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Abstract: Remote monitoring of vital signs for studying sleep is a user-friendly alternative
to monitoring with sensors attached to the skin. For instance, remote monitoring can allow
unconstrained movement during sleep, whereas detectors requiring a physical contact may detach
and interrupt the measurement and affect sleep itself. This study evaluates the performance of a
cost-effective frequency modulated continuous wave (FMCW) radar in remote monitoring of heart
rate and respiration in scenarios resembling a set of normal and abnormal physiological conditions
during sleep. We evaluate the vital signs of ten subjects in different lying positions during various
tasks. Specifically, we aim for a broad range of both heart and respiration rates to replicate various
real-life scenarios and to test the robustness of the selected vital sign extraction methods consisting of
fast Fourier transform based cepstral and autocorrelation analyses. As compared to the reference
signals obtained using Embla titanium, a certified medical device, we achieved an overall relative
mean absolute error of 3.6% (86% correlation) and 9.1% (91% correlation) for the heart rate and
respiration rate, respectively. Our results promote radar-based clinical monitoring by showing that
the proposed radar technology and signal processing methods accurately capture even such alarming
vital signs as minimal respiration. Furthermore, we show that common parameters for heart rate
variability can also be accurately extracted from the radar signal, enabling further sleep analyses.

Keywords: biomedical monitoring; biomedical signal processing; contactless; health monitoring;
heart rate; heart rate variability; millimeter wave radar; respiratory rate

1. Introduction

Monitoring vital signs is routine practice to detect patient deterioration at healthcare facilities.
Changes in vital signs can indicate serious medical problems, and catching the early signs may
improve survival rates for the relevant conditions [1]. Lately, the general population has become
more interested in self-monitoring, which has provoked the emergence of numerous commercial
wearable devices, particularly ones specialized in heart rate monitoring. Such wearable devices have
also been examined in the context of monitoring healthcare patients [2,3]. Yet, wearable and other
attachable devices can cause eczema and they depend on a sufficient contact to operate. In contrast,
remote monitoring is contactless, unobtrusive, and could monitor several vital signs simultaneously
while providing more user-friendly monitoring in various environments [4—7]. Remote monitoring
with radar technology could reform sleep monitoring at home and nursing homes by removing the
often disturbing tactile sensation of a wearable device and the wired sensors that tend to detach.
It can also be a cost-effective solution as it does not require disposable elements such as electrodes.
Ultimately, remote measurements could ease monitoring in critical care taking place in hospitals [8,9].

Periodic variations in the measured radar signal, which are caused by micromotions on the
body surface, can convey information regarding the two vital signs considered herein: heart rate and
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respiration rate. In this paper, we study a frequency modulated continuous wave (FMCW) radar
developed at VIT Technical Research Centre of Finland [6,10]. Similar millimetre wave chipsets and
development boards capable of time domain multiplexing are also available commercially [11,12].
The radar transmits frequency-modulated electromagnetic waves and can detect the phase of the
received signal with about one degree accuracy. Its high resolution enables the detection of microscopic
vascular pulsations on the skin.

Prior studies on FMCW radars have already established the potential for vital sign monitoring
applications [4,13-15]. Among the heart rates extracted by Anitori et al. 60% were within 10% of
their reference values [13]. Alizadeh et al. later achieved 94% and 80% accuracies for respiration
rate and heart rate, respectively [15]. However, while both studies examined monitoring in lying
positions, Alizadeh et al. included only one subject as opposed to the six participants by Anitori et al.
Additionally, both studies used a commercial, non-medical device for reference signals. In contrast,
Wang et al. and Adib et al. studied ten or more subjects in seated positions, using medical devices for
reference [4,14]. Wang et al. reported approximately 5-31% and 11-20% relative errors for respiration
and heart rate, respectively, depending on the exact position [14]. Adib et al. demonstrated median
accuracies of 99.4% and 99% for respiration and heart rate, respectively, and were also able to measure
multiple targets simultaneously [4].

In this study, we explore the potential of FMCW radar technology for the special application
of nocturnal vital sign monitoring by emulating diverse real-life scenarios. Unlike previous studies,
we pursue a wide range of both heart and respiration rates to discuss the applicability of FMCW radars
to monitor people with different conditions. Capturing a wide range of vital signs is essential for
sleep analysis and for monitoring sleep disorders, such as hypopnoea, and for following the effects
of possible interventions [16-18]. Whereas previous works have established suitable accuracies for
commercial use at home and office environments, we demonstrate the applicability of an FMCW radar
in the aforementioned clinical applications by showing that it can accurately capture even alarmingly
anomalous vital signs, such as shallow respiration.

We include ten volunteers in our study in order to account for the natural differences
between individuals and to ensure a level of robustness in our vital sign extraction methods [19].
The participants are monitored in varying lying positions while performing simple activities,
emulating vital sign variations of real-life sleeping scenarios. We extract their interbeat intervals
(IBI) and respiratory rates, and compare to reference data acquired using Embla Titanium, a certified
medical device.

Despite the deliberately challenging study setting, we are able to surpass the results of previous
studies in heart rate monitoring accuracy. Moreover, we establish high accuracy in respiration
monitoring even with minimal respiratory motion, which we expect to promote radar-based
monitoring in clinical settings. We provide further grounds for such clinical applications by
demonstrating, for the first time to our knowledge, accurate radar-based extraction of features
commonly used in heart rate variability (HRV) analysis, an essential tool in modern stress monitoring
applications [20-23].

2. Materials and Methods

The workflow of our study is schematically illustrated in Figure 1. In this section, we elaborate
on each item step-by-step. We used an in-house developed FMCW radar (Section 2.1) and reference
devices (Section 2.2) to measure each participant in the study group (Section 2.3) during a set of
activities resembling real-life sleeping scenarios (Section 2.4). The measured data were analysed using
robust state-of-the-art approaches to extract interbeat interval, heart rate, and heart rate variability
parameters, as well as respiration rate (Sections 2.5-2.7). Finally, the accuracy assessment of the
retrieved estimates was performed using the methods described in Section 2.8.
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Figure 1. The overall measurement and evaluation workflow. The radar and reference data
are processed separately. A beat signal describes the difference between the transmitted and
received signals.

2.1. Frequency Modulated Continuous Wave Radar

An FMCW radar transmits a frequency-modulated continuous signal and detects its reflection.
As visualized in Figure 2, the distance to an object can be computed based on the beat frequency; i.e.,
the frequency difference between the transmitted and received signals [24].
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Figure 2. Illustration of the frequency modulated continuous wave (FMCW) radar principle [6]. Using a
frequency sweep allows to compute the distance from the radar to the target.

An FMCW radar measurement can be divided into chirps, or frequency sweeps, where the
transmit signal frequency modulates (or sweeps) through the specified frequency band [10].
The instantaneous profile of the observed distances, also known as the complex range profile, can be
extracted from the collected samples of beat signals by applying a Fast Fourier Transform (FFT) to each
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set of samples from the same chirp. Using the resulting set of complex FFTs, the beat signal amplitude
and phase can be extracted for the desired range bin. Furthermore, the complex range profiles
from consecutive chirps can be stacked into the range slow-time matrix, which contains the phase
information of the beat signal as a function of time, the main signal needed for vital sign extraction.

The in-house FMCW radar used in this study operated at the carrier frequency of 24 GHz with a
250 MHz bandwidth. The radar has a range resolution of 60 cm, micromotion detection accuracy below
1 pm, and receiver noise figure of 12 dB. In this study, we explore two chirp repetition frequencies,
i.e., sampling frequencies: 110 Hz and 154 Hz. While the maximum operable frequency of 154 Hz can
capture more detailed information, the lower one is more stable to operate with the existing software.
Thus, we take the opportunity to examine whether lowering the sampling frequency deteriorates
performance in vital sign monitoring.

The radar was mounted on the ceiling above a bed, facing downwards towards the subject above
the torso, at a fixed distance of about 2 m, as portrayed in Figure 3. The radar antenna 3 dB beam
width was 65° along the length of the bed and 26° along the perpendicular direction. The field of
coverage was configured to 3 m to reduce noise.

Figure 3. The measurement setting. The FMCW radar (highlighted in brighter tones and pointed out
with a red arrow) is mounted on the ceiling above the bed. The treadmill beside the bed was used for
exercising during the measurement session.

2.2. Reference Devices

Reference signals were collected simultaneously with the radar data, using the Embla titanium
portable polysomnography (PSG) system, a CE certified class II device in use in many physiological
studies worldwide [25]. Two electrocardiographic (ECG) electrodes were attached to the subject to
collect the reference ECG signal at 256 Hz sampling frequency. One electrode was attached under the
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right-side collarbone and the other on the lower left part of the thoracic cage. One respiratory inductive
plethysmography (RIP) belt on the thorax was used to collect the reference respiration signals at 32 Hz
sampling frequency.

Because of technical issues that sometimes occur in the measurements and downgrade the
signal-to-noise ratio, an additional reference was collected at 110 Hz using VIT’s ballistocardiography
(BCG) based sensor sheet installed beneath the mattress topper. The sensor sheet can detect respiration
rate with 1.5% error relative to RIP belts [26].

2.3. Study Group

We measured eleven participants from age 25 to 55 (37 on average, 2 female), who signed an
informed consent form prior to the measurement, after receiving information about the measurement
protocol and the study objectives. The study did not intervene with the physical integrity of the
volunteers and the study setting was not harmful or otherwise disturbing.

2.4. Measurement Protocol

As presented in Table 1, the measurement protocol was a combination of three distinct activities,
each measured for two minutes at a time: relaxed respiration, hypopnoea simulation, and recovering
after physical exercise. The hypopnoea simulation comprised one minute of shallow respiration and
another minute of normal respiration. These sub-activities are presented separately in Table 1 for
clarity. Before the final activity of recovering after exercise, the participants walked on a treadmill with
roughly 15% inclination at 2 km/h, for two minutes. The participants were not measured during the
exercise, and they were allowed to interrupt at any time. Nevertheless, all participants exercised the
full two minutes.

Table 1. Vital sign measurement protocol.

Duration (min)

Activity Position
110 Hz 154 Hz

Relaxed respiration Supine 2 2
Relaxed respiration Right lateral 2 2
Relaxed respiration Prone 2 2
Relaxed respiration Left lateral 2 2
Relaxed respiration Supine 2 2
Hypopnoea simulation, shallow respiration Supine 1 -
Hypopnoea simulation, normal respiration Supine 1 -
Hypopnoea simulation, shallow respiration Right lateral 1 -
Hypopnoea simulation, normal respiration Right lateral 1 -
Hypopnoea simulation, shallow respiration Prone 1 -
Hypopnoea simulation, normal respiration Prone 1 -
Hypopnoea simulation, shallow respiration Left lateral 1 -
Hypopnoea simulation, normal respiration  Left lateral 1 -
Recovering after exercise ? Supine 2 2
Total measurement time (min) 20 12

2 Preceded by a two-minute exercise (not measured).

The relaxed respiration and hypopnoea simulation activities were measured once in all four
different positions: supine, left lateral recumbent, right lateral recumbent, and prone. This was true
with one exception: the relaxed respiration activity was repeated in the supine position to ease the
participant’s transition to the next activity. The final activity (after the exercise) was only measured in
the supine position. The participants were given sufficient transition time for each change of position.

The protocol was repeated with two sampling frequencies using a reduced protocol with the
more unstable 154 Hz sampling frequency (see Table 1). Measurement segments using the different
sampling frequencies were performed sequentially but in alternating order between participants.
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In total, 32 min of activity data were collected per participant (20 min with 110 Hz and 12 min with
154 Hz). This comprises 14 min in the supine position and 6 min in each of the three other positions.

2.5. Heart Rate Extraction

The interbeat interval was extracted from the reference and radar devices using different methods
(see Figure 1). The R-to-R interval, used as reference IBI, was extracted from the ECG signal using
the findpeaks function by MATLAB® (minimum peak distance 0.3 s) after trend removal. To extract
IBI from the radar signal, cepstral analysis, a variant of spectral analysis, was applied [27]. It is
able to emphasize the significantly small heartbeat-induced motions on the body surface by using
a logarithmic transformation. However, the performance of the FFT-based method is deteriorated
by both spectral variance and the natural variations in the pulse shape and IBI. To minimize spectral
variance, we average over multiple contemporaneous range signals. To overcome the non-stationary
nature of the heartbeat, we use a set of different FFT window lengths in parallel to compose a
summary cepstrum. The proposed method was first developed for IBI extraction from multichannel
BCG (covered by US patent 2010/0249628) [28]. In the current study, we adapt the method for the
radar application.

Figure 4 illustrates the radar IBI extraction process. We selected N = 24 radar range bins to
provide the input signals. Six different length Hamming windows W; (i = 1,..., K, K = 6) were used in
parallel, each on every one of the N signals, to apply FFT and obtain the signal spectra. Each window
was applied as a sliding window with strong overlap (0.1 s interval). The K window lengths ranged
from 3.5 s to 20 s. The shortest windows were used to capture IBI approximately equal to half the
window length, whereas the longest windows containing more than the optimal two heartbeats were
used to detect IBI of rather constant pulse shape and interval. The FFT length was set to 40 s of samples
for all windows and zero padding was used to improve resolution for the upcoming peak selection.
To boost computational speed, the FFT length was rounded up to be divisible by sixteen.

Subsequently, the inverse FFT (IFFT) over the natural logarithm of the averaged spectra were
computed to obtain the K cepstra. The cepstrum C; is defined as the real part of the inverse Fourier
transform F—1{-} taken over the natural logarithm of an amplitude spectrum |S;|

C = real (F~'{log(|Sx[)}) 1)

as described in [27]. Whereas the spectrum S; contains peaks at the harmonic frequencies of the
fundamental heartbeat frequency, in the cepstrum the harmonic spectral peaks appear as a single peak
at the corresponding lag time, or quefrency [27].

The K cepstra are averaged to form the summary cepstrum. The overlaps between neighbouring
cepstra were taken into consideration by applying a weighting window designed to produce equal
sensitivity on each quefrency upon averaging.

Finally, the peaks in the summary cepstrum were taken as the IBI estimates. The quefrency
resolution of the summary cepstrum and thus the IBI is directly the inverse of sampling frequency,
and the slow-time resolution equals the sliding window interval. The peak selection was performed
over the quefrency range from 0.5 s to 1.5 s in the cepstogram. It was initialized by taking the peaks
that were strong with respect to both quefrency and time. Next, while weighting each initial IBI
estimate by the corresponding peak height, a time averaged IBI S;p; was computed using a 60 s sliding
Hamming window. Lastly, uncertain IBI were removed based on the cepstral peak height and distance
to Sypr; only the most prominent peaks were selected. The entire peak selection routine was repeated
iteratively up to four times to allow Syp; to stabilize into the most prominent signal shape.
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Figure 4. Interbeat interval extraction from a set of N range signals using K Fast Fourier Transform (FFT)
windows. The process is repeated using overlapping FFT windows. The notations on the right
represent the data dimensions at each phase; f denotes time, f frequency, and g the cepstrum lag time,
or quefrency.

We note that our method can yield more than one estimates per actual interbeat interval. Thus, the
average heart rate in the unit of beats per minute (bpm) was calculated by dividing 60 s by the average
of the corresponding IBI estimates.

2.6. Heart Rate Variablity Analysis

HRV analysis employs a collection of features describing the beat-to-beat signal. The 13
time-domain features and 7 frequency domain features selected for this study are described in Table 2.
In the context of frequency domain features, we chose to use the square root of power to rather present
information scaled by the IBI signal amplitude than power itself. Welch’s method (30 s windows with
trend removal, 75% window overlap) was used to estimate the power spectral density after resampling
IBI to a constant 10 Hz sample frequency using cubic interpolation.

HRV features are commonly extracted from normal-to-normal peak intervals (INNI).
Therefore, abnormal IBI were removed to obtain NNI estimates and replaced by linearly interpolated
values [29]. A reference interval was considered abnormal if it changed more than 15% with respect to
the previous one, whereas IBI from the radar were allowed a 20% change to account for the irregularity
of the extracted IBI values.
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Table 2. Heart rate variability features explained.

Domain Feature Description
Mean NNI Average over all normal-to-normal peak intervals (NNI)
Median NNI ~ Median over all NNI
RMSSD Root mean square of consecutive differences of adjacent NNI
SDSD Standard deviation of consecutive differences of adjacent NNI
SDNN Standard deviation of NNI
CVNNI Coefficient of variation
Time CVSD Coefficient of variation for successive differences
PNN20 Percentage of interval differences exceeding 20 ms
PNN50 Percentage of interval differences exceeding 50 ms
HR Heart rate
STDygr Standard deviation of heart rate
Min HR Minimum heart rate
Max HR Maximum heart rate

/Total power  Square root of total power

J/VLF Square root of very low frequency power (0.0033-0.04 Hz)

LF Square root of low frequency power (0.4-0.15 Hz)
Frequency /HF Square root of high frequency power (0.15-0.4 Hz)

/LF/HF ratio  Square root of the ratio of low and high frequency power

LFnu Normalized low frequency power

HFnu Normalized high frequency power

2.7. Respiration Rate Extraction

As indicated in Figure 1, distinct methods were used to extract the respiratory vital sign from the
reference devices and the radar. The reference respiration rate was derived from the reference signal
through detrending and peak detection. The subtracted, smoothed trend was estimated using a 15 s
Hann window, and the findpeaks function by MATLAB® was used for peak detection (peak distances
ranging from 1.4 s to 20 s were allowed). Local respiratory cycles were extracted from subsequent
maxima and minima separately. Artefacts were identified based on the length and amplitude of the
respiration cycle. Consecutive distorted cycles were combined when possible to better match the
preceding and following five respiration cycles.

For the radar data, the respiratory motion was captured from the change of phase between
consecutive chirps in the complex range profile, hereafter referred to as the phase signal.
Specifically, the autocorrelation function (ACF) is applied on the phase signal of a selected range
bin. The ACF has been previously proved to work in respiration monitoring on a single subject [15].
In this study, we aim for a robust implementation accurate for several subjects.

The respiration rate extraction process is presented schematically in Figure 5. The optimal range
bin corresponds to the distance where the primary target is located. The participants in this study were
mostly stationary, which made it possible to select an optimal range-bin for each sub-measurement
(row in Table 1). The range bin with the global maximum over the profiles in the range slow-time
matrix was selected as the optimal range bin. Subsequently, the DC component was estimated globally
from the full slow-time signal and removed. The slow-time profile in the optimal range bin was
further used to extract an instantaneous phase signal, which was then unwrapped to remove +27
phase jumps.

Raw Opt1ma_l DC Phase Phase ACF W#h Post- Respiration
radar range-bin 1 signal . dynamic . "
matrix selection remova extraction unwrapping buffer processmg rate

Figure 5. Respiration signal extraction.
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Because the phase signal closely follows periodic variation of the respiratory motion, we used the
autocorrelation function to extract and quantify it. Unlike a periodogram, it can work with both long
and short signals. The ACF at lag k < n can be written as

n—k n
Ry = ; (5i — 1) (Si4k — V)] / [1 (si — ;4)21 , @)

where the input sequences [sq, 52, ..., 51| are generated by a sliding window function, and y denotes
their mean [30]. Given a suitable input sequence size, the lag of the maximum peak directly provides
an estimate of the breathing interval. Thus, approximating one respiratory cycle as the average of 100
consecutive estimates, the window size was dynamically adjusted to contain 2.2 respiratory cycles.

Finally, post-processing focused on the removal of non-reliable estimates, such as outliers
(over three standard deviations apart from the mean) and estimates with unstable phase due to
other movements.

2.8. Performance Evaluation

Vital sign values (IBI or respiration interval) extracted from the radar data were each compared
against the reference value closest in time. In all cases, a reference value resided within a maximum of
1.5 s temporal distance from the value.

Mean absolute error (MAE), root mean square error (RMSE), and Pearson correlation coefficient
were selected for performance evaluation. While MAE is easy to interpret, RMSE emphasizes large
errors, conveying information on where the most blatant errors occur. MAE and RMSE were computed
individually for each participant and sub-measurement (row in Table 1). The resulting errors were
weighted by the sub-measurement duration to aggregate representative error metrics for participants,
activities, and lying positions. The aggregation methods are further described in Supplementary
Material. For visual analysis, Bland-Altman plots were chosen to depict the agreement between the
suggested methods and the reference. In contrast to correlation, the Bland-Altman plot describes both
random and systematic error [31,32].

3. Results

The two sampling frequencies produced equally accurate results: the difference in RMSE was
0.001 s when measuring IBI and 0.169 1/min when measuring respiration rate. Thus, the measurements
of either frequency are included in the remaining analysis.

The vital sign extraction results encompass ten participants. One of the 11 subjects (ID004) was
excluded from the analysis due to unsuccessful data collection. Also, for three other participants
(ID002, ID005, and ID010), the PSG respiration reference showed poor signal quality and was replaced
with the secondary BCG-based reference. One participant (ID007) was excluded from the respiratory
rate analysis due to poor quality reference in several sub-measurements.

3.1. Heart Rate

The average measured interbeat interval over all measurements was 1.041 s (standard deviation
SD 0.160 s, 5th percentile 0.820 s, 95th percentile 1.313 s), corresponding roughly 57.7 bpm, using the
reference device. Respectively, the radar measured average was 1.053 s (SD 0.152 s, 5th percentile
0.832 s, 95th percentile 1.310 s), or roughly 57.0 bpm. Largest variations in the IBI were recorded
when recovering from physical exercise; SD of 0.178 s was observed (0.164 s using the radar).
Figure 6 illustrates samples of the extracted IBI signals with respect to the reference IBI for two
participants. More samples are provided in the Supplementary Figure S1.
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Figure 6. Interbeat interval samples of two participants (ID003 on the top, ID011 on the bottom) for
each activity in the supine lying position.

Figure 7 illustrates the resulting differences between the radar and reference IBI in a Bland-Altman
plot. The mean difference between the radar-derived and reference IBI is 0.013 s (SD 0.083 s),
which roughly corresponds to a 0.71 bpm difference in the instantaneous heart rate.
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Figure 7. The Bland-Altman plot for interbeat interval. The dashed lines indicate the mean and the
interval containing 95% of the samples.



Sensors 2020, 20, 6505 11 of 19

Table 3 presents mean absolute error for each participant and activity. Differences between
participants were below 0.07 s. To complement these results, we compensated for the varying number
of heartbeat events per participant by taking an average not weighted by measurement duration.
Also in this case, the participant MAE demonstrate differences under 0.07 s (and an overall average
MAE of 0.038 s).

Considering MAE for each activity in Table 3, the error was at its largest when the participant
was recovering after a short exercise session. Table 4 further describes the increase in MAE during the
recovering activity as compared to the other activities measured in the same position. Additionally,
Table 4 shows that differences between positions are in the order of milliseconds.

Table 3. Mean absolute error (MAE, s) for interbeat intervals with respect to activity and participant.

Participant ID Relaxed Hypopnoea, Shallow Hypopnoea, Normal Recovering Participant MAE

ID001 0.016 0.013 0.011 0.018 0.015
1D002 0.040 0.015 0.028 0.050 0.034
1D003 0.068 0.032 0.067 0.058 0.061
1D005 0.029 0.032 0.023 0.095 0.038
ID006 0.073 0.074 0.061 0.116 0.077
1D007 0.023 0.010 0.057 0.027 0.027
D008 0.041 0.019 0.029 0.032 0.036
1D009 0.046 0.009 0.090 0.061 0.051
ID010 0.023 0.032 0.020 0.019 0.023
ID011 0.018 0.014 0.017 0.020 0.018
Activity MAE 0.037 0.026 0.042 0.052 0.038 2

The largest activity and participant MAEs are bolded. # The total MAE over all activities and participants

Table 4. Mean absolute error (s) for interbeat intervals with respect to activity and lying position.

Position Relaxed Hypopnoea, Shallow Hypopnoea, Normal Recovering? Position MAE

Supine 0.034 0.014 0.042 0.052 0.038 b
Right lateral 0.040 0.036 0.041 - 0.040
Prone 0.039 0.028 0.054 - 0.040
Left lateral 0.038 0.028 0.032 - 0.035
Activity MAE 0.037 0.026 0.042 0.052 0.038 ©

The largest mean MAEs are bolded. ? Recovering was only measured in the supine position. b 0.033 s if the
recovering activity is not considered. ¢ The total MAE over all activities and positions.

Considering all participants, activities, and positions, the IBI extracted from the radar exhibited
an overall MAE of 0.038 s (SD 0.074 s, median absolute error 0.008 s) and RMSE of 0.084 s.
The RMSE results presented in the Supplementary Tables S1 and S2 display similar trends as MAE.
The Supplementary Figure 52 exemplifies the difference of the two metrics. Furthermore, the extracted
IBI demonstrated a statistically significant Pearson correlation of 0.862 (p-value less than 0.01) as
compared to the reference IBI. The IBI extracted from the radar are illustrated with respect to the
reference values in the Supplementary Figure S4.

As for averaged heart rate in the units of beats per minute, MAE varied from 0.816 to 1.384 bpm for
the different activities. These results are in line with the IBI results. Ranking the participant-wise errors,
the order of some participants were reversed (e.g., ID003 and ID006), showing a small effect from the
timestamp misalignment between the radar-derived and reference IBI. The mean absolute temporal
distance between the two estimates was 0.24 s (SD 0.13 s), while maximum temporal misalignment
was 0.74 s.

Overall, the heart rate analysis gave a MAE of 1.031 bpm, which corresponds to an average MAE
of 0.016 s for the IBIL. After removing ectopic beats, the results remained similar with an overall MAE
of 1.079 bpm.
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3.2. Heart Rate Variability

The HRV features were computed and evaluated for each sub-measurement individually.
The results are summarized over all measurements in Table 5.

Table 5. Comparison of the heart rate variability features.

Mean + Standard Deviation

Feature MAE Correlation
Radar Reference

Time-domain features

Mean NNI 1.06 £0.13 1.05 £0.14 0.02 0.98
Median NNI 1.06 £ 0.14 1.05 +0.15 0.02 0.98
RMSSD 0.05 £ 0.02 0.04 £0.02 0.01 0.81
SDNN 0.07 £ 0.03 0.07 £0.04 0.01 0.88
SDSD 0.05 £ 0.02 0.05 £ 0.02 0.01 0.81
CVNNI 0.07 £0.03 0.07 £0.04 0.01 0.89
CVSD 0.05 £ 0.02 0.04 & 0.02 0.01 0.84
pNNI20 50.59 +17.75 50.92 4 25.88 11.12 0.81
PNNI50 28.10 £+ 15.03 25.31 £ 21.08 9.19 0.84
Mean HR 57.68 +7.06 58.52 + 7.66 1.15 0.97
STDyRr 4.034+1.93 4.09 +2.44 0.77 0.86
Min HR 48.87 +5.95 51.03 £ 6.67 2.61 0.87
Max HR 70.24 £9.79 70.87 £ 12.02 3.93 0.79
Frequency-domain features

\/Total power  0.09 £ 0.04 0.09 = 0.04 0.01 0.95
/VLF 0.04 £ 0.02 0.05 £ 0.02 4.9 x1073 0.94
/LF 0.07 £ 0.03 0.07 +0.03 0.01 0.93
vHF 0.04 £ 0.01 0.04 £ 0.02 0.01 0.86
/LF/HF ratio  1.58 4 0.37 1.66 + 0.41 0.20 0.72
LFnu 68.94 £+ 13.27 70.70 £ 13.28 5.44 0.78
HFnu 31.06 + 13.27 29.30 4+ 13.28 5.44 0.78

Most of the time-domain features exhibited notable correlation between the radar-derived and
reference features. However, the MAE indicated notable 9-11% mean absolute errors in the pNNI20 and
PNNI50. The remaining features agreed well with the reference features, exhibiting high correlation
and small errors. For deviation-based features, MAE were lower than the standard deviation of the
mean reference and for other features MAE was at most 5.5% (max HR) of the mean reference value.

Mean NNI, median NNI, and mean heart rate exhibited similar trends in terms of MAE between
different participants as already observed in Table 3. Additionally, no large differences between neither
the lying positions nor the activities were observed, although the recovering activity showed the
largest error consistently.

The frequency-domain features showed mostly high correlations and low errors as well.
The \/LF /HF ratio, LFnu, and HFnu features exhibited the most moderate correlations and the
largest errors among the selected features. Yet, a 5% error in the normalized low or high frequency
power may be considered acceptable. The errors for each activity, participant, or position did not seem
to differ much for any of the frequency-domain features.

3.3. Respiration Rate

The measured respiration rates were on average 15.634 1/min (SD 7.492 1/min, 5th percentile
6.548 1/min, 95th percentile 32.535 1/min) for the reference devices. Correspondingly, the radar
measured average was 15.855 1/min (SD 7.223 1/min, 5th percentile 7.138 1/min, 95th percentile
32.000 1/min). Most variation was recorded during the shallow respiration part of the hypopnoea
simulation, showing SD of 10.010 1/min (9.097 1/min for the radar measured values). Samples of the
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extracted respiration rates are illustrated in Figure 8 with respect to the reference signals. More samples
are depicted in the Supplementary Figure S3.
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Figure 8. Respiration signal samples of two participants (ID003 on the top, ID011 on the bottom) for

each activity in the supine lying position.

Figure 9 presents the Bland-Altman plot comparing respiration rates from the radar to those given
by the reference devices. It exhibits a mean error of 0.221 breaths per minute (SD 3.137 1/min).

Difference of radar and referense respiration rates (1/min)

1 1

1 1

10

20 30

40 50

60 70

Mean of the two respiration rate measures (1/min)

Figure 9. The Bland-Altman plot for respiration rate. The dashed lines indicate the mean and the

interval containing 95% of the samples.
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As presented in Table 6, the largest observed difference between participants in terms of MAE
was 1.820 1/min. Additionally, when compensating for the different number of respiratory events
per participant by averaging without weighting by measurement duration, the largest difference in
participant MAE reduced to 1.487 1/min (with an overall average MAE of 1.354 1/min). For different
activities, the smallest respiratory motions (during hypopnoea, shallow) exhibited the largest errors
(especially ID003 and IDO006).

Table 6. Mean absolute error for respiration rates with respect to activity and participant.

Participant ID Relaxed Hypopnoea, Shallow Hypopnoea, Normal Recovering Participant MAE

ID001 0.367 0.725 0.418 0.251 0.487
1D002 0.940 1.694 1.124 0.611 1.088
1D003 1.305 5.118 0.505 0.339 2.272
ID005 0.751 2419 0.934 0.617 1.075
ID006 0.856 3.852 0.369 0.536 1.331
D008 2.626 2.310 1.601 1.170 2.308
ID009 1.049 2.610 0.869 1.833 1.336
1D010 0.737 2.516 0.752 3.094 1.392
ID011 1.311 1.155 0.981 0.388 1.114
Activity MAE 1.222 2.408 0.887 1.149 14142

The largest activity and participant MAEs are bolded. # The total MAE over all activities and participants.

In different positions, the differences in MAE are below 1.000 1/min, as presented in Table 7.
However, the lateral measurement positions, especially the left lateral position, exhibited higher MAE
as compared to the other two positions.

Table 7. Mean absolute error for respiration rates with respect to activity and lying position.

Position Relaxed Hypopnoea, Shallow Hypopnoea, Normal Recovering? Position MAE

Supine 1.002 1.270 1.149 1.149 1.086 °
Right lateral 1.096 3.588 0.682 - 1.656
Prone 1.256 1.458 0.707 - 1.225
Left lateral 1.732 3.454 1.001 - 2.064
Activity MAE 1.222 2.408 0.887 1.149 1.414°¢

The largest mean MAEs are bolded. ? Recovering was only measured in the supine position. ® 1.061 1/min if
the recovering activity is not considered. ¢ The total MAE over all activities and positions.

We obtained an overall MAE of 1.414 1/min (SD 2.810 1/min, median absolute error 0.515 1/min)
and RMSE of 3.145 1/min for respiration rate. Detailed RMSE results are presented in the
Supplementary Tables S3 and S4. Furthermore, the measurements exhibited a significantly high
Pearson correlation of 0.910 (p-value less than 0.01), as visualized in the Supplementary Figure S5.

4. Discussion

The radar derived IBI tend to be slightly larger than the reference, although this systematic error
varies considerably between participants (see Figure 7). Differences between participants in the normal
ECG waveform, heart rate, and heart rate variability are all expected due to varying physiological
factors. Thus, it comes as no surprise that the IBI of some participants may be more difficult to
extract than that of others. The error in IBI for each participant is reasonable, in the order of tens
of milliseconds.

As for different activities, the error in the extracted IBI was at its largest when a participant
was recovering after an exercise session. This is when the largest respiratory motions are expected.
Consistently, during the hypopnoea-mimicking shallow respiration, with close to no respiratory
movement, the error was at its smallest. After the physical exercise, the participants were somewhat
out of breath and it came naturally to take quick, deep breaths. Thus, the respiratory rate came closer
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to the expected range of the heart rate. As both motions are periodic, it became more difficult to
distinguish the two. However, MAE for the recovering activity is only 0.052 s, thus showing good
performance despite the challenging circumstances.

The overall error of 0.038 s indicates strong performance for the presented IBI extraction method
in various scenarios. The different lying position did not affect the accuracy of the extracted IBI
(see Table 4).

The presented results exceed previous achievements in heart rate monitoring obtained for lying
positions. Anitori et al. presented an FFT method achieving a 10% error for heart rate, whereas we
obtained 3.6% error for instantaneous heart rate [13]. Alizadeh et al. obtained a correlation of 80%
for a single person, whereas we demonstrate an 86% correlation for ten participants [15]. Our results
also compete with the results by Adib et al. who achieved a 99% median accuracy over a variety
of measurement distances for participants in sitting positions [4]. At a similar distance of 2 m,
they obtained a median accuracy of 98.7%, whereas our overall median absolute error of 0.008 s
corresponds to a 99.2% accuracy and the mean absolute error of 0.038 s corresponds to 96.3% accuracy.

In HRV analysis, most time and frequency-domain features obtained from the IBI estimates
demonstrated high agreement with the reference values. The pNNI20 and pNNI50 time-domain
features were the notable exceptions. The error for these parameters presumably followed from the
numerous estimates for each actual heartbeat event given by our IBI extraction method, which shifts
the number of intervals exceeding 20 or 50 ms as compared to the total number of intervals. The extra
estimates might have also affected the error in minimum and maximum heart rates. Yet, many HRV
parameters remain useful when extracted from the radar.

As for respiratory rate, smallest respiratory motions were the most difficult to detect using
the radar (see Table 6). Yet, the average MAE remained comparable to that of normal respiration
(1.222 1/min), supporting that the method is reliable in various real-life scenarios.

Respiration rate extraction was found to be more complicated in lateral positions; the highest
error was measured in one of the two positions for all expect one participant. Notably, two participants
(ID003 and ID006) exhibited exceptionally high error (especially RMSE) in one of the lateral positions
during the shallow respiration period of the hypopnoea simulation, contributing notably to the
overall error.

The observed differences in the error of the two lateral positions may be tracked back to the
measurement setting. The RIP belt used to measure the primary respiration reference is an elastic
band around the participants thorax; the change of posture could loosen the RIP belt by sliding it
from its original location. As described in the protocol (Table 1), the participants always visited the
right lateral position before the left, which may have resulted in larger error in the left lateral position.
Additionally, the error may be higher in lateral positions as compared to the other two because of the
smaller prevalence of the respiratory motion in the observed area.

Altogether, our respiration extraction method is comparable to the state-of-the-art methods.
As compared to Alizadeh et al. who used a similar autocorrelation approach to extract respiration
with 94% correlation with the reference, we expand the method for several participants and achieve a
91% correlation. Adib et al. on the other hand achieved a 99.4% median accuracy in seated positions,
while we show an overall 96.5% median absolute accuracy and a 91.0% mean absolute accuracy in lying
positions [4]. However, in contrast to previous studies, our study considered a wide range of respiration
rates including breathing with minimal motion [4,13-15]. Despite the challenging setup, our method
performed robustly in the different scenarios. The high correlation between the radar-extracted and
reference estimates is a remarkable result given the wide range of recorded respiratory motions.

The chosen methods of cepstrum for IBI extraction and autocorrelation for respiration rate
extraction are closely related, as both can be formulated as an inverse Fourier transform from the
power spectra [33]. Cepstral analysis emphasizes the harmonic frequencies of a spectrum. The signal
power of rapid bursts, such as heartbeats, is mainly carried by the harmonic spectral peaks, which are
further emphasized in the logarithm of the spectrum. In contrast to heartbeats, the signal power of
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respiratory motion is concentrated on the base frequency, making autocorrelation a suitable approach
to extract respiration [33].

The presented vital sign extraction methods are limited with respect to real time applications.
The IBI extraction requires a delay equal to the longest FFT window (20 s) in addition to the delay due
to the iterative smoothing to remove uncertain estimates (upto 4 min). The IBI extraction performance
could however be improved if it was implemented in parallel with another method, such as the data
fusion method described in [34]. The respiration rate extraction is restricted by the maximum delay
equal to the maximum ACF peak extraction buffer (default of 15 s). Furthermore, the optimal range
bin selection and DC removal were computed globally for each sub-measurement, and would need to
be performed adaptively to account for changes of position during sleep.

The presented results are limited by the restricted set of participants and thus the methods may
not generalize as well for broader groups. Although data collection in a controlled environment
allowed us to capture a wide range of vital signs, the natural next step would be to test the presented
methods on a large study group in over-night measurements. The suggested techniques could also
be optimized for personal vital sign patterns to improve performance for individuals. For future
work, we note that while here the clean reference ECG enabled the use of the standard MATLAB®
tool findpeaks, the Pan-Tompkins algorithm is suggested for reference R peak extraction. In addition,
the results were obtained on subjects lying still and therefore do not directly apply to moving subjects.
However, applying noise removal prior to the vital sign extraction methods could increase performance
for moving subjects.

5. Conclusions

Our results suggest that the cost-effective 24 GHz FMCW radar together with the proposed vital
sign extraction methods represent a solution that can deliver accurate results for nocturnal vital sign
monitoring even during various conditions, such as sleep apnoea. We obtained state-of-the-art level
accuracies for heart rate monitoring while, to the best of our knowledge, being the first to report
as low errors in recording instantaneous interbeat intervals using a similar device [4]. Moreover,
we demonstrated the radar’s feasibility in heart rate variability analysis. Finally, we presented
remarkably accurate results in respiration monitoring, maintaining a reasonable error level from
abnormally shallow respiration to high-volume gasping. As far as we know, this is the first study
to include uncommonly small respiratory motions in the studied respiratory range and evaluate the
FMCW radar technology for apnoea indication.

While our study focused on nocturnal vital sign monitoring applications, the technology can
be applicable to various other purposes where the subjects remain mainly still, such as monitoring
bedridden patients or the elderly, or finding victims trapped under constructions at disaster scenes.
In the future, the methods can be tested on authentic nocturnal measurements and adjusted for more
advanced 60 GHz radars, enabling the measurement of multiple subjects simultaneously, despite close
proximity [35]. Other remaining challenges include, e.g., decreasing the effect of motion artefacts and
reducing the time delay during signal extraction to enable real-time applications.

Supplementary Materials: The following are available online at http:/ /www.mdpi.com/1424-8220/20/22/6505/s1;
Aggregated error metrics, Figure S1: Examples of interbeat intervals extracted for each subject during relaxed
respiration in the supine lying position, Table S1: Root mean square error for interbeat intervals with respect to
activity and participant, Table S2: Root mean square error for interbeat intervals with respect to activity and lying
position, Figure S2: Example of interbeat intervals extracted from an arrhythmic sequence, Figure S3: Examples
of respiration signals for each subject during relaxed respiration in the supine lying position, Table 53: Root mean
square for respiration rates with respect to activity and participant, Table S4: Root mean square error for respiration
rates with respect to activity and lying position, Figure S4: Correlation of the interbeat interval derived from the
radar signal and the reference IBI, Figure S5: Correlation of the respiration rate derived from the radar signal and the
reference respiration rates.
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