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Purpose: The purpose of this study was to develop a realistic patient-based 4D digital breast phantom
including time-varying contrast enhancement for simulation of dedicated breast CT perfusion imaging.
Methods: A 3D static phantom is first created by segmenting a breast CT image from a healthy patient
into skin, fibroglandular tissue, adipose tissue, and vasculature. For the creation of abnormal cases, a
breast lesion model was developed and can be added to the phantom. After defining the necessary per-
fusion parameters for each tissue (e.g., arterial input function for vasculature, blood volume and blood
flow for the other normal tissues) based on contrast-enhanced dynamic breast MRI data, the corre-
sponding time-enhancement curves are computed for each voxel in the phantom, according to tissue
type. These curves are calculated by convolution between the arterial input function and a shifted expo-
nential function. This exponential depends on the perfusion parameters associated with each tissue
voxel, and, to incorporate normal biological variability, a uniform random distribution is used to vary
the perfusion parameters on a voxel-basis. Finally, a 4D array is produced by sampling the continuous
time-enhancement curves at the desired sampling rate. Beside modeling different enhancement dynam-
ics according to the given input perfusion parameters, the phantom also includes the possibility to real-
istically simulate different spatial enhancement patterns for the breast parenchyma, taking into account
the arterial sources supplying the breast. Finally, different patterns of contrast medium uptake can also
be simulated for the tumor models (homogeneous and rim enhancement).
Results: As an example, a typical 4D phantom has dimensions of 426 9 421 9 260 9 559 (x, y, z,
t), with a voxel size of 273 lm and a sampling time of 1 s. The characteristics of the tumor model
can be modified at will to evaluate perfusion in different types of breast lesions. Results show the
expected enhancement of tissues, consistent with the given input parameters. Moreover, the tumor
models evaluated in this work show different enhancement dynamics according to the tumor type
(defined by different input perfusion parameters), and also present a higher enhancement compared
to the other healthy tissues, as expected.
Conclusions: The proposed digital phantom can model the breast tissue perfusion during 4D breast
CT image acquisition, displaying the different enhancement dynamics that could be found in a real
patient breast. This phantom can be used during the development of dynamic contrast-enhanced dedi-
cated breast CT imaging, for optimization of image acquisition, image reconstruction, and image
analysis. This modality could provide functional information of the breast, resulting in detection,
diagnosis, and treatment improvements of breast cancer with breast CT. © 2018 The Authors. Medi-
cal Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in
Medicine. [https://doi.org/10.1002/mp.13156]
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1. INTRODUCTION

Breast cancer is still the most common cause of female can-
cer death in Europe.1 Although mammographic screening
and improvements in treatment have reduced breast cancer
mortality by 30%,2 this disease still causes half a million
deaths per year worldwide.3

In current years, there has been strong development in
imaging techniques to improve early detection and staging of

breast cancer. Digital breast tomosynthesis (DBT), an imag-
ing method that produces pseudo–three-dimensional images
of the breast from multiple 2D projections over a limited
angular range,4 is first among the improvements in x ray-
based techniques and is currently widely implemented in
clinical practice. Although resulting in improved performance
in breast cancer detection,5 DBT is not a fully 3D technique,
since the angular range covered during acquisition is limited.
Dedicated breast computed tomography (breast CT) has been
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introduced to overcome this limitation. Breast CT is a fully
3D, isotropic, high spatial and contrast resolution x ray-based
modality which brings the characteristics of tomography to
breast imaging.6 Given these advantages, breast CT has the
potential for being used in multiple breast imaging applica-
tions, such as detection, diagnosis, staging, and therapy
response monitoring.

However, clinical performance based upon anatomic eval-
uation alone is limited due to the similar attenuation of nor-
mal fibroglandular and cancerous tissue. Functional
information can be acquired via noninvasive imaging by use
of a contrast medium and evaluation of its uptake within a
patient breast, and in eventual lesions. For both dynamic con-
trast-enhancement MRI (DCE-MRI) and contrast-enhanced
spectral mammography (CESM), it has been shown that the
administration of contrast increases the sensitivity up to
98%.7 Dynamic uptake information is also extremely valu-
able for lesion classification, reducing the need for biopsies
of benign lesions.

Dynamic contrast-enhanced dedicated breast CT (DCE-
breast CT)8 may, therefore, be used in a manner similar to
DCE-MRI: acquiring multiple images over time prior to and
after the injection of iodinated contrast medium.9,10 Given
that a complete breast CT acquisition can currently be
achieved in 10 s, and that spatial resolution is independent of
scan time, DCE-breast CT could achieve a higher combined
spatial and temporal resolution than DCE-MRI, with the
potential advantage of improving tumor diagnosis and char-
acterization even further.

In breast CT, the voxel values are linearly proportional to
attenuation. Therefore, an iodinated contrast agent may be
useful for quantifying the capillary permeability differences
between normal and malignant tissues, which is easier than
in MRI since the signal intensity changes induced by the con-
trast agent are not linearly related to the gadolinium concen-
tration. This quantitation may improve specificity and may
allow the use of quantitative enhancement characteristics as
imaging biomarker. Furthermore, although DCE-MRI could
be used for tumor profiling of intra-tumor heterogeneity to
improve diagnosis and staging, it is more prone to several
artifacts and is relatively expensive, limiting its use. In addi-
tion, it may not achieve a high enough combined spatial/tem-
poral resolution7 to allow for tumor sub-type characterization
at an early stage.

In an attempt to overcome these issues, contrast-enhanced
whole-body CT has previously been investigated for breast
cancer diagnosis.11–13 On average, it resulted in a high accu-
racy (over 95%) and a sensitivity and specificity of 92% and
100%, respectively. Compared to DCE-MRI, especially the
high specificity provides clear evidence for the potential of
using contrast-enhanced CT in diagnosis, staging and follow-
up of breast cancer. However, the lower sensitivity, along
with the high delivered radiation dose, limits its use to
patients with absolute and relative contraindications to MRI,
such as presence of a pacemaker or of clips, claustrophobia,
and severe dyspnea due to heart disease.11 The major limita-
tions of whole-body CT for breast imaging, especially the

relatively low spatial resolution and high dose (also outside
of the breasts) are addressed with the development of con-
trast-enhanced dedicated breast CT. In addition, breast CT
uses a significantly lower energy when compared to whole-
body CT, thus resulting in increased soft tissue contrast.
These advantages may result in an increase in the sensitivity
of DCE-breast CT compared to body CT, while maintaining
the high specificity due to the sharing of the physics of the
imaging process and the kinetics of the contrast agent.

For further development and optimization of DCE-breast
CT, tools are needed to simulate the DCE-breast CT imaging
process. As a first step, a realistic phantom able to mimic the
perfusion process observed in breast tissue, breast blood ves-
sels, and breast tumors is needed to recreate the dynamic
image acquisition process. Such a phantom could be used in
computer simulations of DCE-breast CT imaging for testing
and optimization of image acquisition, reconstruction, and
processing algorithms, as well as validating new automated
image analysis methods to extract quantitative biomarker
information from the DCE-breast CT images.

So far, some approaches have been proposed in literature
to design and develop realistic phantoms of different organs
and systems of the human body. Previous work has been
reported on engineered physical solutions to mimic blood
perfusion by contrast agent flow through tissue-like struc-
tures.14–17 These structures adequately simulate soft tissue
and allow extensive testing with actual imaging systems, but
these phantoms are usually limited in complexity. As an alter-
native to engineered physical phantoms, a different solution
could be to use biological phantoms (i.e., animal models).18

Although realistic, beside the complexity of their use, these
solutions do not allow for investigation of a wide range of
physiological conditions, in addition to the rest of the tissue
not being representative, in terms of size and complexity, of
human tissue.

The use of digital phantoms allows for accurate and more
complex anatomical models (compared to physical phan-
toms) with high repeatability and consistency (compared to
animal models) and, importantly, with known ground truth.
Digital phantoms can be derived from real patient images, or
be completely simulated, and can be easily modified to
model different types of pathology or variations in normal
anatomy. In addition, simulating images from these phantoms
allows complete control over the imaging conditions simu-
lated, including both imaging system characteristics (e.g.,
acquisition technique, detector specifications) and imaged
object characteristics (e.g., motion during and in between
scans).19–22

Given the realism and the possibility to fully control the
object and system parameters that a software phantom can
provide, the purpose of this work is therefore to design and
develop a realistic patient-based 4D digital breast phantom to
simulate breast tissue and tumor perfusion in dynamic con-
trast-enhanced breast CT imaging. For this, we developed a
software tool that, from input patient images acquired with a
3D breast CT system, can generate a 4D phantom with differ-
ent perfusion features based upon the specification of several
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physiological parameters. The method we propose can be
used to generate multiple 4D phantoms from the same input
image, and allows the modeling of different perfusion pat-
terns and breast lesion models, along with different temporal
acquisition settings (i.e., the image acquisition total time
range and temporal resolution), covering a variety of scenar-
ios of biological and physical conditions.

2. MATERIALS AND METHODS

All user-selectable parameters for generation of the 4D
phantoms are displayed in Tables I and II, and they are
detailed in the following subsections. The main pipeline of
our method is summarized in Fig. 1 and all steps are
described in detail below.

2.A. Image acquisition

Although the algorithm is breast CT system design-inde-
pendent, the characteristics of the patient images acquired at
our institution are given to present a typical example. Patient
images were acquired using a clinical breast CT system (Kon-
ing Corp., West Henrietta, NY).23 For this system, the x ray
tube with a tungsten target and aluminum filter is set to a
voltage of 49 kV, resulting in an x ray spectrum with a
0.3 mm nominal focal spot and a first half value layer of
1.39 mm Al.24 The detector is 397 9 298 mm in size with
1024 9 768 pixels, (4030CB, Varian Medical Systems, Palo
Alto, CA, USA), with a reconstructed voxel size of
273 9 273 9 273 lm. The reconstruction algorithm used is
filtered backprojection. The source-to-imager distance of the
breast CT system is 92.3 cm, while the source-to-isocenter
distance is 65 cm. A complete breast CT scan involves the
acquisition of 300 projections over a full 360° revolution of
the x ray tube and detector in 10 s. The x ray tube operates in
pulsed mode with a constant 8 ms pulse, and the tube current
varies from 12 to 100 mA. Images are acquired by trained
radiographers, currently as part of an ethics board-approved
patient trial on noncontrast-enhanced breast CT, with subjects
providing written informed consent.

2.B. Image classification

Since different tissues within the breast show different
enhancement rates, it is important to label each voxel of the
breast CT image and allocate it to the correct tissue type. For
this, a discrete mask was generated, in which each voxel is

represented by a discrete value, indicating to which tissue
type the voxel belongs. Therefore, the first processing step of
our pipeline involves the segmentation and classification of
breast tissues within the patient 3D breast CT image as adi-
pose tissue, fibroglandular tissue, skin and blood vessels. To
address this task, we used an automatic classification algo-
rithm for breast CT image segmentation.25 Although the
breast CT images used in this study are corrected for cupping
by the breast CT system during reconstruction, in cases where
this correction is not applied, we have shown that the classifi-
cation algorithm is insensitive to cupping artifacts.25 Briefly,
this algorithm incorporates different unsupervised image
analysis techniques to segment each tissue type: constrained
region-based segmentation methods for skin detection, an
energy minimizing active contour model for adipose tissue
classification and a clustering method to detect fibroglandular
tissue and blood vessels.

The 3D mask resulting from this algorithm provides a
map of all major tissue types within the breast, assigning each
voxel of the original image to the correct tissue type and
allowing to set the correct perfusion parameters to each tis-
sue, as described later in this section. In Fig. 2, an example
of the original 3D breast CT image and the corresponding
segmented mask are displayed.

TABLE I. Physical input parameters and options for generating the 4D breast
phantom, with numerical values adopted in this work.

Parameters Category
Numerical value

adopted in present work

Start time Temporal parameters 1 (s)

End time 560 (s)

Temporal
resolution
(sampling time)

1, 10, 20, 30, 60, 90 (s)

Input iodine
concentration
within the arteries
supplying the breast

Contrast medium 10 [mg(I)/ml]

Tumor type flag Tumor model Benign/Malignant

Biological
variability limits

Biological noise [�0.5, 0.5]

S1 Spatial enhancement
pattern for breast
parenchyma (option)

100 [dimensionless]

t* 60 (s)

Pi 1/0 and 0.6/0.4

S2 Rim enhancement
(option)

1,000 [dimensionless]

TABLE II. Physiological input parameters for generating the 4D breast phantom, with numerical values adopted in this work (from Delille et al27).

Blood volume
(BV � VBV )(mL/100 mL)

Blood flow
(BV � VBF)(mL/min/100 mL)

Mean transit
time (MTT) [s]

Time to peak
(tpeak) (s)

Wash-in
polynomial

grade (Rwashin)

Wash-out
polynomial

grade (RwashoutÞ

Fibroglandular tissue 8.5 � 0.1 7.15 � 0.1 71.3 � 1.8 Not defined Not defined Not defined

Malignant Lesion model 35.5 � 0.3 70.3 � 0.3 30.3 � 0.4 120 5 3

Benign lesion model 15.4 � 0.3 14.8 � 0.3 62.4 � 2.5 190 1.25 2
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2.C. Perfusion input parameters

Once the masked 3D image is obtained, two input parame-
ters related to breast tissue perfusion, the tissue blood volume

(BV) and the tissue blood flow (BF), need to be defined. BV
corresponds to the volume of capillary blood contained in a
given tissue (expressed in mL of blood/100 mL of tissue),26

while BF corresponds to the blood flow entering (and exit-
ing) a volume of tissue (expressed in mL of blood/min/
100 mL of tissue).26 Both parameters are useful to compute
initial estimates of the contrast medium uptake within a given
tissue type; their value can be defined at will, but in this work
we used parameter values previously reported in breast DCE-
MRI studies,27 listed in Table II.

Although these two parameters could be defined for each
tissue type present in the breast, for ease of computation and
to reduce the processing time in generating a phantom, for
now they are defined for the fibroglandular tissue only (i.e.,
adipose tissue and breast skin are considered to have negligi-
ble perfusion). From BV and BF, the mean transit time
(MTT), which indicates the mean time taken by blood to pass
through the tissue capillary network,26 is defined as follows:

MTT ¼ BV
BF

� 60 (1)

As input to the algorithm, the mean transit time values (ex-
pressed in seconds) used in this work are reported in Table II.

Finally, since the quantitative analysis of the microcircula-
tion requires some knowledge of the kinetics of the contrast
agent in the afferent artery to the tissue of interest,28 an aver-
age arterial input function (AIF), which describes the enhance-
ment kinetics of the artery supplying the organ, was defined.
As well as the other input parameters, the AIF can be varied at
will to better define the inter- and intra-variability among
different patients and scans. In terms of computation, the AIF
is described by 10 points indicating the contrast medium (iodi-
nated solution) concentration within the arteries supplying the
breast for a given temporal moment. These points are then
interpolated using cubic splines to obtain a final smooth func-
tion. Here, we modeled the shape of the AIF (displayed in
Fig. 3) according to the work proposed by George et al.29, in
which the AIF was reconstructed from animal models using a

FIG. 1. Main steps of the proposed pipeline for the generation of 4D breast
phantoms. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 2. First step of the 4D breast phantom development algorithm: (a) original 3D BREAST CT image, and (b) the respective 3D segmentation mask, showing
skin, blood vessels, fibroglandular tissue, and adipose tissue. Both panels show 3D renderings of a breast CT image (original and segmented) using average inten-
sity projections. [Color figure can be viewed at wileyonlinelibrary.com]
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combination of bolus-tracking and time-registered helical mul-
tidetector CT data. The amplitude of the curve depends on the
contrast medium concentration injected in the breast through
its major vasculature, which is another user-selectable parame-
ter. In this work, we set it to 10 mg(I)/mL.30 The AIF, beside
modeling the iodinated solution in- and out-flow within blood
vessels, also influences the concentration of iodine in the other
breast tissues, as described in the following subsections.

2.D. Enhancement modeling

To introduce expected biological variability among voxels
of the same tissue type, the given input perfusion parameters
are varied on a voxel-by-voxel basis.

For this, a 3D volume with each voxel labeled with a ran-
dom number generated from a uniform random distribution
normalized between �0.5 and +0.5 is generated, and it is
used to vary the perfusion parameters according to the follow-
ing equation:

BVðx; y; zÞ ¼ BV þ Nðx; y; zÞ � VBV (2)

BFðx; y; zÞ ¼ BF þ Nðx; y; zÞ � VBF (3)

where (x, y, z) denote the voxel coordinates within the breast
CT image, BV and BF the average perfusion parameters val-
ues, VBV and VBF their variance, and N the random number
associated with that voxel. The values for BV, BF, VBV , and
VBF used for this study are listed in Table II. This operation
allows all perfusion parameters to vary in a voxel-by-voxel
basis, while still taking into account the variance of the perfu-
sion parameters themselves.

According to the indicator dilution theory,31 BV and BF
can be described by considering a bolus of contrast medium
given at time t = 0 in the feeding vessels to a tissue volume
of interest (VOI). The contrast medium follows different
paths through the VOI, and the resulting transit times have a
distribution characteristic for the passage of the medium
through the tissue. Therefore, after the injection of the con-
trast medium inside the patient blood circulation, each tissue
within the breast will show a different enhancement, related
to the values of BV and BF (and the derived MTT) associated
with that tissue. The image enhancement will therefore

depend on the amount of blood flowing through the tissue
(which mostly determines the magnitude of the enhance-
ment), and on the average time during which the contrast
medium concentrates in the tissue interstitium (which mostly
determines the duration of the enhancement). To mathemati-
cally describe this process, each voxel of the image can be
described with a set of different intensity values which repre-
sent the time-enhancement curve (TEC) associated with that
voxel, which describes the enhancement of the voxel over
time. To calculate these curves, the AIF is convolved with a
function (which basically models the fraction of contrast
medium inside a given tissue) described by the main perfu-
sion parameters used in our model: the amplitude is defined
by the BF, while the first moment of the function is set by the
MTT (when scaled by the BF, the area under the curve indi-
cates the BV). By convolving this function with the AIF, the
latter is reshaped taking into account the BV, BF and MTT
values of the tissue, and therefore generating the TEC for a
given tissue voxel according to the following equation:

TECðx; y; z; tÞ ¼ AIF � BF if t�MTT
BF � e�ðt�MTTÞ if t[MTT

�

(4)

Finally, to generate more accurate enhancement patterns
from a physiological dynamics perspective, we developed a
final step to vary the timing of contrast medium uptake within
the breast parenchyma modeling the location of major blood
vessels supplying the breast. It is expected that some regions
of breast tissue may show an earlier enhancement than others,
depending on the distance to the major arteries (i.e., the con-
trast medium will arrive to tissue closer to these major vessels
earlier32). We therefore implemented a method to model this
delay in enhancement in the breast fibroglandular tissue.
Although an accurate modeling of this delay should take into
account the precise location of the breast arteries endpoints
to properly set the spatio-temporal variation in the contrast
medium, the impossibility to distinguish, in unenhanced 3D
breast CT images, the arteries from the veins limits the feasi-
bility of this approach. In fact, since the enhancement is
dependent on the relative distance to the arterial supply, while
not so much to the venous drainage, modeling the delay of
enhancement according to the distance from breast blood ves-
sels detected with the segmentation algorithm might lead to
physiological inaccuracies, since the detected vessels are
mostly veins, while the arteries are the only source of contrast
medium to the breast fibroglandular tissue. Therefore, we
decided to define two input locations to the breast, both in
the upper quadrant, on the medial and the lateral side of the
input breast CT image. It has been shown that, depending on
the patient, the contrast medium can appear from either one
or the other of these regions, and in some case from both
equally.33 These points are considered as the locations of the
major arteries supplying the breast, and therefore where the
contrast medium is more likely to spread from. These points
were automatically selected by taking two pixels located at
the interior boundary of the breast skin, respectively, chosen

FIG. 3. Arterial input function (AIF) used in this work. [Color figure can be
viewed at wileyonlinelibrary.com]
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at 45° and 135° on the coronal image slice located closest to
the chest wall. After defining these points, the following 3D
space was defined:

B ¼
X2

i¼1
e
� x�xe ið Þð Þ2þ y�ye ið Þð Þ2þ z�ze ið Þð Þ2½ �

S1
2 � Pi (5)

and normalized between 0 and 1. The symbols xe, ye, ze are
the spatial coordinates of the two sources of the contrast med-
ium, S1 is a parameter modeling the spatial distribution of the
iodinated solution within the fibroglandular tissue, and Pi
represent the biases controlling the percentage of contrast
medium between the two source locations (whereP2

i¼1 Pi ¼ 1). These latter parameters (P1 and P2) allow to
define the amount of iodinated solution coming from each of
the two source locations, accounting for the biological vari-
ability among different patient cases. For example, an input
of 1/0 means that all the enhancement originates from the
upper medial corner, a value of 0/1 means all the enhance-
ment comes from the upper lateral corner, 0.5/0.5 means
equal enhancement originating from both, and so on.

Local values of function (5) are used to delay, on a voxel-
by-voxel basis, the contrast medium uptake within the breast
parenchyma according to the distance from these two loca-
tions, using the following function:

TEC ¼ TEC t � 1� B x; y; zð Þð Þ � t�½ �ð Þ (6)

where t* is a parameter modeling the temporal delay of the
contrast medium uptake. With this operation, the enhance-
ment of the fibroglandular tissue can be modeled at will by
tuning the parameters S1 (which controls the magnitude of
the spatial distribution), t* (which sets the temporal delay)
and Pi (which define the prevalence of the source of contrast).
For voxels located close to the source locations, function B
will have high values, thus forcing the temporal delay to
quasi-zero values. Conversely, most inner parts of the breast
tissue will see lower values of B, and therefore, a delayed
enhancement. All parameters involved in this model (S1, t*,
Pi) can be tuned at will to generate different enhancement
patterns; as an example, and given that the timeframe of full
enhancement of the fibroglandular tissue is usually in the
order of one or few minutes,34 in this work we set S1 to 100
(dimensionless number), t* to 60 s, and we present an exam-
ple for Pi equal to both 1/0 and to 0.6/0.4.

The whole process described so far is repeated for each
voxel in the breast in the original 3D breast CT image,
resulting in a 4D image of time-varying iodine concentra-
tion in each voxel (a continuous amount), in addition to the
3D classified breast tissue type image (with each voxel
value being a discrete value labeling the voxel as either
skin tissue, adipose tissue, fibroglandular tissue, or
vasculature).

2.E. Breast tumor models

After defining the enhancement dynamics of normal
breast tissues, a tumor model can be added within the fibrog-
landular tissue of the breast. For this, the respective

segmented mask is updated by defining a new voxel value for
the tumor in the corresponding position.

Simulation of realistic lesions in breast computer phan-
toms has already been pursued by some investigators. Some
used simple shapes (spherical or cylindrical), while others
used 3-D random walk algorithms to simulate abnormalities,
using logical operators,35 primitive shapes,36 and stochastic
growth37 to model benign and malignant masses.

In our work, to reproduce an accurate lesion model while
keeping our phantom completely patient-based, we used a
real tumor extracted from a breast CT patient scan. The tumor
was segmented using a semi-automatic 3D level set.38 For
this, we manually defined the initialization of the level set
within the breast mass, and we visually assessed the result
(shown in Fig. 4). When generating the phantom, the user
can select where to locate the lesion within the breast tissue,
and set its desired size as a percentage of its original dimen-
sion (in this work, we used the original tumor dimensions as
reported in Fig. 4).

Of course, breast tumors are characterized by usually hav-
ing a different enhancement process than that of the sur-
rounding healthy tissues, due to the large amount of small
and often irregular newly formed vasculature. Furthermore,
different tumor types show different enhancement patterns
(according to malignancy grade and cellular type), resulting
in a high intra-class variability.39 For these reasons, addi-
tional steps are needed to better define different models of
breast lesions within the proposed 4D phantom. To address
this task, further parameters (besides the BV and BF) can be
defined to model the contrast medium uptake of the lesion:
the time to peak (i.e., the temporal moment corresponding to
the highest enhancement of the lesion) and the wash-in and
wash-out rates (i.e., the increase and decrease in the signal
resulting from the in- and out-flow of the contrast medium

FIG. 4. Tumor model segmented from a patient breast CT scan and used in
the present work. [Color figure can be viewed at wileyonlinelibrary.com]
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within the tumor). These parameters are taken into account in
the computation of the TEC for the tumor voxels by adding
two computation steps after the convolution operation with
the AIF: a temporal shift of the curve to the time to peak
value, and a further final convolution with a polynomial func-
tion defined according to the selected wash-in and wash-out
rates. This final operation is performed separately for the
wash-in and wash-out phase (i.e., before and after the highest
enhancement), allowing for the selection of different polyno-
mial grades for the in- and out-flow, according to the follow-
ing equation:

TECtumorðx; y; z; tÞ ¼
TECðx; y; z; t � tpeakÞ � Rwashin if t\tpeak
TECðx; y; z; t � tpeakÞ � Rwashout if t[ tpeak

�
(7)

In this work, two lesion models (benign and malignant)
are generated by setting two different sets of tumor perfusion
parameters (Table II).

To allow for a more varied breast lesion enhancement
modeling, we added the possibility to simulate rim enhance-
ment as an alternative to the uniform enhancement described
above. Rim enhancement, more frequently seen in malignant
breast lesions,40 is characterized by a higher contrast medium
uptake at the outer boundaries of the tumor, while the inner-
most portion remains almost unenhanced due to necrosis.40

To simulate this effect, the 3D inverse distance transform41 of
the tumor is calculated and normalized between 0 and 1. This
operation results in a 3D map labeling each voxel of the
tumor with the distance from its center. This map is then mul-
tiplied by the following gaussian function, also normalized
between 0 and 1:

R ¼ 1
2pS22

e
�½x2þy2þz2 �

2S2
2 (8)

where x, y and z are the tumor voxels coordinates and S2 the
scale of the filter, which can be set at will. By multiplying
this gaussian function with the inverse distance map, its radial
distribution of voxel intensities gets stretched or shrunk
according to the value of S2, allowing for the simulation of
the desired magnitude of the rim effect. Once the final 3D
map is obtained, it is multiplied on a voxel-by-voxel basis
with the time-enhancement curves of the tumor, selectively
modifying them according to the distance from the tumor
boundaries. As with all other parameters described in this
work, the value of S2 can be set at will (the higher the value,
the lower is the rim effect, and therefore the more homoge-
neous the enhancement); as an example, in this study we
applied the rim effect to the malignant lesion with a value for
S2 of 1,000 (dimensionless number).

3. RESULTS

As an example of the results of the algorithm, we describe
two realizations of the 4D breast phantom, based on the same
patient image acquired at our institution according to the pro-
cess in Section 2.A; one with a malignant lesion and the

other with a benign lesion. A single frame of these 4D voxel
breast phantoms has dimensions of 426 9 421 9 260 (x, y,
z), covering a volume of approximately 12 9 12 9 7 cm;
the temporal resolution (sampling time) can be defined at
will. Both lesion models were located at the same coordinates
within the fibroglandular tissue.

Figure 5 displays the shifted exponential functions
(derived from the input perfusion parameters) used to calcu-
late the TECs for the two tumor models and for the fibroglan-
dular tissue.

Results of the generated phantoms show the expected
enhancement of fibroglandular tissue and of the two breast
lesions according to the given input parameters. Figure 6
shows four frames of the phantom for different temporal
moments (t = 1 s, t = 120 s, t = 240 s, t = 510 s), while
Fig. 7 displays the values of the TECs, averaged over the
entire tumor volume, of the phantom with the malignant,
homogeneous breast model (whose perfusion parameters are
reported in Table II) generated with six different sampling
times (Dt = 1 s, Dt = 10 s, Dt = 20 s, Dt = 30 s, Dt = 60 s,
Dt = 90 s). As expected, lowering the temporal resolution
decreases the amount of information which can be extracted
from the 4D phantom; for the malignant tumor model, a tem-
poral resolution lower than 90 s does not allow to depict any
tumor enhancement.

Figure 8 shows the fibroglandular tissue and malignant
lesion enhancements patterns for eight different frames of the
4D phantom (t = 1 s, t = 80 s, t = 120 s, t = 160 s, t =
180 s, t = 240 s, t = 300 s, t = 550 s), while Fig. 9 displays
a magnification of the 120 s frame. As shown in Figs. 9(b)
and 9(c), intra-tissue type biological variability is included in
the developed phantom; therefore, voxels belonging to the
same tissue type (in this case, the malignant tumor model) do
not enhance exactly simultaneously and to the same maxi-
mum intensity.

FIG. 5. Shifted exponential functions, which describe the perfusion parame-
ters for a given tissue by modeling the fraction of contrast medium inside
each tissue. The constant part of each curve models the perfusion of the tis-
sue, while the exponential part the wash-out of contrast medium. The y-axis
reports the flow of blood plus iodinated solution for a given tissue type. The
concentration of the contrast medium within the blood, after the mean transit
time, decreases exponentially during the wash-out phase, as modeled by the
curves. [Color figure can be viewed at wileyonlinelibrary.com]
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Figure 10 shows a comparison between the two tumor
models, displaying five frames from the two phantoms
(t = 1 s, t = 120 s, t = 240 s, t = 300 s, t = 380 s) and their
respective time enhancement curves. As expected, the two
breast lesion models show different enhancement dynamics;
the malignant tumor model presents a high and fast enhance-
ment, with high wash-in and wash-out rates, while the benign
one shows a lower enhancement and more gentle wash-in and
wash-out degree, simulating a lower contrast medium uptake
due to a smaller perfusion rate.

Figure 11 displays two examples of the enhancement pat-
tern of the breast fibroglandular tissue within the phantom
according to the distance from the two arterial input sources.

Finally, Fig. 12 shows the malignant tumor model within
the phantom for three temporal moments, generated both
with homogeneous and with rim enhancement.

The computational time needed by the algorithm to gener-
ate a complete 4D phantom varies according to the number of
breast voxels in the input images. As an example, for an aver-
age breast size with reconstructed voxel dimensions of
0.273 mm a side, the algorithm takes approximately 5 min
per slice for a full acquisition time range of 560 s and a

temporal resolution of 1 s. The computational time decreases
approximately by a factor of Dt0.7, where Dt is the desired
temporal resolution (the algorithm was developed in Matlab
and run on a 2.7 GHz CPU, 8 GB RAM workstation).

4. DISCUSSION

Generating breast phantoms for research purposes has
been pursued by a number of investigators and presents many
challenges. Physical phantoms are not completely adjustable,
usually do not result in a completely known independent
truth, and do not realistically mimic the complexity of breast
anatomy, but can be used on real imaging systems, avoiding
simulations and their necessary, even if minor, simplifying
assumptions. Digital phantoms, on the other hand, can offer
improved realism, are fully adjustable, and allow for knowl-
edge of the ground truth, but of course cannot be used for real
imaging. Consequently, the primary benefit of using digital
phantoms is the ability to simulate and control many aspects
of the imaging process, so that the behavior of an algorithm
or a simulated imaging system can be carefully optimized
and/or evaluated with the important advantage that the

FIG. 6. Four 3D frames of the generated 4D voxel phantom with the malignant tumor model, for (a) 1 s, (b) 120 s, (c) 240 s, and (d) 510 s after injection. Each
panel shows a single three-dimensional frame of the phantom, where each frame was obtained by projecting the voxel values of the phantom onto a projection
plane. To allow a better visualization of more inner structures (e.g., the fibroglandular tissue and the tumor model), each point in the projection plane is assigned
with the mean value of all voxels encountered.
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ground truth is known a priori. Furthermore, unlike physical
phantoms, modifications such as identifying particular struc-
tures, adding pathologies, and highlighting activation areas
are easily performed.

The proposed pipeline can be used to generate multiple
4D phantoms from patient cases and with different tumor
models, spanning the clinical range of breast sizes, glandular

fractions, and pathological conditions. Moreover, by having
full control of several input parameters (e.g., iodine concen-
tration, acquisition time range, perfusion parameters, and pat-
terns) a wide range of conditions can be simulated, resulting
in a range of possible variations in the input iodine concentra-
tion, the resulting image contrast and the enhancement pat-
terns for different tissues and lesions.

FIG. 7. Average time enhancement curves (TECs) of the phantom with the malignant, homogeneous breast model generated with six different sampling times:
(a) 1 s, (b) 10 s, (c) 20 s, (d) 30 s, (e) 60 s, (f) 90 s. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 8. Portion of the breast phantom showing the fibroglandular tissue and malignant lesion enhancement patterns for eight different frames (one slice each)
from the 4D phantom after different times: (a) 1 s, (b) 80 s, (c) 120 s, (d) 160 s, (e) 180 s, (f) 240 s, (g) 300 s, (h) 550 s. [Color figure can be viewed at wileyon
linelibrary.com]
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4D virtual breast phantoms have been proposed previ-
ously.42 These phantoms were developed by incorporating
contrast agent propagation kinetics into the extended cardiac
torso (XCAT) breast phantoms. The perfusion parameters, as
well as the temporal parameters modeling the enhancement,
were estimated based on the relative vascularization of vari-
ous tissues with the same trends reported in previous MRI
studies.27 These phantoms, which were used to simulate and
optimize both mammographic and digital breast tomosynthe-
sis imaging systems, model the 4D aspect as the fraction of
tissue material in the effective tissue-contrast agent-blood
mixture. Although useful in phantom-based simulations,
these phantoms do not take into account many physiological
or pathological aspects which may be found in a real breast
(e.g., different enhancement kinetics for breast lesions,

biological variability, different parenchyma enhancement pat-
terns). Our approach allows for varying several input parame-
ters, covering a wide scenario of physiological and
pathological conditions, and therefore allowing for more real-
istic simulations of dynamic breast imaging systems.

All parameters involved in the generation of the phantom
can be defined at will. Within this study and as a matter of
example, the fractions used for different materials in the
breast were estimated based on the relative vascularization of
various tissues detected using MRI.27 Although the contrast
uptake measurements within the breast may provide different
results between gadolinium and iodine, this approach has
been followed in previous studies which propose CT-based
phantoms or simulations,21,42 due to the extensive evaluation
of breast functional studies previously performed using MRI.

FIG. 9. (a) One slice from the 120 s frame of the 4D phantom containing the malignant tumor model; (b) its magnification, and (c) the respective time enhancement
curves of the tumor voxels. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 10. Five frames (one slice each) showing a portion of the 4D phantom with the (top row) malignant and (bottom row) benign tumor model, for different
times after injection: (b, h) 1 s, (c, i) 120 s, (d, j) 240 s, (e, k) 300 s, (f, l) 380 s. Panels (a) and (b) show the average time enhancement curves for both cases.
[Color figure can be viewed at wileyonlinelibrary.com]
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The temporal resolution (i.e., the sampling time) of the
proposed phantoms can be modified at will, allowing to sim-
ulate different image acquisition settings. Moreover, modify-
ing the sampling time and evaluating different lesion types
within the phantom could be useful to assess the impact of
the finite temporal resolution of the breast CT system and its
impact on the ability to obtain accurate information on the
enhancement process in breast tumors, which could be useful
for diagnosis and staging.

Beside the temporal resolution and all other input parame-
ters, further evaluation of other aspects of image acquisition
might also be evaluated with the proposed phantom. In light
of this, future work will include the simulation of the entire
DCE-breast CT imaging chain, including raytracing and
Monte Carlo simulations for x ray scatter and radiation dose
estimates.

Especially, our methods allow for the generation of
dynamic 4D phantoms, modeling the contrast medium uptake

FIG. 11. Example of the phantom (axial view) fibroglandular tissue with the background parenchyma enhancement varying according to the distance from the
two source locations modeling the arterial supply. Top panel (a–f) shows the phantom generated with Pi equal to 1/0, while bottom panel (g–l) with Pi equal to
0.6/0.4. In both examples, the parameters which model the enhancement were set to 100 (S1), 60 s (t*). [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 12. Malignant tumor model within the phantom for three temporal moments, generated both with rim (top panel) and with homogeneous enhancement
(bottom panel). [Color figure can be viewed at wileyonlinelibrary.com]
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dynamics across the different breast tissues starting from a
single, static, unenhanced 3D breast CT image as input. In
addition to the static anatomical information, each phantom
voxel represents the iodine content at that location at a given
moment in time, therefore, allowing for the simulation of
dynamic breast CT imaging. Since all physical parameters of
all materials within the phantom are known, patient-based
dynamic computer simulations of DCE-breast CT imaging
(e.g., involving Monte Carlo methods) will be able to be per-
formed. With these simulations, time-varying projection
images of the phantom can be generated given a wide range
of acquisition settings, allowing for the optimization of DCE-
breast CT imaging in terms of acquisition technique, dose
level, temporal sampling requirements, etc. This would allow
for the design and optimization of a DCE-breast CT starting
from noncontrast patient images acquired using a static breast
CT system.

The proposed method can also be used to optimize and
validate methods for quantitative perfusion studies of breast
lesions obtained with DCE-breast CT. In fact, by generating
multiple phantoms with different lesion types, dedicated
image analysis techniques for cancer development risk assess-
ment, tumor type characterization, and treatment response
evaluation, could be validated, albeit this is dependent on the
available knowledge on biological processes that affect lesion
enhancement.

The phantoms derived from the methods we propose
have some limitations. First, being generated from real 3D
patient breast CT images, the spatial resolution of the
phantom is limited by the characteristics of the breast CT
system used to scan the patient breasts. This leads to repre-
senting a continuous object (the breast) with a discrete
model (the phantom), possibly leading to inaccuracies for
subsequent phantom-based simulations. In future work, we
will evaluate different methods to increase the resolution of
our phantoms to improve their realism. Second, the current
implementation does not include any breast tissue motion
due to respiration or blood pulsation. Finally, only one
tumor model (although showing different enhancement pat-
terns) was included in this study. In the future, a larger
dataset of lesion models may be generated from direct seg-
mentation from other patient images. Beside the lesions
shape, further different perfusion parameters and different
enhancement patterns within the same tumor could also be
tested and evaluated.

5. CONCLUSIONS

The digital phantoms deriving from the method we pro-
pose can model the behavior of contrast in the breast dur-
ing DCE-breast CT image acquisition, displaying the
different enhancement dynamics that may be found in a
patient breast. Multiple phantoms from patient cases with
different tumor models can be generated at will. These
phantoms will be used to optimize the development of
dynamic contrast-enhanced dedicated breast CT imaging,
especially in image acquisition simulations, and the

validation of quantitative image analysis algorithms that
will be used to calculate the time enhancement curves, and
therefore characterize the perfusion in real patient images.
Future work includes the evaluation of the enhancement of
different tumor types and the simulation of the DCE-breast
CT imaging chain.
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