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Abstract
A simple electrical mortar–pestle was used for the development of a green and facile mechanochemical route for the catalyst-free
halogenation of phenols and anilines via liquid-assisted grinding using PEG-400 as the grinding auxiliary. A series of mono-, di-,
and tri-halogenated phenols and anilines was synthesized in good to excellent yields within 10–15 min in a chemoselective manner
by controlling the stoichiometry of N-halosuccinimides (NXS, X = Br, I, and Cl). It was observed that PEG-400 plays a key role in
controlling the reactivity of the substrates and to afford better regioselectivity. Almost exclusive para-selectivity was observed for
the aromatic substrates with free o- and p-positions for mono- and dihalogenations. As known, the decarboxylation (or desulfona-
tion) was observed in the case of salicylic acids and anthranilic acids (or sulfanilic acids) leading to 2,4,6-trihalogenated products
when 3 equiv of NXS was used. Simple instrumentation, metal-free approach, cost-effectiveness, atom economy, short reaction
time, and mild reaction conditions are a few noticeable merits of this environmentally sustainable mechanochemical protocol.
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Introduction
Aryl halides are valuable compounds with potent bioactivities
[1-5] (Figure 1) and are utilized as crucial precursors for various
metal-catalyzed cross-coupling reactions [6-9]. They are
frequently used as synthetic intermediates in several value-
added syntheses of natural products, pharmaceuticals, agro-
chemicals, and advanced materials [10-14]. The ubiquity of

halogen atoms in these synthetic building blocks urges the de-
velopment of efficient, sustainable, and mild methods for aro-
matic halogenation.

The century-old classical method of using hazardous and corro-
sive reagents X2 (X = Br, Cl) suffers from low atom economy
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Figure 1: Representative examples of important halogen-containing aryl derivatives.

Scheme 1: Strategies for halogenation of aromatic compounds using NXS.

(<50%), formation of corrosive byproducts (e.g., HBr) [15,16],
which cause serious environmental issues. To mitigate the prob-
lem, several mild and operationally safe halogenating agents
have been successfully introduced to replace X2 [17-31].
Among them, the use of N-halosuccinimides has turned out to
be a viable alternative to X2 because of their low-cost, ease of
handling, and possible recycling of the byproduct succinimide
[24-31]. In several earlier cases, the bromination with N-bromo-
succinimide (NBS) was carried out in toxic polar solvents (e.g.,
DMF), but no iodinated or chlorinated products were obtained
because of the low reactivity of NIS and NCS (Scheme 1a) [24-
27]. In recent time, the use of Lewis or Brønsted acids, Lewis
bases, and transition-metal catalysts (Pd, Rh, Fe, etc.) were em-

ployed to boost the reactivity of NXS (Scheme 1b) [32-43].
However, the use of toxic and expensive metals, high catalyst
loading, and heating conditions are some sheer hurdles to
achieving sustainability. Among notable other catalyst-free
methods, the use of costly and low boiling hexafluoroiso-
propanol (HFIP) as solvent offered the para-selective halogena-
tion of activated aromatic systems (Scheme 1c) [44]. It is note-
worthy to mention that over-halogenation of activated systems
like phenols and anilines, due to the high reactivity and avail-
ability of multiple sites for substitution, often leads to an insep-
arable mixture of halogenated products [27,28]. Thus, a cheaper
and sustainable method for a regioselective halogenation in a
controlled manner is a worthy pursuit.
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In recent times, mechanochemistry [45,46], achieved by me-
chanical grinding or milling, has garnered massive interest
among chemists owing to its green attributes like solvent-free,
clean, atom economic, and time-efficient, and has been identi-
fied by the IUPAC as one of 10 world-changing technologies
[47]. While milling has received more focus, the simpler form
of mechanochemistry, Toda et al.’s “grindstone chemistry” [48]
has also been proved as a useful technique for various organic
transformations [49]. It is generally carried out by hand-
grinding which is not only a labor-intensive process but also
raises some concerns on the reaction kinetics, reproducibility,
and scalability. An alternative and efficient way of grinding is
the use of automation instead of manual intervention. Notably,
an industrial-scale synthesis is possible by the suitable choice of
a large automated grindstone apparatus. However, there are
only limited examples of the use of automated grindstone chem-
istry [50]. Notably, a few mechanochemical methods are avail-
able for aromatic halogenation using NXS (Scheme 1d) [51-53].
However, the solvent-free protocol reported by Mal and
co-workers requires several hours for halogenation [51], where-
as Ghafuri and co-workers’ method requires the use of a solid
acid catalyst [52], apart from the use of high-cost, high-end
milling equipment which limits to laboratory scale only. There-
fore, developing an operationally simple, environmentally
benign protocol, potentially useful for the batch-scale synthesis
of aryl halides is highly desirable. From our past experience, we
realized a liquid-assisted grinding expedites a reaction to
several folds [54-56]. In this regard, PEG-400 is widely
preferred due to its biodegradable and benign nature and often
offers excellent outcomes where other grinding auxiliaries
failed to deliver [56,57]. Herein, we report a sustainable and
facile aromatic (mono-, di-, and tri-) halogenation protocol by
controlling the stoichiometry of the N-halosuccinimide and
PEG-400 as the grinding auxiliary in an electrical grinder
(Scheme 2).

Scheme 2: General scheme of PEG-400-assisted halogenation of
phenols and anilines in an automated grinder using NXS.

Results and Discussion
At the outset, the optimization of the reaction conditions was
carried out using p-cresol (1a) as the model substrate with
1.1 equiv of N-bromosuccinimide (NBS) for attempted mono-
bromination. They were ground together at the speed of
100 rpm in an electrical grinder (EG) of Agate-made under neat
conditions for 30 min. The reaction was incomplete and a mix-
ture containing some starting material (1a), two other spots
which are identified as o-monobromo (2a) as major (57%), and
o-dibrominated p-cresol (3a) as minor (20%) constituents, was
obtained (Table 1, entry 1). Next, the reaction mixture was
ground under LAG conditions with ethanol and an improved
yield (77%) of the monobromo product 2a, with a reduced
amount of 3a (12%), and a nominal recovery of the starting ma-
terial were observed (Table 1, entry 2). Incomplete consump-
tion of starting phenol 1a was primarily due to over bromina-
tion. The LAG in the presence of water afforded relatively infe-
rior results than EtOH (Table 1, entry 3). The use of ethylene
glycol and glycerol as the grinding matrix showed improved
yields with the monobromo product 2a formed in 81% and 85%
yield, respectively within 10 min (Table 1, entries 4 and 5).
Next, liquid polyethylene glycol, PEG-400 was selected as the
LAG agent keeping all other parameters the same. Interestingly,
the monobrominated product 2a was obtained almost exclusive-
ly in an excellent yield (91%) within just 5 min of grinding
(Table 1, entry 6). The attempted model reaction under solid-
state grinding using silica gel was sluggish and it afforded 2a
and 3a in a 3:2 ratio in lower yields (Table 1, entry 7). Under
PEG-400-assisted grinding conditions, a study was conducted to
determine the suitable stoichiometry of NBS for the bromina-
tion reaction. The study revealed that the increased or de-
creased stoichiometry of NBS adversely affects the reaction
outcome leading to either incomplete conversion (Table 1,
entries 8 and 9) or to a low yield of the desired monobromo
product due to over-bromination (Table 1, entry 10). On the
other hand, increasing the grinding speed (120 rpm) did not
increase the yield of the desired product or expedite the reac-
tion (Table 1, entry 11). Whereas upon lowering the grinding
speed (70 rpm), the yield of the desired monobromo product de-
creased marginally, and the reaction took a long time for com-
plete conversion (Table 1, entry 12). Next, a short study was
conducted by carrying out the reactions on the model substrate
1a in the solution phase to understand the advantage of grinding
over conventional ways (Table S1 in Supporting Information
File 1). Again, PEG-400 was found suitable as the solvent
(1–2 mL per mmol of p-cresol) for the monobromination of
p-cresol, but the reactions took several hours for completion and
showed inferior chemoselectivity producing dibrominated prod-
uct 3a in higher quantity in the solution phase (Table S1, entries
6 and 7 in Supporting Information File 1). However, a thick
immiscible mixture was formed when only 0.2 mL of PEG-400
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Table 1: Optimization of the reaction conditions for the bromination with NBS.a

Entry Grinding mediab Equiv of NBS Grinding speed (rpm) Time (min) Yieldc (%)

2a 3a

1 NG 1.1 100 10 57d 20
2 EtOH 1.1 100 10 77d 12
3 H2O 1.1 100 10 63d 15
4 ethylene glycol 1.1 100 10 81d 06
5 glycerol 1.1 100 10 85 05
6 PEG-400 1.1 100 5 91 03
7 SiO2 1.1 100 30 45d 28
8 PEG-400 0.9 100 10 62d –
9 PEG-400 1.0 100 5 84d 03
10 PEG-400 1.2 100 5 78d 08
11 PEG-400 1.1 120 5 89 04
12 PEG-400 1.1 70 15 86 03

a1 mmol of 1a and 1.1 mmol NBS are taken for EG; b0.2 mL of solvent (300 mg for SiO2) per mmol of 1a was used for LAG; cisolated yields; dsome
amount of starting phenol 1a was also isolated. NG: neat grinding.

were used and the reaction could not proceed to completion
(Table S1, entry 8 in Supporting Information File 1). Further,
during aqueous work-up at least 10% loss of the water-soluble
crude product 2a was observed in the conventional solution-
phase reactions leading to a drop in the isolated yields. Based
on the above observations, the optimal reaction conditions for
the electrophilic monobromination was set as to grind the sub-
strates (1 mmol) in an automated grinder with 1.1 mmol of NBS
at 100 rpm in PEG-400 (0.2 mL per mmol of the substrate) as a
grinding auxiliary.

We next explored the substrate scope of the catalyst-free mono-
bromination under the optimized reaction conditions to validate
the effectiveness of our method using an indigenous electrical
grinder. The results are summarized in Scheme 3. At the outset,
several electron-rich and electron-deficient phenol derivatives
were converted to the corresponding monobrominated products
2a–r in high to excellent yields upon employing 1.1 equiv of
NBS as the brominating agent and PEG-400 (0.2 mL per mmol
of phenols) as the LAG agent. As mentioned, PEG-400 allows
the formation of a free-flowing liquid mixture and the reactions
were mostly completed within 2–15 min of grinding in an Agate
mortar–pestle. In each case, once the reaction got over, the
crude product was directly slurried by the addition of silica gel
(230–400 mesh, approximately 1 g) and purified by flash chro-

matography eluting with varying proportions of EtOAc/petro-
leum ether; thus, a typical work-up step was avoided. Moreover,
up to 95% of the side product succinimide was also isolated,
and considering its possible conversion to NBS [44] it is an at-
tribute to this green protocol by lowering the E-factor. The
products were well-characterized by 1H NMR, 13C NMR, IR,
and CHN analysis. The NMR spectra of the synthesized com-
pounds matched well with the reported data indicating their suc-
cessful formation. As such not much substituent effect was seen
and the protocol worked well for phenols having electron-do-
nating groups (EDG, products 2b–e, Scheme 3) or even strong
electron-withdrawing groups (EWG, products 2n–p, Scheme 3)
affording high yields of the corresponding monobrominated
products. The reaction of halogen-substituted phenols also
showed higher yields with no exchange of halogen atoms
during the course of the reaction (products 2g–j, Scheme 3). As
expected, exclusive ortho-bromination to the phenolic hydroxy
group was observed for 4-phenylphenol indicating this electro-
philic halogenation is selective to electron-rich aromatic rings
only (product 2f, Scheme 3). Also, aromatic halogenation
prevails over α-halogenation of a ketomethyl group as was
demonstrated by the formation of product 2m as the sole prod-
uct for the bromination of 2'-hydroxyacetophenone (product
2m, Scheme 3). Notably, easily oxidizable groups like –CHO
remained unaffected under the reaction conditions (product 2k
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Scheme 3: Monohalogenation of phenols and anilines by automated grinding with NXS. All yields refer to the isolated products. Note a: Reactions
were carried out in the presence of 10 mol % of conc. H2SO4.

and 2l, Scheme 3). It is worthy to mention that the bromination
on 2-naphthol and coumarin was extremely fast affording >95%
yields within just 2 min of grinding (products 2q and 2r,
Scheme 3). Next, a series of aniline derivatives were taken as
the substrates for this electrophilic bromination by NBS. To our
delight, the corresponding bromo derivatives were formed in

high yields (75–89%) within 5–15 min of grinding (products
2s–y, Scheme 3). Once again, no prominent substituent effect
was observed in terms of yields or reaction time. Next, we
focused our attention on expanding the substrate scope to other
electron-rich aromatic systems. The bromination of hydro-
quinone dimethyl ether was sluggish and a moderate yield
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Scheme 4: Dihalogenation of phenols and anilines with NXS by automated grinding. All yields refer to the isolated products.

(67%) of the desired monobromo derivative 2z was achieved
only after 30 min of rigorous grinding. However, a negligible
conversion was observed for p-xylene or mesitylene even after
grinding for an hour. Therefore, we restricted our study to the
halogenation of phenols and anilines only. Subsequently, a short
series of monoiodo derivatives was successfully prepared in
high to excellent yields from phenols and anilines by adding
1.1 equiv of NIS with PEG-400 as the LAG agent (product
2aa–ag, Scheme 3). Notably, both Br- and I-substituents are
mainly used as the substrates for cross-coupling reactions indi-
cating the usefulness of the current protocol for quick access to
these halo derivatives. Encouraged by this, we attempted mono-
chlorination with selected phenols and anilines. The first
attempt with 2-naphthol afforded the desired chloro derivative
2ah in high yield within 2 min. However, unlike in the case of
NBS and NIS, the chlorination by NCS was often found slug-
gish and complete conversion was not observed even after
vigorous grinding for 30 min. Nonetheless, the addition of a cat-
alytic amount of H2SO4 (10 mol %) was sufficient to activate
NCS and the corresponding chloro derivatives were obtained in
good yields (product 2ai and 2aj, Scheme 3). It is worthy to
note that PEG-400 as the grinding auxiliary not only expedited
the reaction but also played a key role in availing better regiose-
lectivity. A very high para-selectivity was observed for both
phenols and aniline substrates with free o- and p-positions in the
case of bromination as well as iodination (product 2b, 2d, 2h,
2k, 2s, 2w, 2ab, 2ag, etc. in Scheme 3). In some cases, the for-
mation of negligible amounts of dihalo derivatives (3–5%)
could not be avoided. Only for the attempted monobromination
of unsubstituted phenol, the addition of 1.1 equiv of NBS

afforded a mixture of products with reduced regioselectivity to
the expected p-bromophenol (yield: 62%). From the mechanis-
tic point of view, it is expected that a standard electrophilic aro-
matic substitution pathway was followed for the halogenation
using NXS (X = Br, I, or Cl). Presumably, PEG-400 with
several -O- and terminal -OH functionalities helps to enhance
the polarization of the N–X bond. Thus, the formation of the
halonium ion (X+) in the reaction medium is faster and stabi-
lized by solvation to offer an extra bit of time for the attack of
phenol (or aniline) preferably through p-position leading to the
formation of the thermodynamically stable halo derivative via a
σ-complex formation. The high concentration of substrates and
reagents in the close proximity in this solvent-less process and
grinding force could be the other reasons for the fast reaction
kinetics.

The initial optimization study showed that the presence of
excess NBS could increase the yield of undesired dibromo
products (Table 1, entry 10). Encouraged by this, a short series
of dihalogenated derivatives was prepared under optimized
grinding conditions by just changing the stoichiometry of NXS
from 1 equiv to 2 equiv (X = Br, I) (Scheme 4). Several elec-
tron-rich (products 3a and 3k, Scheme 4) and electron-deficient
(product 3c–h, Scheme 4) phenols and anilines were successful-
ly converted to the corresponding dibromo derivatives in good
to excellent yields within 5–15 min when 2.1 equiv of NBS
were used (Scheme 4). The formation of the corresponding
monobromo products was not observed. Similarly, p-cresol (1a)
was converted to the corresponding diiodo derivative 3i in high
yield by using 2.1 equiv of NIS indicating the generality of this
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Table 2: Trihalogenation of phenols and anilines with NXS by automated grinding.a

Entry Z Product Time (min) Yield (%)

1 H

3g

05 94
2 o-CO2H 10 86
3 p-CO2H 10 89
4 p-SO3H 10 85

5 H

4a

05 95
6 p-CO2H 10 90
7 p-SO3H 05 92

8 H

4b

05 94
9 p-CO2H 05 93
10 p-SO3H 05 95

11 H

4c

05 92
12 p-CO2H 05 95
13 p-SO3H 05 97

aAll yields refer to the isolated products.

synthetic protocol. Next, the attempted dihalogenation of
aniline derivatives also worked well to afford the desired prod-
ucts in high yields (products 2u and 3j in Scheme 4). In all
cases, no prominent substituent effect was observed in terms of
yields and reaction time.

Next, we planned to further diversify this halogenation protocol
via automated grinding for the facile access to trihalogenated
derivatives by the use of 3 equiv of N-halosuccinimides
(X = Br, I) (Table 2). Notably, trihalo phenols and anilines
are commercial products and used as intermediates of pharma-
ceutical and agrochemical products. The basic substrates
phenol (entry 1, Table 2) and aniline (entry 5, Table 2) afforded
the 2,4,6-tribromo derivatives in the presence of NBS in

excellent yields just by grinding for 5 min. Similarly, 3 equiv of
NIS ensured the formation of 2,4,6-triiodo derivatives in over
90% yields (entries 8 and 11, Table 2). As known, easy
decarboxylation (or desulfonation) was observed for phenols
and anilines with carboxylic acid (-CO2H) or sulfonic acid
(-SO3H) groups both at o- or p-positions leading to the
formation of 2,4,6-trihalo phenols and anilines in excellent
yields within just 10 min (Table 2) [58]. Thus simple control of
the stoichiometry of NXS could offer the versatility in obtain-
ing mono-, di-, or trihalo derivatives as per the requirement
within a very short time, which is a sheer advantage of this
mechanochemical method. A further study of mechanochem-
ical decarboxylative aromatic halogenations is underway in our
laboratory.
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The scalability of any synthetic protocol is a necessary attribute
to access its potential from the laboratory scale to a pilot-scale
synthesis. A gram-scale synthesis was conducted with 1.08 g of
p-cresol (1a, 10 mmol) and 1.96 g NBS (11 mmol) in PEG-400
as grinding auxiliary (Scheme 5). The obtained yield of the
gram-scale (10 mmol, 89%) synthesis for the monobromo prod-
uct 2a was found to be more or less comparable with the yield
of small-scale synthesis (1 mmol, 91%). However, the reac-
tions took a slightly longer time (7 min) than the small-scale
synthesis. The demonstration of gram-scale reaction implies the
potential application of the new protocol in large-scale synthe-
sis with adequate grinding equipment.

Scheme 5: Gram-scale monobromination of p-cresol by NBS in the
automated grinder.

Lastly, a comparative study of available methods for N-halosuc-
cinimide-aided electrophilic halogenations with our auto-
grinding protocol was conducted (Table S2 in Supporting Infor-
mation File 1). It suggested that the present green method is
comparable or better than several other conventional methods in
terms of the reaction time, substrate scope, regioselectivity, etc.
Moreover, a low E-factor in the range of 2.1–3.6 ensures that
the current method could potentially replace the existing
conventional methods for the aromatic halogenation of phenols
and anilines. Notably, a cost-comparison of our method and the
other mechanochemical method by Ghafuri and co-workers was
done to understand that the current method is approximately
6 times more cost-effective; besides, the time required for the
synthesis of the solid acid catalyst and the cost of high-end
milling instruments are additional considerations for that
method [52].

Conclusion
In conclusion, we have developed a facile and sustainable
mechanochemical route for the catalyst-free halogenation of
phenol and aniline derivatives using N-halosuccinimides as the
reagent. In the protocol, PEG-400 was used as an LAG agent
and the reactions were conducted in an automated grinder in
open-air at room temperature for quick access to halogenated
derivatives. A wide range of substrates was compatible with
NXS (X = Br, I, Cl) for electrophilic aryl halogenation without

much substituent effect and by just controlling the stoichiome-
try of NXS a series of mono-, di-, and trihalogenated phenols
and anilines were obtained in a chemoselective manner in good
to excellent yields within 2–15 min of grinding. Spontaneous
decarboxylation (or desulfonation) was observed in the case of
salicylic acids or anthranilic acids leading to 2,4,6-trihalo deriv-
atives when 3 equiv of NXS were used. PEG-400 plays a key
role for faster reaction kinetics and to afford better regioselec-
tivity. Almost exclusive p-selectivity was observed for the aro-
matic substrates with free ortho- and para-positions. The gram-
scale reaction shows similar efficiency like smaller batches in-
dicating easy scale-up of this protocol. The method is environ-
mentally friendly and cost-effective having key attributes like
simple instrumentation, no aqueous workup, short reaction time,
and mild reaction conditions.

Experimental
General procedure for monohalogenation of
phenols and anilines
The phenol derivative (1, 1.0 mmol) was taken in an Agate
mortar attached to an electrical grinder, PEG-400 (0.2 mL) was
added as LAG agent, and to the mixture, NBS (1.1 mmol) was
added in several portions over 5 min under continuous grinding
by a pestle at 100 rpm. The electrical grinding was continued
for the specific time period (as mentioned in Scheme 3) and the
completion of the reaction was monitored by checking TLC
after 2 min, 5 min, 10 min, 15 min as applicable for the reac-
tion. After complete conversion was observed, 0.8–1 g of silica
gel (230–400 mesh) was added and the slurry was subjected to
flash chromatography and eluted with a mixture of EtOAc/
petroleum ether to afford the pure monobromo phenol deriva-
tive. The side product succinimide was subsequently eluted
using MeOH/CHCl3 1:10

Supporting Information
Supporting Information File 1
Experimental procedures, spectral data, tables, and copies
of spectra.
[https://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-18-100-S1.pdf]
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