
in the northern parts of China’s Yangtze River) and the South China type (distributed
in the southern areas of China). The North China type of cucumber is a club-shaped
green fruit covered with dense white spines and grows well in wet and cool conditions.
Conversely, the South China type of cucumber is cylindrical with a reticulated green and
white coloration with sparse black spines and prefers humid and hot environments.

Although there are some regional differences in cucumber varieties, in general, it
is a crop that prefers a warm and cool environment, and the suitable temperature for
growth is 20–30 ◦C. Above 35 ◦C will make it grow abnormally [9,10]. When the cucumber
is damaged by heat, the leaves droop and turn yellow, the flowers fall easily, the fruit
develops deformities. In more severe cases, the leaves are scorched and wilted by the heat,
the flowers and fruits wither, the top dies, and the whole vine can die.

Plants have evolved various response mechanisms to elevated temperatures. Physical
changes and metabolism signals, including leaf orientation change, reduced water loss,
membrane lipid composition alteration, and larger xylem vessels, are the common response
mechanisms by plants to HT [11,12]. HT induces the production of reactive oxygen species
(ROS), which causes the peroxidation of membrane and pigments, leading to membrane
permeability loss [13]. In addition, HT alters the chloroplast and metabolite composition
of leaves, thereby, reducing the photosynthetic rate and resulting in a short life cycle and
diminished productivity in plants [14].

Extreme HT causes rapid cellular damage or death, which leads to catastrophic alter-
ations of cellular organization [12,15]. Transcriptomic and proteomic analyses have revealed
that HT induces various physiological responses and biotic and abiotic stress-related genes
in plants. Such physiological responses include lipid and secondary metabolisms, cal-
cium signaling, protein phosphorylation, phytohormone signaling, RNA metabolism, and
transcription regulation [9,16–20].

Among these, transcription factors play an important role, particularly heat shock
factors (HSFs), which are key regulators of HT responses in plants. Heat shock transcrip-
tion factor A1 (HSFA1) responds to HT by a series of transcriptional regulatory responses
of thermotolerance in plants [12]. Furthermore, the basic leucine zipper (bZIP) gene fam-
ily is reported to be involved in the HT response by endoplasmic reticulum-unfolded
proteins [18,21]. The basic helix-loop-helix (bHLH) transcription factor, phytochrome interact-
ing factor 4 (PIF4), has been demonstrated to control plants’ morphological acclimation
during HT [22].

Under HT stress, the phytohormone signaling pathway-associated defense responses
are stimulated [23,24]. Previous studies showed that the abscisic acid (ABA), salicylic acid
(SA), and ethylene (ET) levels increased, while the cytokinin (CK), auxin, and gibberellic
acids (GAs) levels decreased in response to HT. These fluctuations ultimately caused
premature plant senescence [24–26]. Nonetheless, HT promotes auxin accumulation and
stimulates GA and brassinosteroid (BR) pathways in hypocotyl elongation [27–29].

This study investigates the HT tolerance of two cucumber varieties from different
regions. We measured the physiological indexes and endogenous hormones and systemati-
cally analyzed the genetic responses to heat stress. Distinct heat stress response patterns
in transcription and translation regulation, hormone signaling pathways, and vascular
patterns were observed between thermotolerant and thermosensitive cucumber plants. We
also identified several TFs and hormones crucial for the HT response.

2. Materials and Methods
2.1. Plant Materials

The thermotolerant ‘TT’ and thermosensitive ‘TS’ cucumber inbred lines were grown
in the standard culture chamber at South China Agricultural University (Guangzhou,
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China). The seeds were soaked in warm water at 55 ◦C for 20 min and 35 ◦C for 4 h,
then they were wrapped in a damp cloth and germinated in an incubator at 28 ◦C. After
sprouting neatly, they were planted in a sterilized fresh soil substrate and cultivated in a
culture room at 25 ◦C/16 h-daytime and 20 ◦C/8 h-night. Water and pest control were
provided according to standard protocols. All experiments were performed when the
fourth true leaf of the seedlings began to unfold, and the same tissue site was used.

2.2. High-Temperature Stress Treatments, Chlorophyll Fluorescence and Root Viability

Tow temperature detectors were placed in greenhouses and the farmland next to it,
with a height of 1.5 m, and temperature values were recorded every 15 min. Temperature
monitoring was conducted from May to October to obtain an overview of the cultivation
environment during the hottest period in Guangzhou. Therefore, the HT treatment was
set as 43 ◦C for 16 h in the daytime and 25 ◦C for 8 h in the night for our experimental
conditions. The recovery conditions were the same as for the normal culture environment.

Chlorophyll was examined using the chlorophyll fluorescence imager (IMAGING-
PAM, WALZ, Effeltrich, Germany) after 0, 3, and 6 days post HT treatment [9]. Dihy-
drorhodamine 123 (DHR123), a reactive oxygen species fluorescent probe was used for the
detection of ROS [30]. Fluorescein Diacetate (FDA), a cell-permeable esterase substrate
can only be broken down into fluorescein and accumulate in living cells. Propidium io-
dide (PI) is a cell-membrane impermeable dye. FDA/PI were used for the cell viability
assessment [31].

The roots were soaked in phosphate-buffered saline (PBS) (pH 7.0) containing 1%
(w/v) FDA and 0.5% (w/v) PI for 20 min in darkness and rinsed in PBS buffer for 10 min.
For ROS detection, the roots were soaked in PBS (pH 7.0) buffer containing 50 mmol/L
DHR123 for 20 min in the dark and rinsed in PBS buffer. The roots were then photographed
using a fluorescence microscope (Carl Zeiss LSM710) with the specifications (488/530 nm),
(535/615 nm), and (488/525 nm) for FDA, PI, and DHR123, respectively.

2.3. Determination of Physiological Indicators

The leaf tissues were subjected to a reaction with thiobarbituric acid (TBA) to measure
the malonaldehyde (MDA) content [28]. Nitroblue tetrazolium and guaiacol reactions were
used to determine the enzymatic activities of SOD and POD [29]. The relative electric
conductivity of the leaf exudate was determined using a conductivity meter (DDS-307).
Chlorophyll was extracted from fresh leaves (0.1 g) using 96% ethanol (5 mL) in the dark.
Chlorophyll a and b (Chl a and b) and carotenoid were quantified spectrophotometrically
at the wavelengths of 470, 649, and 665 nm, respectively. All physiological indexes were
determined in nine biological replicates.

2.4. RNA Extraction, Library Construction, and RNA Sequencing (RNA-Seq)

Leaves from the TT and TS lines were collected after 0 (CK), 3, and 6 days post HT
treatment for RNA-seq analysis. A sample constituted of leaves was pooled from ten plants.
The total RNA was extracted using a C HiPure Plant RNA Kit (R4151, Megen, Guangzhou,
China). Subsequently, messenger RNA (mRNA) was enriched using oligo (dT) beads, and
the ribosomal RNA (rRNA) was removed using the Ribo-ZeroTM Magnetic Kit (Epicentre).

The enriched mRNA was fragmented into shorter fragments using a fragmenta-
tion buffer and reverse-transcribed into complementary DNA (cDNA) with random
primers. Thereafter, a buffer containing DNA polymerase I, RNase H, and dNTPs
was used to synthesize the second cDNA strand. The cDNA fragments were purified,
end-repaired, and polyadenylated. The fragments were then ligated to the Illumina
sequencing adapters and sequenced using Illumina HiSeqTM 2500 by GeneDenovo
Biotechnology Co. (Guangzhou, China).
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2.5. RNA-Seq Data Analyses

Novel gene transcripts were identified and annotated using Cufflinks software [32]
following read normalization and sequence alignments [33–35]. Gene identifications (IDs)
corresponding to the gene symbols used in the article are in Supplementary Table S1. The
gene abundances were quantified using RSEM software [36]. Additionally, correlation and
principal component analysis were used to evaluate the relationship between samples.
The edgeR package (11 March 2020, http://www.rproject.org/) was used to identify
differentially expressed genes (DEGs) across samples. The DEGs represent genes with a
fold change ≥2 and a false discovery rate (FDR) < 0.05.

Enrichment analysis of the DEGs was conducted based on the Gene Ontology (GO)
(1 April 2020, http://www.geneontology.org/) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) databases (2 April 2020, https://www.kegg.jp/kegg/) [37]. The ex-
pression pattern of DEGs was normalized to 0, log2 (v1/v0), and log2 (v2/v0) and then
clustered to different profiles using the Short Time-series Expression Miner (STEM) software
(Ernst et al., 2006). The clustered profiles with a p-value < 0.05 were considered significant.
The clustered DEGs were then subjected to another round of enrichment analysis of the
GO and KEGG pathways.

2.6. Quantitative Real-Time RT-PCR

All qRT-PCR analyses were performed with gene-specific primers (Supplementary
Table S1) using a ChamQTM Universal SYBR qPCR master mix (Q711-02/03, Vazyme, Nan-
jing, China). Gene expression was assessed using the delta-delta Ct (2−44Ct) method [38].

2.7. Determination of the Endogenous Hormones and Predictive Analysis of the Protein-
Protein Interactions

Fresh plant samples (1 g) were extracted using cold methanol and later concentrated
and purified. Endogenous hormones were determined by liquid chromatography-tandem
mass spectrometry (LC-MS/MS) [39–41]. The KEGG database was used to enrich the
DEGs of plant hormone signaling pathways. Furthermore, protein interactions between
the transcription factors (TFs) and genes of the phytohormone signaling pathways were
analyzed through the JASPAR software (16 August 2020, http://jaspar.genereg.net/).
Interactions with the correlation coefficient > 0.9 and FDR < 0.05 were considered significant.
Protein prediction was conducted based on the DEGs and TFs of the two cucumber varieties,
and the KEGG database was used to enrich the related genes. The results were visualized
using TBtools, Cytoscape, and Adobe illustrator.

3. Results
3.1. The Phenotype of Thermotolerant and Thermosensitive Cucumber Plants under
High-Temperature Stress

Cucumbers prefer a humid and warm climate; however, some varieties can adapt to
different climatic latitudes. A previous heat resistance study on the cucumber cotyledon
stage showed that the inbred lines TT (South China thermotolerant cucumber) and TS
(North China thermosensitive cucumber) had contrasting heat resistance (Figure 1A).
In order to examine the heat resistance of the cucumber seedling stage, we assessed
the summer temperatures of Guangzhou for several months and developed a one-week
temperature curve (Figure 1B).

The temperatures usually rise rapidly from about 23 ◦C at 6 a.m. (about 1 h after the
sun rises above the horizon) to about 40 ◦C after 3 h during the summer in Guangzhou. High
temperatures above 38 ◦C were sustained for 5.25–10.75 h during the day in summer, and
the maximum greenhouse temperature was 2–5 ◦C lower than the farmland. The maximum
farmland temperature was 54.5 ◦C, and the maximum temperature of greenhouse reached
49.5 ◦C. However, from 10 a.m. to 3 p.m., the average temperature reached 43 and 38 ◦C in
the farmland and greenhouse, respectively (Figure 1B).

http://www.rproject.org/
http://www.geneontology.org/
https://www.kegg.jp/kegg/
http://jaspar.genereg.net/
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high-temperature stress. (A) Planting and distribution areas of the North China type TS and South 
Figure 1. Phenotypic characterization of thermo-tolerant and thermo-sensitive cucumber under high-
temperature stress. (A) Planting and distribution areas of the North China type TS and South China
type TT. The asterisk position represents the experimental cultivation area (green and yellow), while
the numbers represent the latitude. The size of the circle represents the approximate distribution of
different types of cucumber varieties. (B) Temperature statistics of farming areas in Guangzhou, China,
for a week in July. On the horizontal axis, blue represents night, while beige denotes day temperatures.
The value of each point represents the average temperature for three hours. (C–J) Characterization of
thermo-sensitive TS and thermo-tolerant TT lines. 3 days (D,H), 6 days (E,I), and recovered 3 days
(F,J) (28 ◦C daytime/25 ◦C night) after high-temperature stress (43 ◦C daytime/25 ◦C night). TS and
TT represent the thermo-sensitive and thermo-tolerant cucumber inbred lines. HT, high temperature;
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3D, 3 day; 6D, 6 day; and R, recovered. (K) Death rate of 02 and 14 lines after high-temperature
exposure. (L,M) Hyponasty angle between lamina and petiole after high-temperature exposure.
(N–Q) Changes in the MDA (malondialdehyde) content, relative conductivity, SOD (superoxide
dismutase), and POD (peroxidase) enzyme activities in thermosensitive TS and thermo-tolerant TT
cucumber leaves after high-temperature stress. Scale bars represent 1 cm in (C–J,L). Values are the
means ± SE (n = 30) in (M–Q). Relative to CK, ** in M-Q indicate significant differences of p < 0.01 by
t-test, and * indicates p < 0.05 by t-test. FW, sample fresh weight; U/g FW, enzyme viability unit per
gram of fresh weight; and U/g FW min, the enzyme activity unit per minute of fresh weight change.
The % of relative electrolyte leakage indicates the relative electrolyte extravasation rate.

The study examined the heat resistance of TT and TS cucumber plants at the three
leaves stage (Figure 1C,G). After three days of high temperature (43 ◦C) treatment, the TS
leaves showed brown margins, wilted, and died, while the TT plants were in good condition
with normal, green leaves. The leaves of TS drooped downward, while the TT leaves rose
upward (Figure 1D–F). The angle between the petiole and blade of TT were larger than
TS (Figure 1L,M), and this phenotype became severe after 6 days of high temperature
(Figure 1L,M). Three days after recovery in a normal environment, nearly all TT plants
were in good condition, while approximately 80% of the TS plants died (Figure 1K).

To further understand the physiological modifications in response to high tempera-
ture, some major physiological changes were measured. Malondialdehyde (MDA) is an
important indicator of membrane lipid oxidation. The base MDA contents were different in
TT and TS plants under normal conditions, but during heat treatment, TS contained high
MDA content until the temperature returned to normal. The TT plants had reduced MDA
contents, and after 6 days of heat treatment, their MDA content normalized (Figure 1N).

Electrolyte leakage is an important indicator of cell membrane injury. The TS plants
had high relative conductivity after high-temperature stress and failed to recover after the
temperature returned to normal (Figure 1O). Superoxide dismutase (SOD) and peroxidase
(POD) are two necessary antioxidant enzymes that protect plants from heat-induced oxida-
tive stress. The base SOD and POD activities differed in TT and TS plants under normal
conditions; however, TT plants restored enzyme activity levels during heat treatment
(Figure 1P,Q). These results indicate that the thermotolerant cucumber inbred line TT has
enhanced physical and physiological adaptation to high-temperature stress.

3.2. Photosystem of Thermotolerant and Thermosensitive Cucumber in Response to
High-Temperature Stress

The study observed the leaf chlorophyll fluorescence and photosynthetic system
parameters to explore the photosynthetic system of the two cucumber lines under high-
temperature stress. The TS plants had a more active photosystem than TT plants in the
normal environment (Figure 2A,D). However, TT plants showed stable photosynthesis in
all the measured leaves after 3 days of high-temperature stress and rapid recovery in the
normal growth environment. TS plants had extremely unstable photosynthesis after 3 days
of high-temperature stress (Figure 2A–F).

The Fv/Fm curve (maximum quantum yield of PS II photochemistry) showed that TS
and TT plants have similar photosynthetic capacities under normal light, smothered under
strong light (Figure 3G). High temperature seriously impaired the photosynthetic system
of TS plants but slightly impaired the TT photosynthetic system (Figure 3H).
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Figure 2. Chlorophyll fluorescence of thermo-sensitive and thermo-tolerant lines after high-
temperature stress. (A–F) Chlorophyll fluorescence (Fv/Fm) of the TS and TT lines after high-
temperature stress. The orange-red color indicates a stable photosynthetic system in leaves, while the
green color indicates an unstable photosynthetic system. (G–N) The maximum quantum yield of PS
II photochemistry (Fv/Fm) (G,H), the relative electron transfer rate (ETR) (I,J), non-photochemical
quenching (NPQ) (K,L), the effective quantum yield of photochemical energy conversion in PS II
(Y(II)) (M,N) of TS and TT lines after high-temperature stress. PAR denotes Photosynthetically
Active Radiation. (O–R) The content changes of chlorophyll II, chlorophyll II a, chlorophyll II b,
and carotenoids of TS and TT lines after high-temperature stress. Scale bars represent 1 cm in (A–F).
Values are the means ± SE (n = 30) in (G–R). ** in O-R indicate significant differences of p < 0.01 by
t-test, and one asterisk indicates p < 0.05 by t-test.
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temperature stress. (A–F), Characterization of cell viability in the root of TS (A–C) and TT (D–F) 

Figure 3. Cell viability and reactive oxygen accumulation in cucumber root and stem after high-
temperature stress. (A–F), Characterization of cell viability in the root of TS (A–C) and TT (D–F)
after high-temperature stress. (A’,B’,D’,E’) are amplifications of figures (A,B,D,E), respectively. Red
fluorescence represents dead cells as revealed by PI (propidium iodide) staining, while the green
fluorescence represents the living cells as revealed by FDA (Di-O-acetylfluorescein) staining. (G–L), the
cell viability of the vascular system in the stem of TS (G–I) and TT (J–L) after high-temperature stress.



Int. J. Mol. Sci. 2022, 23, 1817 9 of 23

(H’,K’) are amplifications of figures (H,K), respectively. Red fluorescence represents the dead cells
stained by PI, while the green fluorescence represents the living cells dyed by FDA. (M–X), the
characterization of reactive oxygen in the root (M–R) and stem (S–X) after high-temperature stress.
The red fluorescence represents reactive oxygen concentrated region, the green is spontaneous
fluorescence of plants, while yellow represents an overlap of red and green fluorescence. (Y,Z), the
root system of cucumber in the soil layer for TS and TT plants after heat stress. TS and TT represent
the thermo-sensitive and thermo-tolerant cucumber inbred lines. HT, high temperature; 3D, 3 day;
6D, 6 day; and R, recovered. Scale bars represent 100 µm in (A–C,F,G,I), 200 µm in (D,E,H,J), and
1 cm in (Y,Z).

Under a normal environment, the ETR (relative electron transfer rate) curve of TS was
higher than TT plants. Still, the photosynthetic capacity of TT plants increased, while that
of TS plants decreased after 3 days of high-temperature treatment (Figure 2I,J). The NPQ
(non-photochemical quenching), Y(NPQ), and qN curves, which represent the ability of
a plant to dissipate excess light energy, demonstrated a photo protective ability that was
stronger in TT plants than in TS plants.

Moreover, high temperatures weakened the photosynthesis capabilities of TT and TS
plants (Figure 2M,N, Supplementary Materials Figure S1A,B,I,J). The qL and qP curves
indicated that TT plants maintained a stronger light quenching ability than TS plants after
high-temperature stress. Thus, TT plants may maintain a normal activity of the PSII center
in high temperatures (Supplementary Materials Figure S1C–F). The Y (II) curve (effective
quantum yield of photochemical energy conversion in PS II) was higher in TT than in TS
(Figure 2M,N).

This curve estimates the effective portion of absorbed quanta used in PSII reaction
centers. Under normal environments, TT and TS plants have identical total chlorophyll,
chlorophyll a, chlorophyll b, and carotenoids (Figure 2O–R). However, high temperature
reduced all the chlorophyll parameters, and the damage was irreparable in TS plants after
returning the plants to the normal environment. In contrast, the high temperature decreased
the total chlorophyll, chlorophyll a, and carotenoids in TT, but the plants recovered rapidly
after returning to the normal environment (Figure 2O–R).

3.3. Cell Viability and Reactive Oxygen Accumulation in Thermotolerant and Thermosensitive
Cucumber under High-Temperature Stress

We further observed the cell viability and oxygen accumulation in the root and stem.
The TT plants showed enhanced root activity under high temperatures compared with
TS plants (Figure 3A–E’). Most cells in the TS root died after 3 days of recovery treatment,
yet the TT roots recovered well (Figure 3A–F). Similarly, cells in the TS stem died, and
returning to normal temperature for 3 days aggravated the cell death (Figure 3G–I). The TT
stem retained numerous live vascular bundles (Figure 3J–L).

In addition, TS roots accumulated more reactive oxygen compared with TT roots
(Figure 3M–R). In the stem, reactive oxygen was concentrated in the xylem of vascular
bundles of TT plants but spread all over the vascular bundles of TS plants (Figure 3S–X).
In the soil layer, high temperature reduced the root quantity of TT, which recovered
rapidly after returning to normal temperature; however, TS had difficulty returning to
normalcy (Figure 3Y,Z). These results indicate that TT plants have stronger heat resistance
and resilience.

3.4. Thermotolerant and Thermosensitive Cucumbers Have Distinct Expression Profiles and
Transcriptomic Differentiation under High-Temperature Stress

Transcriptome sequencing was conducted at 0, 3, and 6 days after treating TT and TS
plants with high temperatures. High-temperature treatment significantly increased twice
as many upregulated DEGs in TT compared with in TS plants (Supplementary Materials
Figure S2A). Hence, the two cucumber lines responded differently to heat stress. Quanti-
tative real-time RT-PCR (qRT-PCR) analysis of 12 genes verified the RNA-seq identified
DEGs (Supplementary Materials Figure S2B).
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The cluster analysis revealed four significant expression patterns in TS after heat
treatment, while TT plants had only three significant patterns. Genes in profiles 0 and 1
were down-regulated and upregulated at profiles 6 and 7 (Figure 4A). The significantly
enriched (p < 0.05) pathways were extracted to understand heat resistance between the two
varieties. A Venn diagram showed the correlation (Figure 4B). There were 58 significant
pathways in TS and 52 in TT with 29 identical and 15 similar expression patterns.

The same upregulated pathways in the two varieties under heat stress included
peroxisome, protein processing in the endoplasmic reticulum, valine, leucine isoleucine
degradation, and autophagy regulation. Moreover, the down-regulated pathways included
ribosomes, the biosynthesis of amino acids, porphyrin, and the chlorophyll metabolism
(Figure 4B). DNA replication, plant–pathogen interactions, and the glutathione metabolism
showed different expression patterns (red stars in Figure 4B).

High temperature enriched 23 and 29 pathways in TT and TS plants, implying
varied responses in both varieties (Figure 4C,D). Ubiquitin-mediated proteolysis, ter-
penoid backbone biosynthesis, and RNA polymerase were specifically upregulated in TT
plants (Figure 4C). However, the fructose and mannose metabolism, galactose metabolism,
and cysteine and methionine metabolism were specifically upregulated in TS plants
(Figure 4D). Seven and nine crucial physiological pathways were down-regulated in TT
and TS plants, respectively.

Venn clustering showed that high temperature upregulated 6826 and down-regulated
4111 genes in TT and TS plants (Figure 5A–C). Of these, 1140 upregulated and 415 down-
regulated genes were common to both varieties (Figure 5A,B). Gene Ontology (GO) enrich-
ment analysis revealed that the commonly upregulated genes control responses to stimulus,
stress, and heat (Figure 5D). However, the common down-regulated genes were related to
metabolic processes, cellular component organization, and development (Figure 5H).

The 39 genes enriching the cell cycle, metabolic process, and phenylpropanoid biosyn-
thetic process were upregulated in TT and down-regulated in TS (Figure 5G). However,
high temperature specifically upregulated 2867 and 923 genes in TT and TS, respectively
(Figure 5A). Moreover, the specifically upregulated genes enriched DNA repair, DNA
metabolic processing, the protein modification process, the regulation of gene expression,
the response to stress, and the xylem–phloem formation processes in TT plants (Figure 5E).
In comparison, the upregulated genes significantly enriched the lipid metabolic processes,
water homeostasis, and transport in TS plants (Figure 5F).

High temperature specifically repressed 523 and 1888 genes in TT and TS, respectively
(Figure 5B). Interestingly, down-regulated genes specifically enriched metabolic processes
in TT (Figure 5I). The TS-specific down-regulated genes increased pathways in response
to stress, cell development, and the organization process (Figure 5J). Altogether, the tran-
scriptome profiles demonstrated that DNA and protein processes, the hormone signaling
pathway, and gene expression regulation involve heat responses.

3.5. Hormones That Signal Transduction Pathways Were Different between Thermotolerant and
Thermosensitive Cucumber

High temperature affected several hormone synthesis precursors and signal transduc-
tion pathways (Figure 4). Under the normal environment, TT and TS plants had similar
levels of gibberellin (GA), jasmonic acid (JA), brassinolide (BR), and abscisic acid (ABA),
while TT had less auxin (IAA) and more cytokinin (ZR) than did TS (Figure 6A–F). After
high-temperature treatment, the contents of ZR, BR, and JA were higher in TT than in TS
plants (Figure 6A–F). However, GA increased in both varieties but was higher in TT after
high-temperature stress (Figure 6B). Heat treatment boosted IAA and GA in TT and TS
(Figure 6C–F).
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Figure 4. Clustering analysis and KEGG enrichment of DEGs based on the gene expression profiles.
(A) The significant expression profiles based on time points in TS and thermo-tolerant TT cucumber
lines after high-temperature stress. In each profile, each light gray line represents each gene, while
the thick black line represents the global expression tendency, and the number on the right is the
p-value. (B–D) Venn diagram for enrichment pathways (p < 0.05) of the two cultivars, presented
as a heat map. In the heat map, the significant enrichment pathways of the two varieties are
presented (B), and specific significant enrichment pathways are also shown for thermo-tolerant
TT (C) and thermo-sensitive TS cucumber (D) varieties. Red and blue fonts indicate the pathways
that were significantly enriched with upregulated or down-regulated genes in both varieties, while I

indicates that the significant enrichment pathways of thermo-tolerant and thermo-sensitive cucumber
presented different expression patterns.
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Figure 5. The differences of thermo-tolerant and thermo-sensitive cucumber line DEGs in response to
heat stress analyzed by Venn clustering and GO. (A–C) Venn diagrams for common and specific heat
responsiveness of different times in thermo-tolerant and thermo-sensitive cucumber lines. (D–J) GO
analysis of biological processes affected by high-temperature stress. Heat upregulated the genes of
different biological processes across the two lines (D), specifically upregulated in thermo-tolerant (E)
and thermo-sensitive (F) cucumber lines. Biological processes were upregulated in thermo-tolerant
but downregulated in thermosensitive cucumber lines following heat treatment (G). The genes of
different biological processes were downregulated by heat across the two lines (H) and specifically
downregulated in thermo-tolerant (I) and thermosensitive (J) cucumber lines. p-values are shown in
different color shades. The column chart represents the number of genes in a biological process.
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Figure 6. Changes in the endogenous hormone content and gene expression of plant hormone
signal transduction pathways in thermo-tolerant and thermo-sensitive cucumber lines under high-
temperature stress. (A–F) Changes in the endogenous hormone levels in thermo-tolerant and thermo-
sensitive cucumber lines under high-temperature stress. ZR, zeatin, mean cytokinin; GA3, Gibberellin
A3; IAA, Indole-3-acetic acid, mean auxin; BR, Brassinosteroids; JA, Jasmonic acid; and ABA, Abscisic
acid. Error bars represent the mean ± SD. * and ** indicate significant differences from control
plants (CK) at p < 0.05 and p < 0.01, respectively. (G) Plant hormone signal transduction pathways
in thermo-tolerant and thermo-sensitive cucumber lines under high-temperature stress. Each row
represents a significantly different expression gene. The maximum to minimum values of gene
expression in the same row are given a corresponding color.
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The genes involved in the plant hormone signal transduction pathway were analyzed
further to investigate the hormone functions in response to high temperatures. Heat
stress more quickly upregulated TIR1 in TT compared with in TS. Moreover, heat stress
down-regulated most Aux/IAA proteins that repress auxin-responses in both varieties
but activated auxin response factors (ARFs) (Figure 6G). High-temperature treatment
also induced multistep cytokinin signaling and upregulated type-A-ARRs inhibitors of
cytokinin signaling in TS (Figure 6G).

Moreover, the downstream CsCYCD3 family genes responsible for cell division were
upregulated in TT and down-regulated in TS. GO analysis showed that genes involved in
the ethylene metabolic process were upregulated in TT and TS plants (Figure 6G). Heat
stress upregulated the GA receptor CsGID1 and down-regulated the DELLA inhibitor
(Figure 6G). Heat stress also upregulated the negative regulator, CTR1, in the ethylene
pathway, but EBF1/2 had a higher expression in TS compared with in TT plants and targets
EIN3 for proteolysis (Figure 6G).

High temperature-induced the binding factor JAR1 of JA, while the repressor JAZ and
transcriptional activation factor MYC2 responded quicker in TT than in TS (Figure 6G).
Genes of BR biosynthesis increased in TT and decreased in TS after HT (Figure 4C,D). In
addition, CsBZR1, a positive regulator of the BR signaling pathway, accumulated earlier and
higher in TT than in TS (Figure 6G). Variety TS maintained high levels of the major activator,
CsNPR1, in the SA pathway in normal high-temperature environments. In contrast, the
CsNPR1 expression was firstly raised and then reduced in TT after high temperatures.

Likewise, heat stress activated the NPR1-bound TGA, which masks its repressor
domain and activates transcription (Figure 6G). These results imply that phytohormones
are important for the response to high temperatures in cucumbers.

3.6. Transcription Factors Regulate the Responsive Differentiation of Thermotolerant and
Thermosensitive Cucumber to High Temperature

Transcription factors (TFs) and their direct targets are the core regulators of the high-
temperature response. Under high temperature, the TFs expression patterns identified 1668
transcription factors in 57 different families, and heat stress significantly affected some
of these (Supplementary Materials Figure S3A). Venn clustering analysis was conducted
(Supplementary Materials Figure S3B–D). High temperature upregulated 281 TFs in at least
one-time point of each plant (TT or TS). The common TFs included HSF, NAC, MYB, and
ERF (Supplementary Materials Figure S3B,E).

Interestingly, heat significantly upregulated most TT genes. However, the same genes
were insensitive to the heat response in TS, where no significant changes in expression
occurred (Supplementary Materials Figure S4A–C). There were 392 down-regulated TFs in
at least one stage of each plant, and they showed different expression patterns in TT and TS
plants (Supplementary Figures S3C and S4D,E). Several TFs, including WRKY, MYB, ERF,
and NAC transcription factors, were specifically upregulated in TT and down-regulated in
TS after HT (Supplementary Materials Figure S3D,F).

Protein interaction predictions between the plant hormone, signal transduction path-
way, and TFs were conducted to find the cucumber strategies of coping with high tempera-
ture (Supplementary Materials Figure S3G). Fifteen TF families demonstrated a significant
relationship with plant hormone signal transduction. Among them, the transcriptional
activation pathway of auxin highly correlated with transcription factor families, including
WRKY, MYB-regulated, C2H2, NAC, and HSF. Multiple transcription factor families, such
as bZIP, NAC, ZF-HD, MYB, and bHLH (Supplementary Materials Figure S3G), regulated
the auxin feedback regulation mechanism.

The bHLH and NAC factors significantly affected abscisic acid regulation. The ERF
family genes linked to ethylene, abscisic acid, auxin, and bZIP were also significant. MYB
also affects cytokinin signal transduction and downstream BR activation. Moreover, the
C2H2 family interacted with the repressor JAZ of JA and regulated the GA and ABA
perception factors. The HD-ZIP family regulates SA signal perception and transcriptional
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activation (Supplementary Materials Figure S3G). Altogether, vital transcription factors
have complex interactions with plant hormones in response to high temperatures.

Therefore, this study constructed an interaction model that assembled metabolic
pathways and TFs (Figure 7). Seven of the 27 metabolic pathways were common in
thermotolerant and thermosensitive cucumbers, but 13 enriched pathways were specific in
thermosensitive cucumbers, and six were only in thermotolerant cucumbers. The metabolic
pathways for the energy metabolism, metabolism of amino acids, lipid metabolism, signal
transduction, repair and catabolism, and biosynthesis of secondary metabolites.
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Figure 7. Possible interactions between TF and HT significant enrichment pathways in thermo-
tolerant and thermo-sensitive cucumber lines under heat stress. Protein interactions and correlation
degrees between TFs families and the HT significant enrichment pathway (q < 0.05) in thermo-tolerant
and thermo-sensitive cucumbers under high-temperature stress. The predictive data were screened
by statistical test (q < 0.05, FDR < 0.05) and correlation analysis (ρ > 0.9). The size of the nodes
represents the degree of influence, the color of the nodes shows the overall expression trend of the
enriched gene, while the width and color transparency of the edges represents the predicted scores.
The significant enrichment pathway of TT is in the yellow region, the TS is in the green region, and
the other regions are the common significant pathways.

Heat stress specifically enriched the lipid metabolism, metabolism of amino acids,
and biosynthesis of secondary metabolites in TS. Repair, catabolism, and the energy
metabolism were specifically enriched in TT. Heat stress upregulated most transcription
factor families, such as HSF, bZIP, NAC, ARF, and DOF, while the GATA family was
down-regulated. The bHLH, WRKY, and ERF families had polarized expression (Figure 7,
Supplementary Materials Figure S5).
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The HSF family, including HSFA2-6, regulating HSP expression and other factors, was
upregulated after 3 and 6 days of high-temperature treatment in TT and TS (Supplementary
Materials Figure S5A). High temperature upregulated the bZIP, bHLH, HD-ZIP, NAC,
and WRKY family genes in both TT and TS plants; however, TT had faster and higher
expression (Supplementary Materials Figure S5A–G).

High-temperature stress gradually increased the expression of CsBIM1 and CsbHLH20
in the bHLH family, and CsDREB2 and CsSHN3 in the ERF family in TT, but the expression
declined gradually in TS. CsPIF3 and CsWRKY7 expression increased in TT and then TS.
Interestingly, the high temperature rapidly upregulated the KNOX family genes in TT,
which function in leaf polarity corresponding to the leaf orientation. In general, a limited
family of transcription factors affects specific metabolic pathways, differentiating cucumber
heat tolerance.

4. Discussion

Global warming is a critical and urgent global concern that is worth investigating
as it influences how plants cope with elevated temperatures [42,43]. Plants use complex
regulation mechanisms, which involve multiple interaction pathways to cope with stress.
Some of these mechanisms include the regulation of plant hormones, transcription factors
and miRNA; the transmission and influence of signal factors; as well as the production and
accumulation of metabolites [44,45]. Many studies have described the physical response of
plants to high-temperature stress; however, the response of cucumber to high-temperature
stress has been rarely studied.

In the present study, thermo-tolerant and thermo-sensitive cucumber species from
different regions were selected to identify their physical responses to high-temperature
exposure. Gene expression and physiological changes analyses were performed to examine
the responses of the two cucumber varieties to heat stress following 3 and 6 days of
exposure. The result showed that the two cucumber cultivars with huge geographical
differences exhibited large morphological differences in the leaves, roots, and stems when
exposed to high temperatures.

Additionally, various physiological indicators of photosynthetic systems, such as the
active oxygen, antioxidant enzymes, and membrane systems, showed significant differ-
ences. Thermo-tolerant cucumber species restore functions to a relatively healthy level
under high-temperature exposure. A combination of the changes in endogenous hormone
content and gene expression revealed that cucumber species with different heat resistance
traits demonstrated different gene expression strategies in response to heat stress, which
involved a small number of transcription factor families.

4.1. Changes in Cucumber Structure and Organization under Heat Stress

When plants are exposed to high temperatures, sensitive plants show cellular metabolic
imbalances, resulting in a damaged photosynthetic system and the accumulation of harm-
ful substances in the roots, stems, leaves, flowers, etc. This accumulation subsequently
impedes plant growth and development. However, restoring the normal growth envi-
ronment did not effectively induce damage repair but further compromised the plant
growth or induced plant death. Plants that survived the stress displayed a stronger vitality,
insusceptible cellular homeostasis, normal photosynthesis, and resilience [18,46–48].

Physical phenotypes characterized by leaf etiolation and hyponasty in thermo-tolerant
and thermo-sensitive cucumber plants show wide differences under high temperatures.
Thus investigating the regulators that stabilize cellular metabolic processes in the thermo-
tolerant plant is an efficient strategy for exploring the mechanisms underlying crop heat
tolerance. Similar reports showed that the leaf angle and petiole length increased with
temperature increase in Arabidopsis thaliana [49,50]. The photosynthetic systems of the two
species of cucumber were damaged differently, which is common in crops.

These differences in response to high-temperature environments by different pho-
tosynthetic systems may be related to the function of Rubisco, which is the key enzyme
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responsible for autotrophic carbon fixation and oxygen metabolism [14,51–53]. TT plants
maintained normal growth under high temperatures due to their robust and stable pho-
tosynthetic system. There was rapid recovery in the total chlorophyll, chlorophyll a,
and carotenoids, which is characteristic of green leaves in TT plants when returning to a
normal environment.

This finding corroborates reports in other crops [54,55]. Conversely, TS plants were
thermo-sensitive due to the vulnerability of their photosynthetic system. Decreased cell
viability and accumulation of reactive oxygen in the roots and stem may have resulted in
the death of TS plants.

Transcriptome analysis of TT and TS plants showed that there were obvious differences
in peroxisomes [56], photosynthesis [57], plant–pathogen interactions [58], ubiquitin-mediated
proteolysis [59], plant hormones [60], and pyruvate and other metabolic pathways [61], which
function in the heat stress response. These results are consistent with the characterization of
thermo-tolerant and thermo-sensitive cucumber in the present study. Notably, the synthesis
and metabolism of energy materials and genes for phytohormone pathways had opposite
responses to high temperature in TT and TS plants, which could be an alternative strategy by
which thermo-tolerant plants survive in high-temperature environments.

4.2. Phenotypic and Endogenous Hormone Pathways in Response to High Temperature

Under high-temperature stress, genes responsible for protein modification, DNA re-
pair, macromolecule metabolism, and other processes in vivo are specifically upregulated in
thermo-tolerant cucumbers. This is the response of plants to self-protection and adaptation
under external stress [62–65]. Plants adapt to heat injury through changing their architec-
ture, characterized by the development of elongated hypocotyl, hyponastic leaves, and
enlarged xylem vessels [12,42,49]. Notably, PIF4 is the central regulator for morphological
acclimation [63,64].

However, auxin biosynthetic genes (YUCs), auxin-responsive genes (IAAs), and auxin
target genes (SAURs) are the downstream targets of PIF4 in warmth-induced hypocotyl
and petiole elongation and leaf hyponasty [28,66]. Sun et al. (2012) reported that high
temperature-mediated expression of YUC8 occurred later than PIF4 in Arabidopsis. In
cucumber, the expression of CsPIF3 increased in thermo-tolerant plants when compared
with thermosensitive plants.

There were significant differences in the expressions of CsYUCs, CsIAAs, and CsSAURs
between TT and TS plants. It was possible that PIF3 was more relevant instead of PIF4
in cucumber. The implication of these results is that auxin-mediated phenotypic changes
were likely important for the high-temperature response of cucumber. Brevipedicellus (BP),
a member of the KNOX family, is a key regulator of plant architecture in Arabidopsis.

Similarly, it has also been reported that KNOX and YABBY family genes regulate
vascular development in other plants [67,68]. In the present study, the expressions of
several YABBY and KNOX family genes were differentially driven by high temperature,
which may be the process involved in cucumber adaptation to high-temperature [69].
The variations observed in the leaf and vascular system between thermo-tolerant and
thermosensitive plants suggest that YABBY- or KNOX-mediated plant architecture was
involved in the heat stress response.

Plant hormones play a complex role in plant stress responses. In this study, hormones
and signal transduction pathways were significantly triggered following high-temperature
exposure. In a similar study, [70] demonstrated that Gast1 protein homolog 5 (GASA5),
encoded the GA-stimulated regulator of seedling thermo-tolerance. Under heat stress,
ethylene accumulated in tomato plants and improved pollen quality, but the mechanism for
these effects remains is unclear [71–73]. Other studies also reported that ABA is a typical
stress hormone [74,75].

In Arabidopsis, Ascorbate peroxidase 6 (APX6) reduces reactive oxygen accumulation
through ABA and auxin signal pathways, ensuring seed germination under heat stress [76].
JA functions as an inhibitory factor in the stress response by interacting with various
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hormones, such as auxin. Further, JA promotes programmed cell death by inducing ROS
production and regulating leaf morphogenesis. It protects the plant’s fertility under heat
stress, while the content, synthesis, and signal transduction of JA are inhibited under heat
stress [77–81]. Auxins reduce stress injury caused by high-temperature exposure through
improving pollen fertility, thus, improving the crop yield [82–85]. BR regulates the plant
xylem differentiation and architecture in response to heat stress (Bajguz & Hayat, 2009;
Vriet et al., 2012).

It also plays an important role in promoting quick recovery after exposure to heat stress
and reduced oxidative stress (Dhaubhadel et al., 2002; Filek et al., 2019; Nie et al., 2013).
Brassinzole resistant 1 (BZR1), a critical regulator of BR, regulates the heat stress response
through RBOH1-dependent reactive oxygen species (ROS) signaling in tomatoes
(Yin et al., 2018). In the present study, BR biosynthesis genes were observed with quicker
and higher BZR1 accumulation in TT plants. This finding suggests that the BR pathway
may have played critical roles in maintaining vitality under high temperatures, which may
explain the thermo-tolerant nature of TT plants.

4.3. Transcriptional Regulation Strategies after Heat Stress in Cucumber

Transcription factors are important in regulating plant development and stress re-
sponses [86,87]. Although constitutively expressed TFs may play crucial roles in regulating
gene expression under high temperatures, heat stress-induced or heat-suppressed TFs
in thermotolerant and thermosensitive plants potentially contribute to the differential
regulation of downstream genes. HSF is one of the earliest reported and most studied
transcription factors family related to heat stress regulation in plants, such as Arabidop-
sis [88,89], rice [90], tomatoes [91], and potatoes [50].

However, the relationship between HSF and plant hormones in modulating heat stress
has been rarely reported [92]. WAKY family genes function in the plant heat response,
including WRKY25, WRKY26, WRKY33, and WRKY39, in Arabidopsis [93,94]; WRKY106 in
maize [95]; WRKY1 and WRKY33 in wheat [96]; and WRKY6 and WRKY40 in pepper [97]. In
the present study, half of the WRKY family genes were shown to have opposite expression
patterns in TT and TS plants.

Transcription factors and plant hormones corporately regulate the stress response. For
instance, the Arabidopsis WRKY genes promote root development under salt stress by
regulating ABA signaling and auxin homeostasis and altering the plant’s sensitivity to salt
stress by inhibiting auxin synthesis genes [98,99]. On the other hand, bZIP73 and bZIP71
regulate cold resistance by ABA and ROS homeostasis in rice [100], while MYB7 inhibits
seed germination by negatively regulating the bZIP transcription factor and interacting
with the ABA signal pathway in Arabidopsis under salt stress [101].

In our study, high temperature upregulated the expressions of HSFs and transcription
factors in ERF, NAC, WRKY, bZIP, and bHLH family genes. Moreover, these gene families
regulate the response of many significantly different metabolic pathways to heat stress
in two varieties. To buttress this finding, an interaction model that assembled metabolic
pathways and TFs was drawn. All cucumber pathways significantly enriched by heat
stress were divided into six: the energy metabolism, the amino acid metabolism, the
lipid metabolism, signal transduction, repair and catabolism, and the biosynthesis of
secondary metabolites.

The lipid metabolism, amino acid metabolism, and biosynthesis of secondary metabo-
lites were significantly enriched in thermo-sensitive cucumbers, while repair and catabolism
and the energy metabolism were enriched in thermo-tolerant cucumbers. Heat stress up-
regulated most of the transcription factor families, such as HSF, bZIP, NAC, ARF, and DOF,
but down-regulated a few families, such as GATA, bHLH, WRKY, and ERF.

Notably, the expression patterns of these genes differed between the two cucumber
varieties with different heat resistance capabilities. Therefore, the differential expression of
these upstream transcription factors could have led to the different strategies for down-
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stream metabolic pathways in coping with high-temperature exposure, thus, resulting in
the different heat resistances of the cucumber varieties.
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