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The Integrated Analyses of Driver Genes
Identify Key Biomarkers in Thyroid Cancer
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Abstract
Aim: Thyroid cancer is the most common endocrine cancer, the incidence rate has continuously increased worldwide. However,
there are still lack of effective molecular biomarkers for the diagnosis and treatment of the disease. The study was conducted to
identify driver genes that may serve as potential biomarkers for the disease. Methods: The computational tools onco-
driveCLUST, oncodriveFM, icages and drgap were used to detect driver genes in thyroid cancer using somatic mutations from
The Cancer Genome Atlas database. Integrated analyses were performed on the driver genes using multiomics data from the
TCGA database. Results: A set of 291 driver genes were identified in thyroid cancer. BRAF, NRAS, HRAS, OTUD4, EIF1AX were
the top 5 frequently mutated genes in thyroid cancer. The weighted gene co-expression network analysis identified 4 coex-
pression modules. The modules 1-3 were significantly associated with patients’ tumor size, residual tumor, cancer stage, distant
metastasis and multifocality. SEC24B, MET and ITGAL were the hub genes in the modules 1-3 respectively. Hierarchical clustering
analysis of the 20 driver genes with the most frequent copy number changes revealed 3 clusters of PRAD patients. Cluster 1
tumors exhibited significantly older age, tumor size, cancer stages, and poorer prognosis than cluster 2 and 3 tumors. 16 genes
were significantly associated with number of lymph nodes, tumor size and pathologic stage, such as IL7 R, IRS1, PTK2B, MAP3K3 and
FGFR2. Conclusions: The set of cancer genes and subgroups of patients shed insight on the tumorigenesis of thyroid cancer and
open up avenues for developing prognostic biomarkers and driver gene-targeted therapies in thyroid cancer.
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Introduction

Thyroid cancer is the fifth most common cancer in women in

the US, and an estimated 62 000 new cases occurred in 2015.1

The incidence of thyroid cancer continues to increase world-

wide, mostly because of the increased use of diagnostic ima-

ging and surveillance. Thyroid cancer can be classified into 4

main histologic subtypes: papillary, follicular, anaplastic, and

medullary thyroid cancer. Papillary thyroid cancer is the most

prevalent subtype and shows the best overall prognosis. Thyr-

oid cancer most commonly metastasizes to cervical lymph
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nodes and less commonly to the lungs. Treatments for thyroid

cancer include surgery, radioactive iodine and targeted

therapy.2

Cancer is initiated by the accumulation of driver mutations

in cancer genes, which confers a proliferation advantage to

cancer cells.3 Genes carrying these driver mutations are critical

to tumorigenesis.4-8 The common approach for detecting driver

genes involves the search for significantly mutated genes

across a cohort of cancer samples and a comparison with the

background mutation rate.9,10 The Cancer Genome Atlas

(TCGA) contains sequencing data of 496 thyroid cancer sam-

ples, and by examining these samples, we found that thyroid

cancer tumors are dominated by somatic mutations affecting

the RTK-RAS-RAF pathway. These mutations are primarily in

4 genes (BRAF, NRAS, KRAS and RET). Many driver genes

such as EIF1AX, CHEK2 and PPMID have been found to be

mutated at a low frequency in the thyroid cancer genome.8 Chai

et al analyzed the somatic mutation data from the TCGA data-

base using OncodriveFM and Dendrix and found 53 driver

genes and pathways with low mutation frequencies.11 These

studies provided insight into the genomic basis of thyroid

cancer.

Despite the tremendous progress that has been achieved, the

molecular mechanism underlying the development of thyroid

cancer has not been completely characterized. In this study, we

performed integrated analyses on the driver genes detected in

405 thyroid cancer samples using multiomics data from the

TCGA database (Supplementary Figure 1). This study revealed

a list of new driver genes and 3 clusters of thyroid cancer

patients, which provided a better understanding of this disease

and suggested potential therapeutic targets in thyroid cancer.

Methods and Materials

Classification of Somatic Mutations in Thyroid Cancer

7,458 somatic mutations of 405 pairs of thyroid cancer tumor/

normal samples were accessed from TCGA database(http://

gdac.broadinstitute.org/).8 Ensembl Variant Effect Predictor

(VEP) was used to assess the functional impact of somatic

mutations12 and then mutations were divided into 8 groups

based on their functional impact, including frame shift inser-

tions and deletions (indels), in frame indels, missense, non-

sense, nonstop, RNA, silent and splice site mutations.

Prediction of Driver Genes and Pathways
in Thyroid Cancer

Prediction of driver genes was performed with 4 computational

methods, including OncodriveCLUST v0.4.1,13 oncodriveFM

v0.0.114 (https://www.intogen.org), icages15 (http://icages.

wglab.org) and drgap v0.1.016 (https://code.google.com/

archive/p/drgap). All parameters were set to default values for

the software. Driver genes or pathways were determined based

on the following criteria: (1) q values of genes are less than

0.05 (OncodriveCLUST and OncodriveFM), (2) genes are

predicted as drivers by icages and have icagesGeneScores

above 0.5, (3) P values of genes or pathways are smaller than

0.05 (drgap).

Functional Enrichment Analysis in Thyroid Cancer

Gene ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analyses were per-

formed on the homepage of GO17 (http://geneontology.org)

and the Search Tool for the Retrieval of Interacting Genes/

Proteins (STRING)18 (http://string.embl.de), respectively, to

characterize the functional enrichment of all driver genes.

Driver genes were considered significantly enriched in GO

terms and KEGG pathways with the cutoffs of a false discovery

rate (FDR)-adjusted P value or a false discovery rate less than

0.05, respectively.

Coexpression Network Analyses in Thyroid Cancer

Of 291 driver genes, 279 genes had nonzero expression values

in more than 90% of thyroid cancer patients and were included

in the coexpression network analysis. The read counts were

divided by the 75th percentile and multiplied by 1000 to gen-

erate the normalized read counts. Soft-thresholding power val-

ues were screened out in the construction of coexpression

modules by the weighted gene coexpression network analysis

(WGCNA) algorithm. The optimal power value was deter-

mined when the scale-free fit index was above 0.8. The mini-

mum number of genes was set as 10. Then, the coexpression

modules were constructed by the R package of WGCNA in

R3.2.0.19 Moreover, information on the corresponding genes

of the coexpression modules was extracted. The clinical traits

of 501 thyroid cancer samples were obtained from the TCGA

database. Module-trait associations were analyzed using the

correlation between the module eigengenes and the clinical

traits. The genes with maximum intramodular connectivity

were regarded as intramodular hub genes.20 The interested

modules and hub genes were visualized by Integrative Visual

Analysis Tool for Biological Networks and Pathways

(VisANT)21 software.

Protein-Protein Interaction Network Analysis in
Thyroid Cancer

A protein-protein interaction (PPI) network was constructed

with the online STRING tool using default parameters.18 The

PPI network was imported to Cytoscape for visualization and

calculation of degree values for each node. Degree centrality,

which was defined as the number of connections one node has

to another, was analyzed by Cytoscape software.22 Hub nodes

had the highest degree of connection to most adjacent proteins

in the PPI network. Moreover, Molecular Complex Detection

(MCODE) was utilized to detect hub clustering modules in the

PPI network with default parameters in Cytoscape.23
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Copy Number Variation Analyses in Thyroid Cancer

Focal copy number variations (CNVs) and genes with signifi-

cant gains and losses in 499 thyroid cancer samples were

detected using the GISTIC algorithm24 and were accessed at

the Broad Institute.8 Unsupervised hierarchical clustering of 20

driver genes with copy-number alterations at the highest fre-

quency was conducted using the function heatmap.2 of the R

package of gplots.25 Clinical factors were compared among

patients in 3 clusters using the Wilcoxon sum rank test.

Kaplan-Meier curves were plotted using the R package of sur-

vival,26 and survival rates were compared among patients in the

3 clusters using the log-rank test. P < 0.05 was predefined as

statistically significant.

Analyses of Clinical Features of Thyroid Cancer

The clinical features of 501 thyroid cancer patients were down-

loaded at the Broad Institute and included patient outcome,

number of lymph nodes, tumor size and pathologic stage. For

survival rates, the log-rank test after a univariate Cox regres-

sion analysis with a proportional hazards model27 was used to

estimate the P values comparing quantile intervals using the

“coxph” function in R. For the number of lymph nodes and

tumor size, Spearman’s rank correlation was conducted

between each feature type and gene expression (log2 normal-

ized count) using the “cor.test” function in R. For pathologic

stage, the Kruskal-Wallis test was used to compare the driver

gene expression (log2 normalized count) across multiple can-

cer stages. Driver genes were considered significantly associ-

ated with each feature at P values < 0.05 and Q values < 0.3.

Results

General Characteristics of 501 Thyroid Cancer Patients

The age of the 501 thyroid cancer patients ranged from 15 to 89

years (mean, 47.26 years). In all, 283, 51, 110 and 55 patients

were diagnosed with stage I, II, III and IV disease, respectively.

Moreover, 225 and 9 patients showed lymph node and distant

metastases, respectively. The average tumor size, number of

metastatic lymph nodes and residual tumors were 2.98 cm,

3.66, and 0.14, respectively. Overall, 226 and 255 patients had

multifocality and unifocality, respectively, and 305 cancer sam-

ples were derived from patients who received radiation thera-

pies, while 17 samples had radiation exposure. On the last day of

follow-up, 16 patients were deceased and 485 were alive.

Somatic Mutations in Thyroid Cancer

In all, 7,458 somatic mutations were detected in 405 different

thyroid cancer samples, with an average mutation density of 0.5

somatic mutations per megabase per sample, which is lower than

in other cancer types, such as melanoma and lung cancer.9 The

somatic mutations comprised 4,763 missense, 1,816 silent, 252

splice-site, 262 nonsense, 61 RNA, and 5 nonstop mutations, 218

reading frame deletions, 38 reading frame insertions, 37 in- frame

deletions and 6 in-frame insertions (Supplementary Figure 2A).

C>T/G>A, A>G/T>C and C>G/G>C were the 3 predominant

transitions, with mutation rates of 45.8%, 16.9% and 10.9%,

respectively, in thyroid cancer (Supplementary Figure 2B).

Driver genes and Pathways in Thyroid Cancer

Overall, 4,976 genes were mutated in at least one thyroid can-

cer sample. In addition, 27, 81, 99 and 104 driver genes were

predicted by OncodriveCLUST, OncodriveFM, iCAGES and

DrGaP, respectively. The 4 tools identified a total of 291

unique driver genes with different algorithms; no driver gene

was detected by the 4 methods and the majority of predicted

driver genes were method-specific (Supplementary Figure 3).

Of 291 driver genes, BRAF, NRAS, HRAS, OTUD4, and

EIF1AX were the top 5 recurrently mutated genes in thyroid

cancer, with mutation rates of 60%, 8.4%, 3.5%, 2%,1.5%,

respectively, across all thyroid cancer samples (Figure 1). The

majority of driver genes were mutated at a low frequency in

thyroid cancer, with an average mutation rate of 0.7%. In addi-

tion to the list of driver genes, DrGapP also reported 36 driver

pathways in thyroid cancer, such as the chemokine signaling

pathway, Jak-STAT signaling pathway, P53 signaling path-

way, MAPK signaling pathway, Toll-like receptor signaling

pathway and the cell cycle.

GO Term and KEGG Pathway Enrichment Analyses

The enrichment of GO terms and KEGG pathways was ana-

lyzed for 291 driver genes with gene ontology and STRING.

GO enrichment analysis indicated that driver genes were sig-

nificantly overrepresented and underrepresented in 1296 and 4

biological processes, respectively. The top 5 GO terms

enriched for driver genes were negative regulation of plasma

membrane long-chain fatty acid transport, regulation of plasma

membrane long-chain fatty acid transport, regulation of

response to gamma radiation, negative regulation of transcrip-

tion from RNA polymerase II promoter during mitotic cell

cycle, negative regulation of transcription during mitotic cell

cycle (Supplementary Table 1, FDR-adjusted P value < 0.05).

In contrast, detection of stimulus, detection of stimulus

involved in sensory perception, detection of chemical stimulus

and detection of chemical stimulus involved in sensory percep-

tion were the 4 GO terms most negatively enriched for driver

genes (FDR-adjusted P value < 0.05). STRING also revealed

126 KEGG pathways significantly enriched for driver genes,

such as pathways in cancer, PI3K-Akt signaling pathway, thyr-

oid cancer, glioma, renal cell carcinoma, mTOR signaling

pathway and VEGF signaling pathway (Supplementary Table

2, FDR < 0.05).

Construction of Coexpression Modules and Analysis of
Module-Trait Associations in Thyroid Cancer

When the power value was greater than 6, the scale-free fit

index was larger than 0.8 and the mean connectivity degree
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was higher. Therefore, the soft-thresholding power value was

set to 7 (Supplementary Figure 4). The WGCNA algorithm

identified 4 distinct gene coexpression modules shown in dif-

ferent colors (Modules 1-4, Figure 2). The number of genes in

the 4 modules differed largely, with 89, 30, 29 and 10 genes in

module 1 (turquoise), module 2 (blue), module 3 (brown) and

module 4 (yellow), respectively (Figure 2, Table 1). Module-

trait associations were analyzed with the correlation between

the module eigengene and clinical traits. As shown in Figure 3,

module 1 (turquoise) was positively correlated with tumor size

and residual tumor (P value < 0.05 for all cases, Figure 3, Table

1). Module 2 (blue) was significantly negatively associated

with multifocality (P value¼ 0.003, Figure 3, Table 1). Module

3 (brown) showed a statistically significant positive correlation

with cancer stage and distant metastasis (P value < 0.05 for all

cases, Figure 3, Table 1). Module 4 (yellow) showed a signif-

icant positive correlation with cancer stage and multifocality (P

value < 0.05 for all cases, Figure 3, Table 1). The modules were

visualized using VisANT software. The genes with the highest

intramodular connectivity were considered intramodular hub

genes. SEC24B, MET and ITGAL were the hub genes in mod-

ules 1, 2 and 3, respectively (Supplementary Figure 5, Table 1).

PPI Network Analysis in Thyroid Cancer

We applied STRING to construct a PPI network for driver

genes to characterize the interactions of driver genes at the

protein level. The PPI network comprised 256 nodes and

1633 edges, with an average node degree of 12.8 (Supplemen-

tary Figure 3A). The PPI network revealed significantly more

interactions than expected for a random set of proteins of sim-

ilar size (PPI enrichment P value < 0.0001). The nodes with

high degrees possess intensive interactions with other nodes

Figure 1. The mutation rates of the top 20 most frequently mutated driver genes in 405 thyroid cancer samples. The left figure shows the

mutation rates of driver genes in thyroid cancer samples, while the figure above represents the synonymous and nonsynonymous mutation

densities in 405 thyroid cancer samples. The main figure represents the distribution of mutations, which were colored by the coding consequence

of the mutation in a given gene.

Figure 2. Clustering results of 4 coexpression modules in thyroid

cancer. Genes in modules are marked with different colors; the gray

color represents no genes in any of the modules.

4 Technology in Cancer Research & Treatment



and may act as key nodes in the PPI network. Seven candidate

hub nodes, the degree of which was greater than 9 times the

corresponding median values, were identified: AKT1, TP53,

HRAS, PTEN, SRC, MYC, and KRAS (Supplementary Figure

6A). Moreover, we performed a module analysis and obtained

the top 3 modules with high scores using MCODE (Supple-

mentary Figures 6B, C, and D). The 9 candidate hub nodes

were contained in the 3 modules.

Copy Number Variation Analyses in Thyroid Cancer

We also obtained focal CNVs for 499 thyroid cancer samples

from the Broad Institute. CHEK2, SEC14L2, SEC14L4,

ANKRD54, CARD10, CLTCL1, DGCR8, ABL1, CNTRL and

CTNNAL1 were the 10 most frequently deleted driver genes,

while FH, HEATR1, NUP133, DSTYK, LAMC1, DAP3, SHC1,

SPTA1, BRAF, and TRIO were the 10 most frequently

amplified driver genes in thyroid cancer (Supplementary Fig-

ure 7). Hierarchical clustering analysis of these 20 genes

revealed 3 subgroups of thyroid cancer patients: those with

substantial amplifications (cluster1), those with rare CNVs

(cluster2), and those with substantial deletions (cluster3) (Sup-

plementary Figure 4). Cluster 1 tumors were significantly asso-

ciated with older age, tumor size, and cancer stages than those

in cluster2 or 3 (P values < 0.05 for all cases, Wilcoxon sum

rank test, Figure 4A, B, and C). Moreover, patients in the

highly amplified cluster1 exhibited significantly poorer sur-

vival rates than patients in the cluster2 and cluster3 (P value

¼ 0.05 for all cases, log-rank test, Figure 4D).

Analyses of Clinical Features in Thyroid Cancer

We acquired RNAseq and clinical features data from the

TCGA database to evaluate the associations of driver gene

mRNA expression and clinical features of thyroid cancer

patients. Overall, no driver genes were significantly correlated

with patient outcome (Q value > 0.3, Cox regression test).

However, many driver genes were negatively correlated with

the number of metastatic lymph nodes (35 genes) and tumor

size (47 genes) and positively correlated with the number of

metastatic lymph nodes (73 genes) and tumor size (11 genes)

(Supplementary Tables 3 and 4). The high expression of 69

genes was associated with a higher pathologic stage, while high

expression of the other 64 genes was associated with a lower

pathologic stage (Supplementary Table 5). Sixteen genes,

including IL7 R, IRS1, PTK2B, MAP3K3 and FGFR2, were

significantly associated with the number of metastatic lymph

nodes, tumor size and pathologic stage (Figure 5), which sug-

gests that these genes might be potential druggable targets in

thyroid cancer patients in the future.

Discussion

Driver genes are well recognized as mutated genes which con-

fer a selective advantage to cancer cells. Modern large-scale

sequencing of human cancers seeks to comprehensively dis-

cover driver genes. As there is no generally accepted gold

standard of driver genes, several computational algorithms

have been developed to find genes that drive cancer based on

their patterns of mutation in large patient cohorts. Oncodri-

veFM14 compares the functional impact scores of actual muta-

tions within the gene with a permutated model and predicts

drivers that are enriched for somatic mutations with high

impact. OncodriveCLUST is a method to detect driver genes

with a significant bias toward a large spatial clustering within

the protein sequence.13 iCAGES identifies driver genes by

associating cancer driver coding, noncoding, and structural

variations to genes using a statistical model with prior biologi-

cal knowledge of cancer driver genes for specific subtypes of

cancer.16 DrGaP integrates biological knowledge of the muta-

tional process in tumors, including the length of protein-coding

regions, transcript isoforms, variation in mutation types, differ-

ences in background mutation rates, redundancy of the genetic

Table 1. The co-Expression Modules and Hub Genes in the WGCNA

Co-Expression Network.

Modules

Number

of genes

Significant association with

clinical traits

Hub

gene

Blue module 30 multifocality MET

Brown

module

29 cancer stage and distant

metastasis

ITGAL

Turquoise

module

89 tumor size and residual tumor SEC24B

Yellow

module

10 cancer stage and multifocality COL4A1

Figure 3. The coexpression module-trait associations. Each row cor-

responds to a module eigengene, and each column corresponds to a

trait. Each cell contains the corresponding correlation coefficient and

p-value. The right red-to-blue bar shows the negative (blue) to positive

(red) correlations between coexpression modules and clinical traits.
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code, and multiple mutations in one gene. There is no driver

gene was detected by the 4 methods and the majority of pre-

dicted driver genes were method-specific. This might be

because the 4 computational tools used different algorithms

as discussed above to prioritize driver genes, therefore, the

combination of these 4 tools can identify the set of driver genes

in a more comprehensive manner than MutSigCV alone8 or

OncodriveFM11 which are dependent on the somatic mutation

frequencies and enrichment of high functional impact muta-

tions respectively.

In this study, we detected 291 cancer genes in 405 thyroid

cancer samples using OncodriveCLUST, OncodriveFM,

iCAGES and DrGaP. In line with previously published studies,

BRAF, HRAS, NRAS, KRAS, EIF1AX, PPM1D and CHEK2

were found to be significantly mutated driver genes in thyroid

cancer.8 Compared with annotated oncogene28 and tumor sup-

pressor gene29 databases, we found 48 known oncogenes,

including ETS1, CTNNB1, IGF1 R, PDGFRB, ITGA3 and MET

as well as 50 tumor suppressor genes, including PTEN, TP53,

BRCA2, BAP1 and ITGB3. Most driver genes showed low or

moderate mutation frequencies and were first reported as driver

genes in thyroid cancer, such as CD163L1, ANKRD54,

DNASE2, FAM83 H and MAP3K3. For instance, MAP3K3 is

a member of the MAPK family and a serine/threonine kinase

that regulates cellular processes via activating the ERK, JNK,

and p38 signaling pathways in response to cellular stresses and

growth factors.30 MAP3K3 is an oncogene that promotes tumor

progression and metastasis in ovarian carcinoma31 and confers

resistance to apoptosis in breast and ovarian cancers.32 More-

over, MAP3K3 is an indicator of poor prognosis in esophageal

squamous cell carcinoma,33 ovarian cancer31 and cervical

cancer.34

The WGCNA package comprises a series of R functions to

detect coexpression modules of highly correlated genes and

associates interested modules to clinical traits.19 In this study,

we determined that modules 1-3 were related to clinical traits

(Figures 2 and 3 and Table 1), and we also determined their hub

genes SEC24B, MET and ITGAL. SEC24B is a member of the

SEC24 subfamily of the SEC23/SEC24 family, which is

involved in vesicle trafficking. Mutations in this gene are asso-

ciated with human neural tube defects.35 MET is an oncogene

encoding a receptor for hepatocyte growth factor and plays a

key role in various cancers. Amplification and overexpression

of this gene are associated with multiple human cancers and

indicates a poor prognosis of cancer patients.36-42 ITGAL is an

integrin expressed in a tissue-specific fashion and is important

Figure 4. Differences in patient age (A), tumor size (B), cancer stage (C) and survival rates (D) among the 3 clusters of thyroid cancer patients

(1–3).
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in inflammatory and immune responses.43 The activating NK

cell receptor 2B4 engagement mediates rapid ITGAL and actin-

dependent NK cell adhesion to tumor cells, which is essential

for the initiation and execution of cellular cytotoxicity.44

ITGAL is an important mediator through which BCR-ABL1

inhibits SDF-1 adhesive responses in leukemia cells.45 In addi-

tion, ITGAL gene polymorphisms are associated with sporadic

infiltrative duct breast carcinoma.46 Therefore, the hub genes in

modules 1-3 are implicated in the molecular pathogenesis of

various cancers, which suggests that they may have crucial

functions in thyroid cancer.

Hierarchical clustering analysis of 20 genes that were most

frequently deleted or amplified uncovered 3 subgroups of thyr-

oid cancer patients. Cluster1 tumors were associated with older

age, increased tumor size, higher cancer stages, and poorer

prognosis. Therefore, CNV analysis of these 20 genes might

have clinical value in the near future. Cytologic or surgical

specimens of thyroid cancer exhibiting high levels of CNVs

in these 20 genes are expected to be associated with poor prog-

nosis. Therefore, more aggressive treatment or frequent follow-

up may be recommended for these patients.

Last, no driver genes were significantly correlated with clin-

ical outcomes in thyroid cancer patients, which might be due to

the limited number of death events (16/501) in the survival

analysis. However, 16 genes were significantly associated with

the number of lymph nodes, tumor size and pathologic stage,

such as IL7 R, IRS1, PTK2B, MAP3K3 and FGFR2. FGFR2 is a

member of the FGFR family, which plays key roles in multiple

biologic processes such as tissue repair, angiogenesis, embryo-

nic development and cancer.47 Decreased FGFR2 expression

was correlated with a high proliferation rate and poor prognosis

in high-grade glioma, which suggests that FGFR2 might func-

tion as a tumor suppressor gene in glioma.48 However, FGFR2

may have oncogenic functions in other cancer types, such as

pancreas cancer,49 papillary renal cell carcinoma50 and esopha-

gogastric junction adenocarcinoma.51 Enhanced expression of

FGFR2 isoforms was found to downregulate the expression of

fibronectin, MAGE-A3 and MMP9, while the expression of p21

and dephosphorylation of Rb was increased, which causes the

inhibition of invasion and tumor growth and metastasis in thyr-

oid epithelial cancer cells.52 The results obtained in our study in

combination with published literature support the idea that

FGFR2 has either tumor suppressor or oncogenic functions

in cancers.

Conclusion

Taken together, the integrative omics study enabled the iden-

tification of the set of driver genes and 3 subgroups of thyroid

cancer patients. The driver genes and pathways identified

Figure 5. Clinical features analyses of the driver gene FGFR2 in thyroid cancer. A. A missense mutation was observed in the immunoglobulin I-

set (I-set) domain (264-359 amino acids), which causes the amino acid change K296 N; B. The negative correlation between FGFR2 expression

and the number of metastatic lymph nodes in thyroid cancer patients (correlation coefficient -0.15, p value ¼ 0.003); C. the negative correlation

between FGFR2 expression and tumor size in thyroid cancer patients (correlation coefficient -0.13, p value ¼ 0.008); D. the distribution of

FGFR2 expression across pathologic stages in thyroid cancer patients (kruskal-wallis test, p value ¼ 0.0002).
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herein such as FGFR2 pave the way for developing prognostic

biomarkers and therapeutic targets in thyroid cancer.
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