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Abstract: In vitro susceptibility testing of Fusarium is becoming increasingly important because of
frequency and diversity of infections and because resistance profiles are species-specific. Reference
methods for antifungal susceptibility testing (AFST) are those of Clinical and Laboratory Standards
Institute (CLSI) and European Committee on Antimicrobial Susceptibility (EUCAST), but breakpoints
(BPs) have not yet been established. One of the problems is that phylogenetic distances between
Fusarium species are much smaller than between species of, e.g., Candida. Epidemiological cutoff
values (ECVs) for some Fusarium species have been determined in order to differentiate wild-type
from non-wild-type isolates. In clinical routine, commercially available assays such as Etest, Sensititre
or others provide essential agreement with reference methods. Our objective is to summarize
antifungal susceptibility testing of Fusarium genus in the clinical laboratory: how to do it, when to do
it, and how to interpret it.
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1. Introduction

Species of the genus Fusarium are involved in a gamut of human infections. Keratitis and
onychomycosis are prevalent in immunocompetent individuals [1]. Mycotic keratitis is a worldwide
important ophthalmic problem causing visual disability due to its protracted course and unfavorable
response. In half of the cases in endemic areas like the South of India, the filamentous fungi Aspergillus
and Fusarium are the most common species causing keratitis [2] while immunocompromised hosts with
hematological malignancies and those subjected to solid organ transplant, allogeneic bone marrow
transplant, or peritoneal dialysis [3,4] are at risk of disseminated, frequently fatal infections. Fungemia
in severely compromised patients leads to local necrosis after secondary cutaneous dissemination.
In very rare cases, Fusarium can also cause skin infections characterized by small, painless papules
which quickly progress to painless ulcers with black eschars [5].
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Delayed initiation of antifungal therapy due to non-optimal diagnosis of mold infections
are associated with increased mortality rates and may lead to excessive drug use in prophylaxis
and therapy [1,6]. The Fusarium solani species complex contains many opportunistic species
(e.g., F. falciforme, F. keratoplasticum and F. petroliphilum) with high prevalence, but other Fusarium
groups are also important, such as F. oxysporum, F. verticillioides and F. proliferatum, and susceptibility to
antifungal agents varies between species [7]. Treatment strategies for fusariosis have been evaluated [8]
which led to the European Society of Clinical Microbiology and Infectious Diseases (ESCMID)
ESCMID and European Confederation of Medical Mycology (ECMM) guidelines for management
of hyalohyphomycosis caused by Fusarium and other non-melanized fungi [9]. Multiresistance to
antifungals, observed in all Fusarium species, is intrinsic therefore these fungi are notoriously difficult
to treat.

Fusarium species do not have a normal minimum inhibitory concentration (MIC) and minimum
effective concentration (MEC) distribution [10,11] and therefore prediction of antifungal susceptibility
of a single strain is difficult. However, at least the species show different tendencies in their
susceptibility against various antifungal compounds [11]. Susceptibility testing should be included
in the routine patient management to optimize appropriate therapy, particularly in severe infections.
From an epidemiological point of view, little is known about the prevalence of resistance in Fusarium
infections, due to the fact that most of the laboratories do not routinely perform antifungal susceptibility
testing and also because many laboratories face difficulties in correctly identifying species of Fusarium.

The role of the clinical microbiology laboratory is important to confirm susceptibility to the chosen
empirical antifungal agents, or to detect resistance in individual Fusarium isolates. From a practical
perspective, clinicians often perceive such test results to be at least as important as the identity of
the etiologic agents. The goal of this article is to provide a review of current concepts in laboratory
methods and approaches of antifungal susceptibility testing that serve to assist clinicians in making
optimal antifungal decisions for treatment of fusariosis.

2. Fusarium Species Identification in the Clinical Setting

Accurate identification of Fusarium species from human samples down to species level is important
not only from an epidemiological viewpoint, but also for choosing the appropriate antifungal treatment.
However, rapid identification of Fusarium isolates from clinical samples is particularly important given
their innately variable antifungal susceptibility profiles, mainly for amphotericin B, voriconazole and
posaconazole [4,11], but is complicated by the absence of diagnostic morphological features and also
increasing number of emerging pathogenic species.

The genus Fusarium was divided into sections [12] but the current classification scheme replaces
the designation “section” with “complex” [13]. Currently, the genus Fusarium is classified into
20 complexes that are comprised of related species [13]. Identification of Fusarium to the genus level is
possible in the clinical microbiology laboratories relying mainly on morphology-based identification by
recognizing macroscopic (colony appearance, texture/structure, pigmentation and colour of exudates)
and microscopic (conidiogenous cells, (type and size of conidia) and type of conidiogeneisis). However,
difficulties exist when using phenotype-based scheme because these characteristics are unstable and
clinical Fusarium sometimes manifest atypically with sporulation. Furthermore, members of the same
complex have overlapping morphological characteristics, with several genetically distinct species
existing within the genus Fusarium.

Clinically, identification of unknown Fusarium clinical isolates to species may be important given
that different species have variable susceptibilities to multiple antifungal drugs. Thus, knowledge of
the species identity may influence the choice of appropriate antifungal therapy. The use of molecular
genetic data appears to be essential to recognize monophyletic Fusarium species. Multilocus data
have been applied to separate closely related taxa and provide support for species borderlines in
Fusarium [14] as successfully used in other fungi. DNA sequencing of partial genes have been used to
supplement morphological identification of Fusarium species. Use of the nuclear ribosomal internal
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transcribed spacer (ITS) sequence should be sufficient to place most isolates within the appropriate
complex or Fusarium genus, but will not provide sufficient sensitivity to discriminate among individual
species within the complex. Protein-coding genes are also in use, such as RNA polymerase (RPB1/2),
β-tubulin (BT2), elongation factor (TEF1) [15]. TEF1 has been widely used for species identification
in Fusarium. Sequences for this gene are available through GenBank and through the more focused
Fusarium-ID [16], or Fusarium MLST [17]. Some single-copy protein-coding genes such as RPB1 and
RPB2 are also promising for Fusarium identification [13].

Another promising approach for the quick identification of Fusarium is matrix-assisted laser
desorption ionization-time-of-flight (MALDI-TOF) [18]. MALDI-TOF MS uses species-specific patterns
of peptides and protein masses to identify microorganisms. These peptides are converted into ions
by either addition or loss of one or multiple protons [19]. Several studies have been conducted on
Fusarium species with high success rates of 82%-99% [20–22]. This method was performed in the
F. fujikuroi species complex. A database was built as a result of this research which can be used as a
future reference tool [18].

3. Technical Reference of Antifungal Susceptibility Testing Methods for Fusarium

Antifungal susceptibility testing is a very dynamic field of medical mycology. There are two
recognized standard methods for the performance of antifungal susceptibility testing of Fusarium
species that apply broth microdilution (BMD), i.e., the Clinical and Laboratory Standards Institute
(CLSI) [23] and the European Committee on Antimicrobial Susceptibility Testing (EUCAST) [24].
These methods provide MIC data for all classes of antifungal agents that are both quantitatively and
qualitatively comparable [25,26]. Alastruey-Izquierdo et al. [27] indicated that in vitro antifungal
susceptibility testing plays an increasingly important role in guiding clinicians in giving the
proper antifungals, in drug development programs, and for tracing the development of antifungal
resistance in epidemiologic studies. Recently, Espinel-Ingroff et al. [28] established epidemiological
cutoff values (ECVs) for some species in order to distinguish wild-type (wt; is the population of
strains in a species/drug combination with no detectable acquired resistance mechanism) from
non-wild-type (non-wt; agents with decreased susceptibility to a certain drug). Clinical interpretative
breakpoints (CBPs) for in vitro antimicrobial susceptible testing for Fusarium are not yet established
but epidemiological cutoff values (ECVs) for three Fusarium species have been suggested [28].

4. In Vitro Antifungal Susceptibility Testing

Several antifungal agents have been developed and are becoming available for clinical use [29].
Even though standardized in vitro susceptibility testing has been developed by CLSI and EUCAST
yielding reproducible results, correlation with clinical outcome is still an enigma. The methods measure
antifungal activity, expressed as the minimum inhibitory concentration (MIC) of an antifungal, which
indicates the minimal concentration of drug able to inhibit fungal growth. Furthermore, both methods
are useful to screen for resistant strains and determine the potential therapeutic value of a new
antifungal agent [30]. Of note, several studies have shown that the in vitro results may be influenced
by factors such as inoculum size, composition and pH of the medium, and incubation temperature
and duration [31–33].

Establishing correlation between in vitro susceptibility tests and clinical outcome has been
difficult [34]. According to the “90–60” Rule [35], infections due to susceptible isolates respond
to therapy ~90% of the time, whereas infections due to resistant isolates respond to therapy ~60% of the
time. Hence, antifungal susceptibility testing can predict the outcome of treatment only in main traits.
Low MICs do not guarantee clinical success, while high MICs are associated with lower probability of
a favorable response to a given antifungal agent. Applying this rule in Fusarium, the 90–60 rule reflects
the fact that in vitro susceptibility of a given strain is only one of several factors influencing success
of therapy. Despite the intrinsic resistance in Fusarium, in vitro testing remains useful in guiding
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clinicians in taking the right therapeutic decision because many Fusarium species show species-specific
antifungal profiles [4,11].

5. Correlation between In Vitro and In Vivo

The MIC concept remains the only important parameter for defining antifungal activity and
predicting antifungal potency against the fungus at hand. Despite the advantages that MICs offer in
the clinical setting, a drawback is the lack of information that they provide concerning antimicrobial
activity over time. It seems that prediction of the therapeutic success based on the MIC of a fungal
strain is not always possible, because studies conducted until now have shown a poor correlation
between the in vitro data with the in vivo outcome. For example, high MICs of itraconazole for
a Fusarium strain isolated from a mycetoma case have been found, but the patient improved and
completely recovered using itraconazole [36]. Various host factors affect the response to antifungal
drugs, such as underlying disease, host immune function, catheter removal, surgical interventions,
and pharmacokinetic parameters [37]. Molecular mechanisms of antifungal resistance have not been
studied in Fusarium, however, molecular characterization of resistance mechanism and improvements
of antifungal susceptibility testing methods is important [38].

6. EUCAST vs. CLSI

In vitro antifungal susceptibility profiles of Fusarium species demonstrate high MICs to most
antifungal agents [10,11,39–54]. Notably, some species may exhibit different patterns of susceptibility:
F. solani species complex are usually resistant to azoles and exhibit higher amphotericin B MIC values
than other species, whereas F. oxysporum and F. verticilloides may be susceptible to voriconazole and
posaconazole [10,11,55]. The echinocandins are not active against Fusarium spp. [4,11,54].

The CLSI and EUCAST are different from each other but in terms of MIC values, they are very
similar when tested for azoles (posaconazole and voriconazole), and reading is performed after 48 or
72 h of incubation. The two methods differ in the amount of glucose present in the media (0.2% and
2%, respectively), fungal inoculum (10 times higher in EUCAST), in the type of microtiter wells
used (flat bottom versus “U” shaped) and in the concentration of DMSO (0.5% and 1%, respectively).
Reading of the microliter plate is done by spectrophotometric for EUCAST and visually for CLSI.
Despite some differences in inoculum size, medium composition and well shape, the two standards
have proved to yield comparable results. Both methods introduce the concept of Minimum Effective
Concentration (MEC) for reading echinocandin results: transition point of hyphae from normal to
aberrant hyphae, evidenced by appearance of granules or clusters on the bottom of the wells of the
microplates, although this is not always easy to see and may require microscopic observation. Reading
of the MEC, EUCAST indicates that there are still no reliable methods for the study of the sensitivity
of fungi to echinocandins [24]. Assuring quality of test performance and results (reagents, inoculum
and procedure) recommended reference strains are included. EUCAST recommended, among others,
the strains A. fumigatus ATCC 46645, A. flavus ATCC 204305 and ATCC 204304. CLSI recommended,
among others, the use of Paecilomyces variotii ATCC MYA 3630 and A. flavus ATCC 204304.

Good correlation is obtained between MICs from CLSI and EUCAST for amphotericin B,
voriconazole and posaconazole among Fusarium species [56], with categorical agreement (CA) of 100%,
95% and 75%, respectively, differing within ±2 dilutions [56]. In general, the MICs for amphotericin B
spanned a range of 0.25 to 8 µg/mL with the CLSI and the EUCAST methods and in a wider range of
0.25–32 for voriconazole and posaconazole with both methods.

7. Etest and Other Commercial Methods

The Etest method is based upon the establishment of a stable concentration gradient of an
antimicrobial agent following diffusion from a plastic strip into an agar medium. When an Etest
strip is placed upon an agar plate that has been inoculated with a test organism and incubated
for 24 to 48 h, an ellipse of growth inhibition occurs, and the intersection of the ellipse with
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the numeric scale on the strip provides an indication of the MIC. MICs determined by Etest
generally agree with those determined by CLSI and EUCAST methods; however, this agreement
may vary depending upon the antifungal agent tested, the choice of agar medium, and the fungal
species [56,57]. Al-Hatmi et al. [56] reported that the overall agreement between the CLSI, EUCAST
and Etest for drugs tested (amphotericin B, voriconazole and posaconazole) was slightly higher
with EUCAST (90–100%) than with CLSI (85–95%). Etest thus can be considered as an appropriate
method to determine the resistance in vitro to amphotericin B, voriconazole and posaconazole.
For echinocandins, insufficient comparative data are available. Other commercially available
alternatives have been developed, often employing a microdilution format and spectrophotometric or
colorimetric reading [58]. These methods include Sensititre YeastOne® (bioMerieux S.A., Marcy-l’Étoile,
France) as well as panels for disk diffusion. Most of these tests have not been validated for antifungal
susceptibility testing of Fusarium.

8. When Should AFST Be Done for Fusarium?

According to the different clinical experiences, susceptibility testing of Fusarium should be done
to optimize the therapy of the individual patient or for epidemiological purposes. It is recommended
to perform the MIC if the fungus has been isolated from sterile biological sites, in case of deep infection
in patients undergoing antifungal therapy, in the event of therapeutic failure, when the isolated species
is rare and/or emerging or in case of a particular species for which there is the suspicion that it may be
resistant or less sensitive to the employed antifungal [9].

9. Protocol

Each laboratory needs to perform a risk assessment in collaboration with their Institutional
Biological Safety Officer to determine the appropriate biosafety level for preparation of the inoculum
and for pipetting of the inoculum into the plate. For Fusarium, biosafety level-2 laboratory (BSL-2)
practice is required. Inoculum and microdilution plates are placed inside a plastic bag during the
incubation at 35 ◦C. There are relatively few drugs to treat fusariosis. Below the antifungal testing
procedure for Fusarium species against different antifungal drugs is described (Figure 1).
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9.1. Sample Preparation

Prior to AFST, and according to CLSI [23], Fusarium strains should be cultured on potato dextrose
agar for 48 to 72 h at 35 ◦C and then until day seven at 25 ◦C for slowly growing species. However,
Al-Hatmi et al. [59] indicated that incubation of Fusarium strains for 3–5 days at 27 ◦C is suitable
for AFST.

9.2. Labeling of Materials

Working on a laboratory bench, preparing for this procedure by start labeling culture plates,
Fusarium strains, preparing the dilution tubes, saline tween 20, Dimethyl sulfoxide (DMSO),
(Sigma-Aldrich-Poole, Doorset, UK), Roswell Park Memorial Institute medium (RPMI) 1640,
(Sigma-Aldrich-Poole), and a microtiter AST plate with the appropriate identifiers (e.g., patient name,
medical record number).

9.3. Laboratory Personnel Preparations

Appropriate personal protective equipment is necessary to work in the BSL-2. BSL-2 practices,
containment, equipment and facilities are recommended, especially the wearing of a laboratory coat,
safety glasses and disposable gloves; the gloves must be impervious to organic solvents.

9.4. Preparation of the Biological Safety Cabinet

Prepare the biological safety cabinet (BSC) by disinfecting the surface and placing a paper towel
soaked with disinfectant approximately 6 inches from the air vent panel. Preferably, waste container
should be placed on the left, and a small vortex on the right. Inoculating loops, cotton swabs, pipets
and tips are placed beside the paper towel. A rack with the test fungi (on solid medium) should be
placed on the paper towel.

9.5. Preparation of the Inoculum

Working in the BSL-2 cabinet, the cotton swabs are moistened with sterile saline with
0.005% Tween 20 and spores are harvested from the colonies on solid medium. Suspensions are
made in saline with 0.005% Tween 20 (approximate 0.5 Mc Farland; equivalent to 1–5 × 106 CFU/mL)
standard. After allowing heavy particles to settle for three to five minutes, the upper homogeneous
suspension is transferred to a sterile tube and vortexed for 15 s. The transmission is measured with a
spectrophotometer at 530 nm that ranges from 0.15–0.17 (65%–70%T). The 1:50 (CLSI) inoculum dilution
will be 2× (twofold) more concentrated than the density needed and 10× (EUCAST) approximately
0.4–5 × 104 (CLSI) and 2–5 × 106 (EUCAST).

9.6. Calibration of Spectrophotometer and Measuring Transmission

The transmission (T) option should be selected (“530 nm—100%T”) setting it as a blank using
saline Tween 20. Once the blank is set then the cuvette with the sample suspension is placed in the
cuvette holder with its smooth side to the front, and the lid is closed. The transmission of this particular
suspension is measured “530 nm and measured %T”, it should be between 65−70 for Fusarium species.

9.7. Inoculation

The procedure involves preparing two-fold dilutions of the antifungal drugs. This can be achieved
by dilution of antifungal in serial dilutions (e.g., 4, 8, 16, 32 and 64 µg/mL) in a liquid growth medium
(RPMI 1640) dispensed in tubes containing a minimum volume of 2 mL (macrodilution) or with smaller
volumes using 96-well micro-titration plates. Then, each well is inoculated with antifungals prepared
in the same medium after dilution of standardized microbial suspension adjusted to 0.5 McFarland
scale. Also the growth control wells are inoculated with 100 µL of sterile drug-free medium, and 100 µL
of the same inoculum suspension. Following 48 h incubation at 35 ◦C, the microdilution plates are
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examined for visible Fusarium growth. The lowest concentration of antifungal that prevented growth
represented the minimal inhibitory concentration (MIC).

9.8. Interpretation of Results

Microdilution plates can be read manually using a mirror as an aid or with an automated plate
reader such as the Vizion (TREK Diagnostic Systems, Cleveland, OH, USA). The plates can be examined
as soon as 24 to 48 h after inoculation. The growth control wells are also examined to determine if
they are positive (i.e., have a deposit of cells at the bottom of the well). If the growth control wells are
not positive, the plate should re-incubated and re-examined (e.g., 24, 48 and 72 h) or until the growth
control wells are positive.

The MIC of amphotericin B, voriconazole and the newer azoles is the well with the lowest
concentration with 100% inhibition of growth (compared to the growth control well). In the case of
echinocandins against Fusarium the minimal effective concentration (MEC) is determined. The MEC
is defined as the lowest concentration of drug that leads to the abnormal growth of the fungus
(small, rounded, and/or compact hyphal forms) in comparison to the control hyphal growth. ECVs
determined by Espinel-Ingroff et al. [28] using CLSI methodology for F. oxysporum and F. solani
species complexes and for F. verticillioides of the fujikuroi SC are as follows: for amphotericin B
4 µg/mL (F. verticillioides) and 8 µg/mL (F. oxysporum SC and F. solani SC); for posaconazole, 2 µg/mL
(F. verticillioides), 8 µg/mL (F. oxysporum SC), and 32 µg/mL (F. solani SC); for voriconazole, 4 µg/mL (F.
verticillioides), 16 µg/mL (F. oxysporum SC), and 32 µg/mL (F. solani SC); and for itraconazole, 32 µg/mL
(F. oxysporum SC and F. solani SC).

In general, there is a great variability in regard to their in vitro susceptibility to different
antifungal agents. In 2003, a study from USA and Canada using a percentage of strains <1 µg/mL
to indicate susceptibility showed 82% were susceptible to amphotericin B and 18% to voriconazole
and posaconazole and no strains were considered susceptible to itraconazole and caspofungin [60].
In 2005, 57 strains of Fusarium from Mexico had MIC90% >1 µg/mL for itraconazole, posaconazole
and voriconazole [61]. In a study in Spain with 44 isolates of Fusarium spp. showed that F. oxysporum,
F. solani and F. verticillioides were resistant to itraconazole, voriconazole and posaconazole with
MIC90% ≥8 µg/mL. Both F. solani and F. verticillioides had high MIC90% to amphotericin ≥4 µg/mL
whereas the MIC90% for F. oxysporum was 1 µg/mL indicating susceptibility to amphotericin B [62].
One year later, another Spanish study, reported very high MICs for F. oxysporum, F. proliferatum,
F. solani and F. verticillioides [10]. A study in the Netherlands in 2015 focused on fujikuroi complex and
used molecular methods to identify species and then compare the identification to their antifungal
patterns [11]. The species were as follows: 10 strains of F. verticillioides, 9 each of F. proliferatum and
F. sacchari, 7 each of F. acutatum, F. fujikuroi, F. napiforme and F. nygamai, 6 each of F. ananatum and
F. thapsinum, 5 of F. anthophilum, 4 of F. andiyazi, 3 of F. subglutinans and 1 of F. temperatum. Amphoterecin
B was the most active drug with MICs ranging between 0.125 and 8 µg/mL. For fluconazole,
itraconazole, and micafungin all strains showed high MIC/MEC values of ≥64, >16 and 8 µg/mL,
respectively. The Fusarium strains tested in this study had variable susceptibilities to Amphoterecin B,
voriconazole, posaconazole and isavuconazole, with MICs ranging between 0.125 and 8 µg/mL for
amphotericin B, 0.5 to 8 µg/mL for voriconazole (one strain tested had a MIC of 16 µg/mL); 0.25 to
≥16 µg/mL for posaconazole and 1 to ≥16 µg/mL for isavuconazole [11]. The authors concluded that
amphotericin B seemed to be the most active agent followed by voriconazole; however, they suggested
that proper identification of species within the complex should be done in order to provide correct
information for treatment especially F. thapsinum and F. nygamai because both species showed high
MICs to the most drugs tested. Another study from India looked at 60 Fusarium isolates mainly
from F. solani complex from keratitis cases and based on the observed MIC data in this study, authors
reported that amphoterecin B and voriconazole had ≤4 µg/mL and natamycin ≤4 µg/mL are potential
antifungal agents for the treatment of human keratomycosis caused by Fusarium [11]. Overall, Fusarium
showed high MICs against fluconazole, itraconazole and echinocandins.
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Since most strains have high MICs (intrinsic resistance) and since there is no breakpoints for
susceptibility in the CLSI and EUCAST, we cannot determine susceptible/resistant, but different
degrees of resistance at most can be determined in different strains. As the susceptibility profile is
isolate dependent, antifungal susceptibility testing should be performed especially for any Fusarium
involved in an invasive infection. Although susceptibility testing for Fusarium has lagged behind
that for others like Aspergillus and Candida, much progress has been made over the past decade.
Such knowledge should improve the clinician’s ability to select the best choice among the antifungal
agents available. Further work needs to be done to correlate in vitro findings with in vivo, either using
animal models or clinical outcomes. The collection of such data will allow for the establishment of
interpretive breakpoints, which have already been established for Aspergillus and Candida species with
some antifungal agents.

10. Conclusions

Prior to antifungal susceptibility testing, proper identification of the Fusarium strain is absolutely
compulsory. Susceptibility testing should be performed in particular infection categories: invasive
forms, infection in immunosuppressed individuals, upon therapeutic breakthrough infections, cases of
keratitis or if antifungal treatment clinically failed. Susceptibility testing should be performed only if
each analytical run includes the appropriate quality controls in accordance with the reference standards.

Conflicts of Interest: The authors declare no conflict of interest.
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