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Simple Summary: Colorectal cancer (CRC) is the most common gastrointestinal tract malignancy.
Previous reports have shown that cancerous phenotypes in the intestine are dependent on c-MYC
target gene expression. Unfortunately, finding c-MYC inhibitors has proven difficult because c-MYC
does not have a deep surface-binding pocket. Considering that c-MYC is maintained upregulated
through β-catenin-mediated transcriptional activation and ERK-mediated post-translational stabiliza-
tion, and since we have previously demonstrated that c-MYC transcriptional activation is affected
by p38α as a β-catenin chromatin-associated kinase, here, we investigated p38α’s involvement in
c-MYC protein stabilization in CRC. Interestingly, we found that p38α sustains c-MYC’s stability
by preventing its ubiquitination and proteasomal degradation. Moreover, we showed that p38α
inhibitors exhibit a synthetic lethality effect when used in combination with MEK inhibitors in CRC
cells. Our findings identify p38α as a promising therapeutic target that acts on the pharmacologically
“undruggable” c-MYC protein, with implications for countering c-MYC-mediated CRC proliferation,
metastasization, and chemoresistance.

Abstract: c-MYC is one of the most important factors involved in colorectal cancer (CRC) initiation
and progression; indeed, it is found to be upregulated in up to 80% of sporadic cases. During colorec-
tal carcinogenesis, c-MYC is maintained upregulated through β-catenin-mediated transcriptional
activation and ERK-mediated post-translational stabilization. Our data demonstrate that p38α, a
kinase involved in CRC metabolism and survival, contributes to c-Myc protein stability. Moreover,
we show that p38α, like ERK, stabilizes c-MYC protein levels by preventing its ubiquitination. Of
note, we found that p38α phosphorylates c-MYC and interacts with it both in vitro and in cellulo.
Extensive molecular analyses in the cellular and in vivo models revealed that the p38α kinase in-
hibitors, SB202190 and ralimetinib, affect c-MYC protein levels. Ralimetinib also exhibited a synthetic
lethality effect when used in combination with the MEK1 inhibitor trametinib. Overall, our findings
identify p38α as a promising therapeutic target, acting directly on c-MYC, with potential implications
for countering c-MYC-mediated CRC proliferation, metastatic dissemination, and chemoresistance.

Keywords: p38α; MAPKs; c-MYC; protein stabilization; kinase activity; CRC

1. Introduction

Colorectal cancer (CRC) is the most frequent malignant tumor affecting the gastroin-
testinal tract and the third most common cancer in both men and women [1,2]. Worldwide,
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about 2 million people each year will develop CRC (WORLD HEALTH ORGANIZATION
-2022- https://www.who.int/news-room/fact-sheets/detail/cancer; accessed on 10 June
2022), with a substantial variation in five-year relative survival rates, depending on the
disease’s stage at diagnosis. Eighty-five percent of sporadic CRCs progress through the
classical adenoma–carcinoma sequence, showing a lack of allelic balance at several chro-
mosomal loci, such as 5q (APC), 18q (DCC/SMAD4), and 17q (p53), and chromosomal
amplification and translocation, which together contribute to tumor aneuploidy and chro-
mosomal instability [3–5]. Activation of the Wnt pathway has been linked to CRC as a
result of the identification of abnormalities in chromosome 5q, which were recognized
as early events in the carcinogenic process for sporadic and hereditary tumors. The 5q
region harbors the APC gene, whose protein product is a key component of the β-catenin
destruction complex, together with GSK3β, axin, and CK1. During CRC carcinogenesis,
stabilized β-catenin exerts its oncogenic role by activating the transcription of several
regulatory genes, including c-MYC [6–8]. Surprisingly, in 2007, Sansom et al. found that,
after APC loss, nuclear β-catenin was insufficient to induce any phenotype in the absence
of c-MYC. Indeed, over half of the Wnt targets that showed significant induction after APC
loss were no longer upregulated in the absence of c-MYC [9,10]. These data indicate that
the phenotypes acquired after APC loss in the intestine greatly depend on c-MYC target
gene expression [9,10]. c-MYC plays a major role in the onset and progression of CRC,
where it is overexpressed in up to 80% of sporadic cases [10]. Two different mechanisms are
involved in c-MYC upregulation in CRC: transcriptional activation by β-catenin due to APC
inactivation, and post-translational stabilization due to serine 62 (S62) phosphorylation,
mediated by ERK, a KRAS downstream kinase [9,11]. Indeed, the stability of the c-MYC
protein is controlled by phosphorylation at two specific sites: S62 and threonine 58 (T58).
Phosphorylation at T58 but not at S62 makes c-MYC prone to subsequent proteasome degra-
dation [12]. The importance of ERK activation in intestinal tumorigenesis was highlighted
by Lee and colleagues by using the APCMin/+ murine model [13]. These mice developed
multiple intestinal neoplasias (Min) after spontaneously losing the heterozygous wild-type
APC allele in intestinal epithelial cells and consequently died by the time they reached
6 months of age [13,14]. The authors revealed that the activation of ERK in these cells is
essential for tumor growth via the stabilization of c-MYC protein [13]. The MEK/ERK
signaling pathway has been frequently found to be overactive in CRC due to activating
mutations in the upstream kinases, RAF (15%) and RAS (50%) [15,16]. This pathway is
activated by a variety of different stimuli, many of which promote cell proliferation and
inhibit pro-apoptotic responses [17]. ERK belongs to the MAPK family, which is composed
of six distinct groups in mammals: ERK1/2, ERK3/4, ERK5, ERK7/8, Jun N-terminal
kinases JNK1/2/3, and p38 MAPKs [18,19]. In mammals, p38 MAPKs are encoded by four
genes: MAPK14 (p38α), MAPK11 (p38β), MAPK12 (p38γ), and MAPK13 (p38δ) [20]. The
strict regulation of the life/death signals by p38 MAPKs can result in opposite molecular
functions during tumor growth. Currently, it is assumed that p38α has a tumor suppressor
role in normal cells at the onset of cellular transformation, while it acts as an oncogene
upon the acquisition of a malignant phenotype [11,21]. Our group recently showed that
MEK inhibition with the specific inhibitor PD98059 triggers p38α phospho-activation in
various CRC cell lines (HT29, HCT116, and Caco2 cells) with different genetic backgrounds.
We also found that the MEK/ERK pathway is significantly activated in CRC cells treated
with the p38α inhibitor SB202190, irrespective of the mutational status of the ERK upstream
activators, RAS and RAF. Indeed, an increased phospho-activation of both MEK and ERK
was observed in the SB202190-treated BRAF-mutant HT29 cells, KRAS-mutant HCT116
cells, and Caco2 cells, which are the wild-type for these two genes [21]. This effect was
confirmed by using a structurally and functionally different pan-p38 inhibitor, BIRB796,
and was also observed in vivo in HT29-xenografted nude mice and colon sections from
azoxymethane-treated APCMin/+ mice injected with SB202190. Importantly, these findings
showed the existence of a p38α/ERK crosstalk in CRC cells [21]. Recently, we also identified
p38α as a new druggable member of the β-catenin chromatin-associated kinase complexes
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in colorectal model systems. Indeed, we found that p38α pharmacological inhibition in-
duces the downregulation of several β-catenin target genes, including c-MYC, showing that
p38α is involved in several key functions of CRC cells, including proliferation, migration,
and chemoresistance [22]. Since dysregulated kinase signaling is implicated in colorec-
tal carcinogenesis, protein kinases represent an important class of drug targets in these
tumors [23]. In the search for more selective pharmaceutical compounds, new drug combi-
nations, and treatment schedules are being assessed to enhance CRC regression, increase
overall survival, and improve patients’ quality of life. These include trametinib, an orally
bioavailable inhibitor of MEK kinases with potential antineoplastic activity that entered
clinical trials for advanced or metastatic CRC (NCT03714958, NCT04303403, NCT01750918,
NCT02900664, NCT02230553, NCT03317119, NCT03377361, NCT04294160, NCT02538627,
NCT02703571, NCT05275374, NCT05358249, NCT04892017, https://www.clinicaltrials.gov;
accessed on 11 June 2022) [24,25], and ralimetinib, a p38α inhibitor that is also under clinical
investigation (NCT02860780, https://www.clinicaltrials.gov; accessed on 11 June 2022)
for advanced or metastatic CRC [26,27]. Unfortunately, finding small-molecule or biologic
inhibitors of c-MYC has proven difficult because c-MYC is localized within the nucleus and
does not have a deep surface-binding pocket. Thus, considering that c-MYC is regulated at
the transcriptional level by β-catenin and at the post-translational level by ERK, and since
we have previously demonstrated that c-MYC transcriptional activation is affected by p38α
as a β-catenin chromatin-associated kinase [22], here, we investigated the involvement of
p38α in c-MYC protein stabilization.

2. Materials and Methods
2.1. Cell Culture and Reagents

HCT116, HT29, and Caco2 cells were purchased from ATCC. The HCT116 and HT29
cells were maintained in DMEM (Gibco, Carlsbad, CA, USA) supplemented with 10%
fetal bovine serum (FBS) (Gibco, Carlsbad, CA, USA) and 1% antibiotics (Gibco, Carls-
bad, CA, USA). The Caco2 cells were maintained in DMEM supplemented with 20%
FBS and 1% antibiotics. Cells were routinely propagated under standard conditions in a
37 ◦C and 5% CO2 incubator. The p1 and p2 CRC-stem cells (CRC-SCs) were isolated from
CRC patients and propagated as tumorspheres. Briefly, human colon tissue fragments
were obtained in accordance with the ethical standards of the institutional committee on
human experimentation. The tumor samples were subjected to mechanical and enzymatic
dissociation using the tumor dissociation human kit (Miltenyi Biotec, Bergisch Gladbach,
Germany) according to the manufacturer’s instructions. For magnetic separation, cells were
labeled 24–48 h after dissociation with CD44 microbeads using the Miltenyi Biotec CD44
cell isolation kit. CRC-SC were maintained in DMEM/F12 Advanced (Gibco, Carlsbad, CA,
USA) supplemented with 6 mg/mL Glucose (Sigma-Aldrich, St. Louis, MO, USA), 2 mM
L-Glutamine (Gibco, Carlsbad, CA, USA), 10 ng/mL bFGF (Sigma-Aldrich, St. Louis, MO,
USA), 20 ng/mL EGF (Sigma-Aldrich, St. Louis, MO, USA), 50× B27 supplement (Gibco,
Carlsbad, CA, USA), and 100× N-2 supplement (Gibco, Carlsbad, CA, USA). All cell lines
were tested to be mycoplasma-free (Minerva Biolabs, Berlin, Germany). SB202190, PD98059,
PD0325901, 3-methyladenine, trypan blue, and bafilomycin were from Sigma-Aldrich
(St. Louis, MO, USA). Ralimetinib (LY22228820) was kindly provided by Eli Lilly and
Company (Indianapolis, IN, USA). Trametinib, cycloheximide, MG132, TWS119, and PiB
were from Calbiochem (Darmstadt, Germany).

2.2. Quantitative Real-Time PCR

RNA extraction and real-time PCR were performed as previously described [21].
Primer sequences are available on request.
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2.3. RNA Interference

For RNA interference, cells were transfected with 100 nM Select Silencer siRNAs
against p38α and MEK (both from Ambion by Life Technologies, Carlsbad, CA, USA) using
the Hiperfect Transfection reagent (Qiagen, Hilden, Germany). On-Target plus control
siRNAs (Thermo Fisher Scientific by Life Technologies, Carlsbad, CA, USA) were used as
control sequences. The siRNA sequences are available on request.

2.4. Proliferation Assays

Proliferation assays, measuring cell metabolic activity, were performed using the
WST-1 reagent (Roche, Mannheim Germany) according to the manufacturer’s instructions.
Briefly, the cells were seeded in 96-well plates at a density of 5000 cells/well in 100 µL of
DMEM containing 10% FBS one day before treatment. After 12 h, 24 h, 36 h, or 48 h of
exposure to ralimetinib (10 µM), SB202190 (10 µM), trametinib (1 nM), or DMSO (vehicle),
10 µL of the Cell Proliferation Reagent, WST-1, were added to each well and incubated at
37 ◦C in a humidified incubator for 1 h. The absorbance was measured on a SPECTROstar
Omega microplate reader (BMG Labtech, Offenburg, Germany) at 450–655 nm. Each assay
was performed in triplicate, and the experiment was repeated three times. The proliferation
index was calculated as the ratio of the WST-1 absorbance of the treated cells at the indicated
time points to the WST-1 absorbance of the same experimental group at 0 h.

2.5. Immunoblot Analysis

The cells were collected and homogenized in lysis buffer (50 mM Tris-HCl pH 7.4,
5 mM EDTA, 250 mM NaCl, and 0.1% Triton x-100) supplemented with protease and phos-
phatase inhibitors and quantified using the Pierce BCA Protein Assay Kit (Thermo Fisher
Scientific by Life Technologies, Carlsbad, CA, USA). An amount of 20–40 µg of protein
extracts from each sample were denatured in 5× Laemmli sample buffer and subjected
to 7.5% precast TGX Stain-Free polyacrylamide gel (Bio-Rad Laboratories, Munchen, Ger-
many) electrophoresis. Proteins were electrotransferred onto nitrocellulose membrane and
blocked with 1× Phosphate Buffered Saline (PBS) with 1% casein (Bio-Rad Laboratories,
Munchen, Germany) for 40 min at room temperature. The immunoblots were performed
using anti-β-actin, anti-c-MYC, anti-p38α MAPK, anti-MEK, anti-phospho-MAPKAPK-2
(Thr334) (p-MK2), anti-Ubiquitin, anti- β-catenin, anti-cyclin D1, anti-LC3, anti-cleaved
PARP, and anti-phospho-p44/42 MAPK (Thr202/Tyr204) (all from Cell Signaling, Danvers,
MA, USA). After incubation with the HRPO-conjugated secondary antibodies (GE Health-
care, Milwaukee, WI, USA), the signal was revealed using the ECL-plus chemiluminescence
reagent (GE Healthcare, Milwaukee, WI, USA) according to the manufacturer’s instructions.
Densitometric evaluations were carried out using the ImageJ and ImageLab software.

2.6. Co-Immunoprecipitation

Co-immunoprecipitation was carried out as previously described [21]. The primary
antibodies were anti-p38α and anti-c-MYC (both from Cell Signaling, Danvers, MA, USA).
IgG was used as a negative control.

2.7. In Vitro Pull-Down Assay

GST-p38α and HIS-β-catenin fusion proteins were generated as previously described [21].
The GST-p38α human recombinant protein was incubated with c-MYC human recombinant
protein (Abcam, Cambridge, MA, USA). The HIS-β-catenin fusion protein was used as
a positive control [21]. Proteins were incubated for 1 h at 4 ◦C on a rocking platform for
in vitro binding. The fusion proteins were precipitated with Pierce Glutathione Magnetic
Agarose Beads (Thermo Fisher Scientific by Life Technologies, Carlsbad, CA, USA) accord-
ing to the manufacturer’s instructions and then washed extensively in buffer A (20 mM
Tris-HCl pH 8, 150 mM KCl, 5 mM MgCl2, 0.2 mM EDTA, 10% glycerol, 0.1% NP-40) con-
taining fresh inhibitors and 1 mM DTT. Afterward, the precipitates were resolved on 10%
SDS-PAGE and analyzed by immunoblot. The primary antibodies were anti-polyHistidine
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(Sigma-Aldrich, St. Louis, MO, USA), anti-GST (Cell Signaling, Danvers, MA, USA), and
anti-c-MYC (Cell Signaling, Danvers, MA, USA). Rabbit IgG HRP and Mouse IgG HRP (GE
Healthcare, Milwaukee, WI, USA) were used as secondary antibodies and revealed using
the ECL-plus chemiluminescence reagent (GE Healthcare, Milwaukee, WI, USA).

2.8. Immunohistochemistry

Tissue specimens were formalin-fixed in 4% buffered formalin, embedded in paraf-
fin, and sectioned at 4 µm thicknesses. The sections were de-waxed and rehydrated in
dH2O. Endogenous peroxidase activity was blocked by incubation in 3% hydrogen per-
oxide for 10 min. Then, the sections were mounted on Apex Bond IHC Slides (Leica
Biosystems, Nussloch, Germany) and used for immunohistochemical analysis. Immunohis-
tochemical staining procedures were carried out on a BOND III automated immunostainer
(Leica Biosystems, Nussloch, Germany), from deparaffinization to counterstaining with
hematoxylin, using the Bond Polymer Refine Detection Kit (Leica Biosystems, Nussloch,
Germany). For c-MYC detection, a rabbit monoclonal antibody (clone D84C12; Cell Signal-
ing, Danvers, MA, USA) was diluted at 1:100 and incubated for 30 min at room temperature.
Antigen retrieval was performed using the BOND Epitope Retrieval Solution 2, a ready-
to-use EDTA-based pH 9 reagent (Leica Biosystems, Nussloch, Germany). Images were
acquired using a Nikon Eclipse Ti2 microscope. Ten fields with an equal area were se-
lected for analysis at 40× magnification. Protein expression was assessed with the ImageJ
software and reported as a positivity percentage.

2.9. In Vitro Kinase Assay

An analysis of p38α kinase activity was performed using the ADP-Glo Kinase Assay
(Promega, Madison, WI, USA) according to the manufacturer’s instructions. The p38α
active protein (10 ng, Promega, Madison, WI, USA) was assayed in a kinase reaction
buffer with 500 ng c-MYC human recombinant protein (Abcam, Cambridge, MA, USA),
150 µM ATP, and varying concentrations (0.01, 0.1, and 1 µM) of ralimetinib (LY22228820).
A total of 500 ng of p38 peptide substrate was used as a control. The generated lumi-
nescence was measured using a SPECTROstar Omega microplate reader (BMG Labtech,
Offenburg, Germany).

2.10. In Vivo Studies

For the xenograft experiments, 10 × 106 HT29 cells were injected subcutaneously into
the flank (0.2 mL per flank, serum-free DMEM culture medium) of female athymic nude
mice (Jackson Laboratory, Bar Harbor, ME, USA). The tumor volume was measured every
2–3 days using the following formula: volume (mm3) = (width)2 × length × 0.5. When
the tumor volume reached 100 mm3, mice were randomized into four treatment groups.
Mice were treated daily for 10 days with 0.05 µmol/kg of SB202190 by intraperitoneal
injection (n = 8), 3 mg/kg of oral PD0325901 (n = 10), a combination of both (n = 10), or the
vehicle (DMSO) alone (n = 8). After 10 days, the treatment was discontinued, animals were
sacrificed, and tumors were explanted. For chemical-induced colitis-associated carcinogen-
esis, 20 C57BL/6 mice were injected intraperitoneally with 12 mg/kg of azoxymethane
(AOM). Then, 2% dextran sulfate sodium (DSS) was given in their drinking water over
five days, followed by two weeks of regular water. This cycle was repeated three times.
Ten days after the last round of DSS, 10 animals were treated concomitantly with SB202190
and PD0325901 and 10 with the vehicle alone, as described above. All tissues were fixed
overnight in 10% formalin and embedded in paraffin. The procedures involving animals
were conducted in conformity with the institutional guidelines that comply with national
and international laws and policies.
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2.11. Cell Viability Assay

The cells were cultured in 60 mm dishes in the presence or absence of the indicated
drugs. After 48 h, media were discarded, and the cells were washed twice with 1× PBS. An
amount of 2 mL of Coomassie brilliant blue (Bio-Rad Laboratories, Munchen, Germany)
was added to each dish for 5 min, and then the cells were washed with ethanol 70% to
remove the excess Coomassie. The plates were dried at room temperature.

2.12. Ki67 Staining

The cells that were cultured in the presence or absence of the indicated drugs were
analyzed to determine the percentage of the proliferating cells based on Ki67 expression
using the Muse Ki67 Proliferation Kit (Luminex, Austin, TX, USA) according to the manu-
facturer’s instructions.

2.13. Annexin V Staining

A total of 2 × 104 cells/plate, cultured in the presence or absence of the indicated
drugs, were stained with the Muse Annexin V and Dead Cell Reagent (Luminex, Austin,
TX, USA) according to the manufacturer’s instructions.

2.14. In Silico Prediction Analysis

In silico phosphorylation prediction analysis was performed using the iPTMnet (https:
//research.bioinformatics.udel.edu/iptmnet accessed on 14 April 2022), NETPHOS 3.1
(https://services.healthtech.dtu.dk/service.php?NetPhos-3.1; threshold ≥ 3, accessed on
14 April 2022), Phosphosite Plus (https://www.phosphosite.org/homeAction, only HTP
data, accessed on 14 April 2022), and KynasePhos 2.0 (http://kinasephos2.mbc.nctu.edu.
tw/, accessed on 13 December 2020) servers.

2.15. Mass Spectrometry Analysis

The mass spectrometry analysis was performed by the Cogentech SRL service (Co-
gentech SRL, Institute of Molecular Oncology (IFOM)). The gel bands were subjected to
reduction with DTT, alkylation with IAA, and digestion with Asp-N; the peptides were then
loaded onto TiO2 resin for phospho-enrichment. Then, the flow-through was treated with
StageTip C18 (for desalting), samples were enriched for phospho-peptides, and the desalted
flow-through was further purified with SP3 and then analyzed by nLC-ESI-MS/MS on a Q
Exactive HF mass spectrometer (Thermo Fisher Scientific) with a 32 min gradient. Samples
were run in technical duplicate, in a positive mode with electrospray ionization. Data acquisi-
tion and processing were performed with Analyst TF (version 1.7.1, AB SCIEX). For the mi-
croflow analysis, the following parameters were used: CUR 30 psi, GAS1 30 psi, GAS2 30 psi,
source temperature 200 ◦C, capillary voltage 5500 V. Spectra were acquired by a full-mass
scan from 200–1800 m/z and an information-dependent acquisition (IDA) from 100–1800 m/z
(top 10 spectra per cycle). Data were analyzed using the Proteome Discoverer, Mascot,
and Scaffold setting software. The parameter settings of data processing were as follows:
DataBase = Uniprot_CP_Human_2020_c-MYC (Database of Uniprot_cp_Human + sequence
of c-MYC Abcam ab169901 Human with Accession Number P169901); Enzyme = Asp-N
(cuts at the N-term of D and also on E); Modifications = Acetyl (Protein N-term), Car-
bamidomethyl (C), Oxidation (M), Phosphorylation (STY); Peptide Thresholds: 95.0%
minimum; Protein Thresholds: 99.0% minimum; 2 peptides/protein minimum.

2.16. Dataset Analysis

The association of the p38α and c-MYC protein levels (Reverse-Phase Protein Array,
RPPA data) with CRC aggressiveness was analyzed based on the protein expression data
(Z-scores) of 581 patients obtained from The Cancer Genome Atlas (TCGA) PanCancer
Atlas through the cBioPortal website (https://www.cbioportal.org/; accessed on 2 May
2022 [28,29]). The patients were stratified based on the p38α and c-MYC protein expression
data Z-scores into four groups with high (>median, n = −0.03) or low (≤median, n = −0.03)

https://research.bioinformatics.udel.edu/iptmnet
https://research.bioinformatics.udel.edu/iptmnet
https://services.healthtech.dtu.dk/service.php?NetPhos-3.1
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p38α protein expression and high (>median, n = −0.12) or low (≤median, n = −0.12)
c-MYC protein expression. The progression-free survival (PFS) and disease-free survival
(DSF) curves of the CRC patients with high p38α and high or low c-MYC protein expression
levels were assessed according to the Kaplan–Meier method based on the cBioPortal online
instructions. A log-rank test was performed to determine the significance of the differences
between the DSF and PFS curves in the CRC patients with high (n = 77/232) and low
(n = 154/232) c-MYC protein expression levels, with a p-value < 0.05 indicating a statistically
significant difference.

2.17. Quantification and Statistical Analysis

The statistical significance of the results was analyzed using the Student’s t-test, and a
p-value < 0.05 was considered statistically significant. The results represent at least three
independent experiments.

3. Results
3.1. Chemical Inhibition or Genetic Ablation of the MAPKs p38α and ERK Decreases c-MYC
Protein Levels

The existence of a p38α/ERK crosstalk and the identification of the ERK-mediated
c-MYC protein stabilization mechanisms prompted us to investigate the potential role
of p38α in c-MYC regulation [21,30]. To this end, we analyzed the c-MYC protein levels
upon treatment with classical p38α and MEK chemical inhibitors (SB202190 and PD98059,
respectively) in the CRC cell lines (HT29, HCT116, and Caco2 cells) carrying different
genetic backgrounds and that were representative of the chromosomal instability (CIN)
and microsatellite instability (MIN) CRC phenotypes, as indicated in Figure 1a (left panel).
Our results showed that p38α inhibition induces a decrease in the c-MYC protein levels
regardless of the genetic background (Figure 1a, right panel, Supplementary Figure S1a).
In the HT29 CRC cells, we also detected a time-dependent reduction in c-MYC protein
amounts after MEK inhibition (Figure 1b, Supplementary Figure S1b). Moreover, the
combined inhibition of p38α and MEK reduced the c-MYC protein levels to a greater
extent compared to every single treatment alone; this effect was already detectable after
24 h (Figure 1c). In order to exclude the potential off-target effects of p38α inhibition by
SB202190, we ablated p38α expression with a specific siRNA in the HCT116 cells. Our
results were in agreement with the data obtained with SB202190. Indeed, p38α genetic
ablation resulted in a 50% reduction of c-MYC protein levels. Moreover, c-MYC protein
almost disappeared upon the co-silencing of p38α and MEK with specific siRNAs for 48 h
(Figure 1d, left panel). The silencing efficiency of these siRNAs is also shown in Figure 1d
(right panel).

3.2. Characterization of the Mechanism of Action of p38α on c-MYC

Since protein half-life is an important factor in protein homeostasis, and c-MYC
mRNA and protein are both inherently unstable, with a half-life of about 30 min [31,32],
we investigated c-MYC regulation in a short-term experiment. We treated HT29 cells with
SB202190 and/or PD98059 for 30 min and found that at this short time point, p38α and
ERK do not regulate c-MYC transcription but affect its protein levels. Indeed, we could not
detect any changes in c-MYC mRNA expression after either single or combined inhibition
(Figure 2a, left panel); instead, we observed a significant decrease in the c-MYC protein
levels after inhibition of the p38α or the MEK pathway, and an even greater effect after a
combined inhibition of both cascades (Figure 2a, right panel).
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Figure 1. Effects of p38α/ERK crosstalk on c-MYC expression in CRC cells. (a) Left panel: Classifi-
cation of the CRC cell lines used in this study by their microsatellite instability (MIN) and chro-
mosome instability (CIN) phenotypes and the mutational status of critical cancer genes. Right 
panel: Immunoblotting showing c-MYC protein levels in HT29, HCT116, and Caco2 cells treated 
with SB202190 (10 µM) for up to 72 h. (b) Immunoblotting showing c-MYC protein levels in HT29 
cells treated with PD98059 (20 µM) for up to 72 h. (c) Immunoblotting showing c-MYC protein 
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Figure 1. Effects of p38α/ERK crosstalk on c-MYC expression in CRC cells. (a) Left panel: Classifica-
tion of the CRC cell lines used in this study by their microsatellite instability (MIN) and chromosome
instability (CIN) phenotypes and the mutational status of critical cancer genes. Right panel: Im-
munoblotting showing c-MYC protein levels in HT29, HCT116, and Caco2 cells treated with SB202190
(10 µM) for up to 72 h. (b) Immunoblotting showing c-MYC protein levels in HT29 cells treated
with PD98059 (20 µM) for up to 72 h. (c) Immunoblotting showing c-MYC protein levels in HT29
cells treated with SB202190 (10 µM) and/or PD98059 (20 µM) for 24 h. (d) Left panel: Densitometric
analysis of c-MYC protein levels detected by immunoblotting in HCT116 cells transfected with p38α-
specific and/or MEK-specific siRNAs. Right panel: Densitometric analysis of p38α and MEK protein
levels detected by immunoblotting to show silencing efficiency in HCT116 cells transfected with
p38α-specific or MEK-specific siRNAs, respectively. (a–d) β-actin was used for normalization; MEK1
activation (p-MEK1) and p38 activity (p-MK2) were analyzed to check treatment efficacy. (d) Statistical
analysis was performed using Student’s t-test; * p < 0.05 vs. cells treated with control siRNAs, # p < 0.05:
vs. single silenced cells. The presented results are representative of at least three independent
experiments. Detailed information about Western Blot can be found at supplementary materials.
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lotting showing c-MYC protein levels in HT29 cells treated for 8 h with different inhibitors, i.e., the 
GSK3β inhibitor TWS119 (5 µM), the PIN1 inhibitor PiB (1 µM), the autophagic inhibitors 
3-methyladenine (10 µM) and bafilomycin (5 nM), in combination or not with SB202190 (10 µM). 
(d) Immunoblotting showing ubiquitin and c-MYC protein levels in HT29 cells treated for 5 h with 
SB202190 (10 µM), with or without the proteasome inhibitor MG132 (20 µM), whose action is 
schematically represented on the left, for 1 h. CHX: cycloheximide, 3MA: 3-methyladenine, Baf-A1: 
bafilomycin. β-actin was used as a loading control. The presented results are representative of at 
least three independent experiments. Detailed information about Western Blot can be found at 
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For this purpose, we performed dose- and time-response experiments to analyze the 
effect of ralimetinib in CRC cells (HT29 and HCT116) compared to the SB202190 treat-
ment. The HT29 and HCT116 cells were treated with increasing doses of ralimetinib 
(from 1 µM to 10 µM) [7]. The immunoblot analysis showed that 24 h treatment with 10 
µM ralimetinib effectively inhibits p38α activity in both cell lines, as estimated by im-
pairment of MK2 phosphorylation at threonine 334 (Figure 3a). We previously demon-
strated that SB202190-mediated p38α inhibition reduces the viability of CRC cells by 
inducing cell death [21]. To assess whether ralimetinib promotes a comparable cell death 
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Figure 2. p38α stabilizes c-MYC protein. (a) Left panel: RT-PCR analysis of c-MYC mRNA levels
in HT29 cells treated with SB202190 (10 µM) and/or PD98059 (20 µM) for 30 min. Right panel:
Immunoblotting showing c-MYC protein levels in HT29 cells treated with SB202190 (10 µM) and/or
PD98059 (20 µM) for 30 min. (b) Immunoblotting showing c-MYC protein levels in HT29 cells
treated with the protein biosynthesis inhibitor cycloheximide (0.2 mM), whose action is schematically
represented on the left, and SB202190 (10 µM) or PD98059 (20 µM) for 0 to 4 h. (c) Immunoblotting
showing c-MYC protein levels in HT29 cells treated for 8 h with different inhibitors, i.e., the GSK3β
inhibitor TWS119 (5 µM), the PIN1 inhibitor PiB (1 µM), the autophagic inhibitors 3-methyladenine
(10 µM) and bafilomycin (5 nM), in combination or not with SB202190 (10 µM). (d) Immunoblotting
showing ubiquitin and c-MYC protein levels in HT29 cells treated for 5 h with SB202190 (10 µM),
with or without the proteasome inhibitor MG132 (20 µM), whose action is schematically represented
on the left, for 1 h. CHX: cycloheximide, 3MA: 3-methyladenine, Baf-A1: bafilomycin. β-actin was
used as a loading control. The presented results are representative of at least three independent
experiments. Detailed information about Western Blot can be found at supplementary materials.

Having control of protein abundance involves the regulation of both macromolecular
synthesis (transcription and translation) and degradation (RNA decay and proteolysis) [33–35].
An analysis of the proteins at a single time point provides a snapshot of steady-state protein
levels without revealing the relative contributions of synthesis and degradation. However,
the contribution of each step from synthesis to degradation can be inferred by comparing
the abundance before and after inhibiting specific components of the process [36]. In order
to investigate whether p38α and ERK affect c-MYC translation, we used cycloheximide
(CHX) at a final concentration of 0.2 mM and collected cells after 0 to 4 h. Cell lysates
were then subjected to immunoblotting with an anti-c-MYC antibody and normalized to
β-actin, a commonly used control in CHX chase assays. This experiment showed that
p38α and ERK do not affect the c-MYC protein translational process because decreases in
protein abundance following the addition of CHX can be confidently attributed to protein
degradation (Figure 2b).
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As mentioned above, c-MYC stability is regulated at the post-translational level by
phosphorylation at two conserved residues, S62 and T58 [12,37,38]. The ratio of T58 and S62
phosphorylation controls the c-MYC ubiquitination and turnover in cells. In response to the
growth signals, ERK phosphorylates c-MYC on S62, increasing its stability and oncogenic
activity. When the growth signals cease, S62-phosphorylated c-MYC can interact with
GSK3β, which phosphorylates c-MYC at T58 [12,37,39]. Doubly phosphorylated c-MYC is
then recognized by the PIN1 isomerase, which catalyzes the isomerization of the S62-proline
63 bond from a cis conformation to a trans conformation [38]. This isomerization allows
PP2A to de-phosphorylate c-MYC at S62. Phosphorylation at T58 but not at S62 makes
c-MYC prone to subsequent recruitment of ubiquitin ligase E3 and promotes initiation of
its proteasome-dependent degradation [12,37–39].

Based on these post-translational regulation mechanisms, we treated HT29 cells with
the GSK3β inhibitor, TWS119, or the PIN1 inhibitor, PiB, in combination with SB202190.
The results obtained from this analysis showed that the c-MYC degradation induced by
p38α inhibition is independent of PP2A and GSK3β (Figure 2c and Figure S2). Previous
work from our group showed that p38α genetic depletion, or the pharmacological blockade
of its kinase activity, induces autophagy—a process that can be involved in protein degra-
dation [30]. To investigate whether c-MYC degradation after p38α inhibition is regulated
by autophagy-associated mechanisms, we evaluated the c-MYC levels following inhibition
of the cytoplasmic degradation process by treating HT29 cells with 3-methyladenine and
bafilomycin (two autophagy inhibitors), in addition to the p38α inhibitor SB202190. No
significant changes were observed in the c-MYC levels compared to the inhibition of p38α
alone, suggesting that c-MYC degradation after p38α inhibition occurs through a different
mechanism (Figures 2c and S2).

It is well known that the deregulation of the ubiquitin-proteasome pathway is critical
for c-MYC protein accumulation in cancers where no c-MYC amplification is observed [40].
Hence, to elucidate the mechanism underlying c-MYC destabilization induced by p38α
inhibition, we blocked its proteasome-dependent degradation using the proteasome in-
hibitor MG132. Interestingly, MG132 could rescue SB202190-mediated c-MYC protein
destabilization (Figure 2d). Taken together, these data suggest that p38α may stabilize
c-MYC protein by preventing its ubiquitination.

3.3. Pharmacological Targeting of p38α and ERK as a Synthetic Lethality Approach

In order to assess the translational implications of our findings, we confirmed whether
our data could be replicated with ralimetinib and trametinib, which are currently be-
ing investigated in several clinical trials for inflammatory diseases and cancer [27,41,42].
Importantly, various clinical trials are being conducted on CRC patients.

For this purpose, we performed dose- and time-response experiments to analyze the
effect of ralimetinib in CRC cells (HT29 and HCT116) compared to the SB202190 treatment.
The HT29 and HCT116 cells were treated with increasing doses of ralimetinib (from 1 µM
to 10 µM) [7]. The immunoblot analysis showed that 24 h treatment with 10 µM ralimetinib
effectively inhibits p38α activity in both cell lines, as estimated by impairment of MK2
phosphorylation at threonine 334 (Figure 3a). We previously demonstrated that SB202190-
mediated p38α inhibition reduces the viability of CRC cells by inducing cell death [21]. To
assess whether ralimetinib promotes a comparable cell death response, the trypan blue
staining scores were analyzed in the HT29 and HCT116 cells at various time points after
treatment with SB202190 or increasing concentrations of ralimetinib. Our results confirmed
that inhibition of p38α with increasing doses of ralimetinib induced a significant rise in
cell death in both the HT29 and HCT116 cells. Furthermore, the cell death rate showed a
nearly 20% increase after a 36 h treatment with 10 µM of ralimetinib compared to SB202190
(Figure 3b). Next, we performed cell viability and WST-1 assays in order to assess the
cytotoxicity and cell growth. Our results showed that ralimetinib modulates cancer cell
survival and proliferation in both CRC cell lines (Figure 3c,d, respectively).
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Next, we quantified the cell death responses in the HT29 and HCT116 cells treated 
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Figure 3. Treatment of CRC cells with ralimetinib or SB202190 decreases viability while increasing
cell death. (a) Immunoblotting showing phosphorylated MK2 protein levels in HT29 and HCT116
cells treated with SB202190 (10 µM) or ralimetinib (1–10 µM) for 24 h. β-actin was used as a loading
control. (b) Quantification of cell death by trypan blue staining in HT29 and HCT116 cells treated
with SB202190 (10 µM) or ralimetinib (1–10 µM) for up to 36 h. (c) Cell viability assay on HT29 and
HCT116 cells treated with ralimetinib (1–10 µM) or SB202190 (10 µM) for 36 h. (d) Proliferative index
of HT29 and HCT116 cells treated with ralimetinib (10 µM) or SB202190 (10 µM) for up to 36 h, as
determined by WST-1 assay. (b,d) Statistical analysis was performed using Student’s t-test; * p < 0.05
vs. untreated cells (b) or DMSO-treated cells (d). DMSO: dimethyl sulfoxide. The presented results
are representative of at least three independent experiments. Detailed information about Western
Blot can be found at supplementary materials.

After testing ralimetinib’s effectiveness in our cellular model, we evaluated whether it
affects c-MYC stability in the HT29 and HCT116 cells. Both cell lines showed a decrease in
c-MYC protein levels after 24 h treatment with ralimetinib, similar to the reduction induced
by SB202190 (Figure 4a).

Then, we used ralimetinib in association with PD98059. Our results revealed a decrease
in c-MYC protein amounts upon a combined inhibition of p38α and MEK in the HT29 and
HCT116 cells at different time points (Figure 4b). These results were further confirmed
when the MEK/ERK pathway was inhibited by using trametinib, a biological drug currently
used for targeted therapy [42] (Figure 4c and S1b).

Next, we quantified the cell death responses in the HT29 and HCT116 cells treated for
48 h with ralimetinib and trametinib either alone or in combination. Analyses of trypan
blue staining scores showed that the cell death rate increased nearly 40% upon treatment
with ralimetinib, about 30% upon treatment with trametinib, and over 60% upon combined
treatment (Figure 4d). Moreover, we performed WST-1 and cell viability assays in order to
assess cell growth and cytotoxicity. Our results confirmed that ralimetinib and trametinib
induce a decrease in cancer cell proliferation and survival (Figure 4e,f, respectively). We
also investigated the biological impact of a co-treatment with ralimetinib and trametinib
on CRC cell lines by analyzing Ki67 expression and annexin V staining by flow cytometry.
Our results indicate that the combined inhibition of p38α and MEK promoted a greater
decrease in Ki67-positive cells compared to each single treatment (Figures 4g and S3a), and
this effect was associated with the induction of apoptosis, while no necrosis was observed
(Figures 4h and S3b). In these experiments, treatments with SB202190 and/or PD98059,
which we characterized in a previous report [21,22], were used as a control for the impact
of p38α and/or MEK inhibition on CRC cells (Figures 4g,h and S3a,b).
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Figure 4. Pharmacological inhibition of p38α and MEK as a synthetic lethality approach. (a) Im-
munoblotting showing c-MYC protein levels in HT29 and HCT116 cells treated for 24 h with SB202190
(10 µM) or ralimetinib (10 µM). (b) Immunoblotting showing c-MYC protein levels in HT29 and
HCT116 cells treated for up to 48 h with ralimetinib (10 µM) and/or PD98059 (20 µM). (c) Im-
munoblotting showing c-MYC protein levels in HT29 and HCT116 cells treated for up to 48 h with
ralimetinib (10 µM) and/or trametinib (1 nM). (d) Quantification of cell death by trypan blue staining
in HT29 and HCT116 cells treated with ralimetinib (10 µM) and/or trametinib (1 nM) for 48 h.
(e) Proliferative index of HT29 and HCT116 cells treated with ralimetinib (10 µM) and/or trametinib
(1 nM) for 48 h, as determined by WST-1 assay. (f) Cell viability assay on HT29 and HCT116 cells
treated with ralimetinib (10 µM) and/or trametinib (1 nM) for 48 h. (g) Graphs summarizing the
percentage of Ki67-positive cells, as determined by flow cytometry analysis, in HT29 and HCT116
cells treated with SB202190 (10 µM) and/or PD98059 (20 µM) or with ralimetinib (10 µM) and/or
trametinib (1 nM) for 48 h. (h) Graphs summarizing the percentage of apoptotic cells (early + late),
as determined by flow cytometry analysis of annexin V staining, in HT29 and HCT116 cells treated
as in g. (i) RT-PCR analysis of the mRNA levels of the c-MYC target genes p21, Cyclin E, Cyclin
A, and cdc25 in HT29 cells treated with ralimetinib (10 µM) and/or trametinib (1 nM) for 24 h.
(j) Immunoblotting showing c-MYC and cleaved PARP protein levels in two lines of patient-derived
CRC-SCs grown as tumorspheres (#9 and #40) treated with ralimetinib (10 µM) and/or trametinib
(1 nM) for 48 h. (a–c,j) β-actin was used for normalization. (d,e,g,h,i) Statistical analysis was per-
formed using Student’s t-test; * p < 0.05: vs. untreated cells, # p < 0.05: vs. corresponding single
treatment; cl.PARP: cleaved PARP; p1: patient 1-derived CRC-SC; p2: patient 2-derived CRC-SC. The
presented results are representative of at least three independent experiments. Detailed information
about Western Blot can be found at supplementary materials.
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Furthermore, given the major role of c-MYC as a transcription factor in CRC initiation
and progression [10], we evaluated the expression of c-MYC target genes by real-time PCR
upon p38α and MEK inhibition in HT29 cells. c-MYC inhibits the expression of p21 and
activates the transcription of Cyclin E, Cyclin A, and cdc25, which are all involved in cell-
cycle progression [43–45]. Treatments with ralimetinib and/or trametinib for 24 h increased
the expression of p21 and reduced the levels of Cyclin E, Cyclin A, and cdc25 (Figure 4i).
In order to improve the translational impact of our results, we evaluated the potential
of the combined treatment with ralimetinib and trametinib in a CRC-stem cell (CRC-SC)
tumorsphere model. Two lines of patient-derived CRC-SCs, grown as tumorspheres, were
treated with ralimetinib and/or trametinib and subjected to immunoblot analysis. Our
results revealed a decrease in c-MYC protein levels upon inhibition of p38α or MEK. This
effect was even greater upon the combined inhibition of both kinases. Moreover, we
detected the activation of the apoptotic pathway in CRC-SC tumorspheres treated with
ralimetinib and/or trametinib, as shown by immunoblotting for cleaved PARP (Figure 4j).
Again, a combined treatment with both inhibitors exhibited a higher pro-apoptotic activity
compared to each single treatment alone (Figure 4j).

3.4. p38α Interacts with and Phosphorylates c-MYC

In order to better characterize the mechanism of action of p38α on c-MYC, we per-
formed an in vitro binding assay between full-length GST-tagged p38α recombinant protein
and full-length c-MYC recombinant protein, using HIS-tagged β-catenin as a positive con-
trol [22]. Our results showed that p38α directly interacts with c-MYC in vitro (Figure 5a).
Then, we evaluated whether endogenous p38α interacts with c-MYC. Immunoprecipitation
of whole-cell lysates with an antiserum against p38α or c-MYC, followed by immunoblot-
ting, revealed that p38α is a molecular partner of c-MYC in HT29 CRC cells (Figure 5b).

Since c-MYC protein stability is regulated by well-known phosphorylation signals in
the N-terminal region [11,46,47], we searched for c-MYC residues that could be directly
phosphorylated by p38α. To this end, we performed an in vitro kinase assay using purified
proteins. Our results showed that active p38α could efficiently phosphorylate c-MYC,
while inhibition of p38α activity by different concentrations of ralimetinib (0.01, 0.1, and
1 µM) significantly reduced c-MYC phosphorylation in vitro (Figure 5c).

Since 85% of the p38α-mediated phosphorylation sites described so far are Ser-Pro or
Thr-Pro motifs [48], we performed an in silico phosphorylation prediction analysis using
iPTMnet (https://research.bioinformatics.udel.edu/iptmnet; accessed on 14 April 2022),
NETPHOS 3.1 (https://services.healthtech.dtu.dk/service.php?NetPhos-3.1; threshold ≥ 3,
accessed on 14 April 2022), Phosphosite Plus (https://www.phosphosite.org/homeAction,
only HTP data, accessed on 14 April 2022), and KynasePhos 2.0 (http://kinasephos2
.mbc.nctu.edu.tw/, accessed on 13 December 2020). We identified two putative MYC
phosphosites (S64 and S67) that were recognized by all four prediction servers (Figure 5d).
To confirm the hypothesis that S64 and S67 are targeted by p38α, we performed a mass
spectrometry (MS) analysis of c-MYC protein after phosphorylation by p38α in vitro. The
E54LLPTPPLSPSRRSGLCSPSYVAVTPFSLRG84 peptide, obtained by proteolytic digestion
with endoproteinase Asp-N, showed a mass increase of 80 Da, which corresponds to the
weight of an additional phosphate at S64 or S67 (Figure 5e).

https://research.bioinformatics.udel.edu/iptmnet
https://services.healthtech.dtu.dk/service.php?NetPhos-3.1
https://www.phosphosite.org/homeAction
http://kinasephos2.mbc.nctu.edu.tw/
http://kinasephos2.mbc.nctu.edu.tw/
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Figure 5. p38α interacts with and phosphorylates c-MYC. (a) In vitro binding assay between
GST-p38α fusion protein and c-MYC recombinant protein. Bound proteins were analyzed by im-
munoblotting using anti-GST, anti-HIS, and anti-c-MYC antibodies. HIS-β-catenin was used as
a positive control. (b) Co-immunoprecipitation of endogenous p38α and c-MYC in HT29 cells.
(c) In vitro kinase assay showing c-MYC phosphorylation by p38α in the absence or presence of
ralimetinib at the indicated concentrations. Statistical analysis was performed using Student’s t-test,
* p < 0.05 vs. active p38α; ∆ p < 0.05 vs. active p38α + c-MYC. (d) In silico phosphorylation prediction
meta-analysis. Four in silico prediction servers were used to identify MYC consensus phospho-
rylation sites: iPTMnet (https://research.bioinformatics.udel.edu/iptmnet; accessed on 14 April
2022), NETPHOS 3.1 (https://services.healthtech.dtu.dk/service.php?NetPhos-3.1; threshold ≥ 3,
accessed on 14 April 2022), Phosphosite Plus (https://www.phosphosite.org/homeAction, only
HTP data, accessed on 14 April 2022), and KynasePhos 2.0 (http://kinasephos2.mbc.nctu.edu.tw/,
accessed on 13 December 2020). (e) MS/MS spectrum of the double-charged precursor ion of
E54LLPTPPLSPSRRSGLCSPSYVAVTPFSLRG84. MB: MYC Boxed conserved domain. NLS: nuclear
localization sequence. HLH: helix–loop–helix domain. LZ: leucine zip domain. The presented results
are representative of at least three independent experiments. Detailed information about Western
Blot can be found at supplementary materials.

https://research.bioinformatics.udel.edu/iptmnet
https://services.healthtech.dtu.dk/service.php?NetPhos-3.1
https://www.phosphosite.org/homeAction
http://kinasephos2.mbc.nctu.edu.tw/


Cancers 2022, 14, 4840 15 of 23

3.5. Combined Inhibition of p38a and MEK1 Affects c-MYC Protein Stability in Preclinical
Mouse Models

To evaluate the effects of the pharmacological blockade of both p38α and MEK/ERK
on the c-MYC protein levels in vivo, we used the azoxymethane (AOM)/dextran sodium
sulfate (DSS) colitis-associated-carcinoma murine model, which is considered a highly
reproducible and reliable CRC model [49]. To this end, the animals were injected with the
carcinogen AOM and then fed with DSS to induce colitis. Ten days after the last round of
DSS, the animals were treated with daily intraperitoneal injections of SB202190 and oral
PD0325901 (an MEK1/2 inhibitor) or with the vehicle alone (DMSO). After 10 days of treat-
ment, the animals were sacrificed, and the explanted tissues were analyzed (Figure 6a). An
immunohistochemical analysis of the colon sections showed high c-MYC nuclear positivity
in vehicle-treated animals, whereas a decreased c-MYC expression was detected in the ep-
ithelial cells of animals subjected to the combined treatment with SB202190 and PD0325901
(Figure 6b,c). These results were further confirmed in tumor xenograft mice, a different
in vivo murine model. Xenograft tumors were established by injecting HT29 cells into
athymic nude mice. As soon as the tumors reached a measurable size, mice were divided
into four groups, which were treated with the vehicle (DMSO), SB202190 alone, PD0325901
alone, or both SB202190 and PD0325901. Drug treatments were administered daily in-
traperitoneally (for SB202190) or orally (for PD0325901) for 10 days, and tumor volume
and body weight were recorded every 2–3 days (Figure 6d). At the end of the treatments,
the xenograft tumors were explanted, weighed, and subjected to immunohistochemical
analysis for c-MYC expression. A strong reduction in tumor volumes was observed in
the HT29-xenografted nude mice concomitantly treated for 10 days with SB202190 and
PD0325901, compared to the tumors treated with the vehicle alone (DMSO) or the single
agents (Figure 6e). As shown in Figure 6f,g, inhibition of p38α and MEK significantly re-
duced c-MYC nuclear positivity compared with the vehicle-treated tumors. Moreover, the
colon sections derived from mice subjected to the combined treatment with SB202190 and
PD0325901 showed no c-MYC nuclear expression (Figure 6f,g). These data validate, in vivo,
the combined inhibition of p38α and MEK/ERK as a promising approach to reducing
c-MYC-mediated CRC proliferation, metastatic dissemination, and chemoresistance.

3.6. Meta-Analysis on a Cohort of Colorectal Tumor Tissues Retrieved from TCGA
PanCancer Atlas

In order to identify which patient subsets may most likely benefit from p38α pharma-
cological inhibition by ralimetinib, we performed a meta-analysis on a cohort of colorectal
tumor tissues retrieved from The Cancer Genome Atlas (TCGA) PanCancer Atlas. This
dataset encompasses the clinical data of 581 CRC patients. We stratified these 581 CRC
patients based on the p38α protein expression z-score (RPPA data) and c-MYC protein
expression z-score (RPPA data) and selected the subsets of patients with high p38α and
high c-MYC expression (77 patients), or high p38α and low c-MYC expression (154 patients)
to investigate the association between the expression levels of these two proteins and the
patients’ prognoses. We found that high expressions of c-MYC protein in the subset of
patients overexpressing p38α protein were associated with worse progression-free sur-
vival (PFS, p-value = 0.0157) and disease-free survival (DFS, p-value = 0.0301) (Figure 7a,b,
respectively). These data suggest that p38α and c-MYC protein expression may be used as
predictive biomarkers to select a specific subpopulation of CRC patients that could benefit
from p38α pharmacological inhibition by ralimetinib.
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HT29-xenografted mice treated as above. (g) Quantification of c-MYC protein expression in colon 
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Figure 6. Combined inhibition of p38a and MEK affects c-MYC protein stability in preclinical mouse
models. (a) Treatment scheme of AOM/DSS mice. (b,c) Immunohistochemistry analysis (b) and
quantification (c) of c-MYC protein expression in colon tissue sections from AOM/DSS mice treated
with DMSO or with SB202190 and PD0325901. (d) Treatment scheme of HT29-cell-xenograft mice.
(e) Quantification of the volume of tumors explanted from HT29-xenografted mice treated with
DMSO or with SB202190 and/or PD0325901. (f) Immunohistochemistry analysis of c-MYC protein
expression in colon tissue sections from HT29-xenografted mice treated as above. (g) Quantification
of c-MYC protein expression in colon tissue sections from HT29-xenografted mice treated as above.
Magnification: 20×–40×. DMSO: dimethyl sulfoxide. Scale bar: 50 µm. IP: intraperitoneal injection.
PO: oral administration. Statistical analysis was performed using Student’s t-test; * p < 0.05: vs.
untreated cells, # p < 0.05: vs. corresponding single treatment. The presented results are representative
of at least three independent experiments.
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disease-free survival (DFS) (b) in CRC patients as a function of p38α (MAPK14) and c-MYC (MYC)
protein levels based on clinical data of 581 CRC patients retrieved from TCGA PanCancer Atlas.
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4. Discussion

The current treatment for CRC is based on combination therapies, which in most cases
include surgery, local radiotherapy, and chemotherapy [50]. Therefore, a promising ap-
proach involves finding critical molecular targets that are positively selected and essential
for tumor growth. This concept is the basis of current research, and several compounds that
target crucial signaling pathways are now under clinical trials. In CRC, c-MYC has been
found to be overexpressed in up to 80% of sporadic cases—a result of its transcriptional
activation mediated by β-catenin following APC inactivation and its post-translational
stabilization mediated by ERK [10]. The MEK/ERK signaling pathway is involved in tumor
initiation and progression by promoting cell proliferation and survival [51] and is being
widely studied as a promising pharmacological target [52]. Intriguingly, MEK/ERK inhibi-
tion induces the phospho-activation of p38α, a kinase involved in CRC progression and
cell migration [21]. The existence of a p38α/ERK crosstalk has been previously established
since the inhibition of p38α also triggers ERK phospho-activation in different CRC cell
lines [21].

Here, we found that the inhibition of p38α or MEK significantly reduces the c-
MYC protein levels in CRC cell lines, regardless of their genetic background, and com-
bined inhibition of both pathways has an even greater effect. Given the crucial role of
c-MYC in intestinal tumorigenesis and its high turnover, we investigated the role of p38α
and MEK in c-MYC regulation in a short-term experiment. Our results showed that a
30 min inhibition of p38α and MEK only affected c-MYC protein levels, while its mRNA
expression remained unchanged. Since c-MYC has a significant impact on cell fate, it is
not surprising that cancer cells have evolved sophisticated methods for ensuring that it
maintains proper expression levels [12]. c-MYC protein expression is regulated both at
the post-transcriptional (translation) and post-translational (protein stability) levels. We,
thus, performed experiments to assess p38α’s and ERK’s contribution to these processes.
Since we found that p38α and ERK are not involved in c-MYC translation, we assessed
whether they affect c-MYC stability. Indeed, increased c-MYC stability in malignant tissues
may explain the high levels of c-MYC protein observed in human tumors in the absence
of c-MYC gene amplification or deregulated mRNA expression [53]. Our results showed
that p38α and ERK actually influence c-MYC protein stabilization, but they do not do so by
affecting the GSK3β or PP2A pathways or by regulating the autophagic response. Instead,
we found that blocking proteasomal degradation rescues the c-MYC protein levels after
p38α inhibition. These data revealed that p38α stabilizes c-MYC protein by preventing its
ubiquitination. Moreover, we confirmed that p38α inhibition affects the c-MYC protein
levels in vivo in two different murine models (AOM-DSS and xenograft mice).

The potential efficacy of p38α and MEK/ERK combined inhibition—as a novel phar-
macological strategy—is supported by the results obtained from CRC cell lines. These
results highlight the importance of identifying protein kinases involved in tumorigenesis
and tumor progression to shift the focus of cancer therapy to those drugs rationally de-
signed to target tumor-specific pathways. Several clinical studies are now underway to
collect information on the polypharmacological profile of kinase inhibitors. In light of this
approach, we switched to the compounds that are currently in clinical trials for CRC, i.e.,
the p38α inhibitor, ralimetinib, and the MEK inhibitor, trametinib. After positively testing
their inhibitory activity in our CRC cell lines, we confirmed that these pharmacological
inhibitors are effective in increasing cell death response, decreasing the proliferation rate,
and reducing c-MYC protein levels.

As a transcription factor, c-MYC regulates the expression of 15% of all genes by binding
to an enhancer box (E-box) sequence. Indeed, c-MYC coordinates a complex cellular
response by which cells are set to progress through the cell cycle and proliferate [54]. Based
on this assumption, we decided to ascertain the therapeutic potential of p38α and MEK
inhibition by assessing the expression levels of c-MYC target genes. c-MYC regulates the
transcription of several genes implicated in cell-cycle progression; specifically, it promotes
the expression of Cyclin E, Cyclin A, and cdc25 and represses p21 [44]. Consistently, the
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decrease in the c-MYC levels, promoted by p38α and/or MEK inhibition, induced the
downregulation of Cyclin E, Cyclin A, and cdc25 and the upregulation of p21 [44].

Despite the wide number of proteins that interact with c-MYC, only a few kinases have
been shown to regulate its stability. These include ERK and CDK2, which phosphorylate
c-MYC at S62, leading to its stabilization [38]. Instead, phosphorylation of c-MYC at T58 by
GSK3β results in its degradation through the recruitment of the ubiquitin ligase Fbw7 and
subsequent ubiquitin-mediated proteolysis [55]. Here, we found that p38α binds to c-MYC
(in vitro and in cellulo) and phosphorylates it, and we identified S64 and S67 as putative
phosphorylation loci in the c-MYC N-terminal domain. Intriguingly, S64 and S67 are
located very close to the ERK target residue S62, suggesting that they may also be involved
in protecting c-MYC from proteasomal degradation. Consistently, we demonstrated that
p38α pharmacological inhibition by ralimetinib abrogates c-MYC phosphorylation.

Despite the search for those molecularly targeted drugs capable of inhibiting the
activity of protein kinases involved in cancer-specific features, a lack of efficacy in tu-
mor progression or patient survival has been observed in several clinical trials using
target-oriented anti-cancer compounds [56,57]. For example, a recent study evaluating the
addition of ralimetinib to gemcitabine and carboplatin chemotherapy regimens in patients
with recurrent platinum-sensitive ovarian cancer revealed only a modest improvement in
PFS in these patients [58]. Indeed, it is becoming increasingly clear that targeted therapies
are effective only in selected categories of patients whose tumors are characterized by
distinctive molecular profiles. These setbacks mostly reflect the need for better knowl-
edge of validated tumor biomarkers in order to both define specific therapeutic targets
and properly select responsive patient populations. Although some relevant therapeutic
responses have been associated with specific genomic markers, in the majority of cases, the
assignment of patients to specific targeted treatments remains largely empiric or correlative
at best. At present, no patients are “cured” of their disease by targeted therapies, despite the
risk of treatment-related adverse events and an overall increase in medical costs. In order
to exploit the specificity of new targeted compounds, it is necessary to tailor treatments
to each patient’s cellular circuitry and design clinical protocols based on the molecular
signature of each specific tumor. In this study, we sought to evaluate the use of p38α and
c-MYC protein expression as biomarkers to select a specific subpopulation of CRC patients
that can achieve adequate clinical benefit through p38α pharmacological inhibition by
ralimetinib. Interestingly, our meta-analysis on a cohort of CRC tumors, retrieved from
the TCGA PanCancer Atlas dataset, correlated p38α and c-MYC protein expression to
prognosis, with high expressions of both p38α and c-MYC protein (~33% of CRC patients)
being associated with worse DFS and PFS. Based on these findings, p38α and c-MYC may
be used as markers of resistance and predictors of therapy response in CRC. Overall, our
study has some limitations. Evidence of direct phosphorylation of c-MYC by p38α has only
been obtained in vitro (kinase assay), the same being true for the serine residues putatively
involved in the process (mass spectrometry analysis); thus, further studies will be necessary
to better characterize these post-translational modifications and their consequences in vivo.

5. Conclusions

Our previous and current data indicate that p38α contributes to c-MYC upregulation
by promoting its transcription as a β-catenin chromatin-associated kinase and preventing
the proteasome degradation of its protein product (Figure 8) [22]. Overall, our results
provide insights into the dynamic processes that control c-MYC levels and support the
potential of perturbing these mechanisms in cancer. Indeed, our findings suggest that the
pharmacological inhibition of p38α and ERK, which support both c-MYC expression and
protein stability, may prove as an effective therapeutic strategy for targeting CRC.
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