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Yiting Huang†, Binlong Zhang†, Jin Cao, Siyi Yu, Georgia Wilson, Joel Park
and Jian Kong*

Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States

Objectives: Noninvasive brain stimulation (NIBS) is an emerging tool for treating autism
spectrum disorder (ASD). Exploring new stimulation targets may improve the efficacy of
NIBS for ASD.

Materials andMethods:We first conducted a meta-analysis on 170 functional magnetic
resonance imaging studies to identify ASD-associated brain regions. We then performed
resting state functional connectivity analysis on 70 individuals with ASD to investigate brain
surface regions correlated with these ASD-associated regions and identify potential NIBS
targets for ASD.

Results: We found that the medial prefrontal cortex, angular gyrus, dorsal lateral
prefrontal cortex, inferior frontal gyrus, superior parietal lobe, postcentral gyrus,
precentral gyrus, middle temporal gyrus, superior temporal sulcus, lateral occipital
cortex, and supplementary motor area/paracentral gyrus are potential locations for
NIBS in ASD.

Conclusion: Our findings may shed light on the development of new NIBS targets for
ASD.

Keywords: autism spectrum disorders, meta-analysis, fMRI, noninvasive brain stimulation
INTRODUCTION

Autism spectrum disorder (ASD) is a highly prevalent disorder (1). Despite decades of research, the
treatment of ASD is far from satisfactory (2). To date, only a handful of treatment options have been
shown to ameliorate the symptoms associated with the disorder (3). Developing new intervention
methods for ASD is therefore urgently needed.

Noninvasive brain stimulation (NIBS) is an emerging tool for the treatment of ASD. Such a
technique may include repetitive transcranial magnetic stimulation (rTMS), transcranial direct
current stimulation (tDCS), and transcranial alternating current stimulation (tACS) (4, 5).
Preliminary evidence has demonstrated the potentials of rTMS and tDCS in the treatment of
ASD (6–8). However, results from recent meta-analyses regarding the effectiveness of these NIBS
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techniques in ASD treatment are inconsistent (9–11),
necessitating that researchers further investigate and improve
NIBS treatment.

Refining stimulation targets may be a promising way to
improve the treatment effect of NIBS. Currently, multiple NIBS
targets for ASD treatment have been explored, including the
dorsal lateral prefrontal cortex (DLPFC), motor cortex, inferior
frontal gyrus (IFG), dorsal medial prefrontal cortex (dmPFC),
and temporoparietal junction (TPJ) (9, 10, 12–14). However, the
rationale for choosing these areas is often ambiguous,
significantly limiting the optimization of NIBS and its
application in ASD.

Neuroimaging studies have discovered a large number of
ASD-associated brain regions and have expanded our
understanding of ASD pathophysiology (15–18). However,
clinical translation is still limited. One way of selecting target
brain regions for NIBS from neuroimaging research is through
meta-analysis of previous studies. However, some brain regions
identified from these meta-analyses, such as the fusiform gyrus
and amygdala, are located in areas that are inaccessible for
certain NIBS technologies such as tDCS.

Recently, investigators have started to apply resting state
functional connectivity methods to optimize the locations of
NIBS for depression treatment and have achieved some
encouraging results, demonstrating the potential of resting
state functional connectivity in refining NIBS target locations
(19–21). Nevertheless, few studies have systematically
investigated potential locations for ASD using brain imaging.
This study aims to explore new potential target locations for
NIBS in ASD treatment by combining meta-analysis and resting
state functional connectivity methods. Specifically, we first
performed an automated meta-analysis of ASD and defined
regions of interest (ROI). Then, we investigated the resting
state functional connectivity of those ROIs in 70 ASD patients
to identify easily accessible locations for NIBS, particularly tDCS.
MATERIALS AND METHODS

Identifying ASD-Associated ROIs From the
Meta-Analysis
To extract ASD-associated ROIs, we used Neurosynth (22)
(http://neurosynth.org/; accessed 11 March 2020) as a
metadata reference of the neuroimaging literature. Under the
search string “autism spectrum,” 170 fMRI studies were
identified, and a uniformity test map was generated to identify
ASD-associated brain regions. A complete list of the 170 fMRI
studies extracted from Neurosynth can be found in
Supplementary Material Table S1.

To create ASD-associated ROIs for further analysis, we first
used xjView toolbox (http://www.alivelearn.net/xjview/) to
identify the coordinates with peak z-scores within all clusters
larger than 50 voxels on the uniformity test map. Then, 6-mm
radius spherical masks centered on the identified peak
coordinates were created using WFU_PickAtlas toolbox
(version 3.0.5b, http://fmri.wfubmc.edu/software/PickAtlas).
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The ROIs were further refined by taking the overlap of the
uniformity test map with the whole brain cortical masks (see
Supplementary Material Figure S1) from the WFU_PickAtlas
for the purpose of maintaining regional specificity.

Subjects and MRI Data Acquisition
Data were extracted from Autism Brain Imaging Data Exchange
II. Subjects were selected from three data sites: Georgetown
University, New York University (sample 1 and sample 2), and
Kennedy Krieger Institute from Autism Brain Imaging Data
Exchange (ABIDEII) (23). We selected subjects based on the
following criteria: (1) 5–12 years old; (2) full-scale IQ (FIQ)
scores > 80; (3) diagnosis of ASD based on DSM-IV-TR and
assessed with the Autism Diagnostic Observation Schedule
(ADOS) (24) and/or the Autism Diagnostic Interview–Revised
(ADI-R) (25); (4) no history of attention-deficit hyperactivity
disorder, oppositional defiant disorder, or phobia. All procedures
from these three sites were approved by their local Institutional
Review Boards.

The resting-state fMRI and high-resolution T1-weighted
brain structural images were acquired on 3T MRI scanners
(see details of the acquisition parameters in http://fcon_1000.
projects.nitrc.org/indi/abide/abide_II.html).

Image Preprocessing
The images were preprocessed in CONN version 18a (https://sites.
google.com/view/conn/) (26) and SPM 12 (http://www.fil.ion.ucl.ac.
uk/spm/) using CONN's default preprocessing pipeline. The
preprocessing steps included slice-timing correction, realignment,
normalization (3×3×3 mm3 in MNI space), and smoothing (6×6×6
mm3). During preprocessing, the Artifact Detection Tool (https://
www.nitrc.org/projects/artifact_detect/) was used to detect outliers
(> 3 SD and/or >0.5mm). The outliers were used for subsequent
scrubbing regression. The structural images were segmented and
used to create gray matter, white matter (WM), and cerebral spinal
fluid (CSF) masks of each subject. Then, linear regression using
WM & CSF signals (CompCor; 5 components for WM and CSF),
linear trend, subject motion (six rotation/translation motion
parameters and six first-order temporal derivatives), and outliers
(scrubbing) was conducted to remove confounding effects.
Afterwards, the residual BOLD time series were band-pass filtered
(0.008–0.09 Hz).

Functional Connectivity Analysis
Similar to our previous study (27, 28), to explore potential brain
surface regions related to ASD, 21 ROIs identified from the meta-
analysis were used to conduct seed-to-voxel functional
connectivity analyses on resting-state fMRI data from all
selected ASD subjects. The residual BOLD time course was
extracted from the 21 ROIs, and Pearson's correlation
coefficients were computed between the ROIs and all other
brain voxels for each subject to create subject-level seed maps.
The resulting correlation coefficients were subsequently
transformed into z-scores to increase normality. At the group
level, all subject-level seed maps were included in a one-sample t-
test to obtain a group-level correlation map.
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After the one-sample t-test, a brain surface mask was created
to exclude brain regions that are not on the brain surface
(inaccessible to NIBS). The regions included in the brain
surface mask were the bilateral pre and postcentral gyri;
superior and middle frontal gyri; superior, inferior, and middle
occipital gyri; superior and inferior parietal lobules;
supramarginal gyrus; angular gyrus; superior temporal gyrus;
superior temporal pole; middle temporal gyrus; middle temporal
pole; inferior temporal gyrus; opercular inferior frontal gyrus;
Rolandic operculum; triangular inferior frontal gyrus; superior
medial frontal gyrus; calcarine sulcus; orbital middle, superior,
and inferior frontal gyri; orbital medial frontal gyrus;
supplementary motor area; paracentral lobule; precuneus; and
cuneus (see Supplementary Material Figure S1 for detailed
mask image).

Exploring Potential NIBS Locations for ASD
Similar to our previous study (27, 28), three different pipelines
were applied to identify potential brain surface regions for NIBS
in ASD (Figure 1). The most straightforward approach was
pipeline 1, which used the meta-analysis to identify brain areas
associated with ASD. Unfortunately, most of these brain areas
are not located on the brain surface and therefore may be
inaccessible to neuromodulation methods. We thus also
employed pipelines 2 and 3 to identify surface brain areas that
are functionally linked to deep brain structures associated with
ASD, and hopefully stimulating these surface areas may
influence the function of the deep brain areas.
Frontiers in Psychiatry | www.frontiersin.org 3
Pipeline 1. We selected brain surface clusters in the
uniformity test map from the meta-analysis by applying the
whole brain cortical mask. These clusters represent potential
brain surface regions (that are accessible to NIBS) directly
involved in the pathophysiology of ASD.

Pipeline 2. The 21 refined ASD-associated ROIs from the
meta-analysis were combined to form one ROI, which
represented the ASD network for seed-to-voxel connectivity
analysis in CONN. Then, we selected 4–6 brain surface clusters
with the largest peak z-scores among all clusters with a voxel size
larger than 50 and intensity larger than 4 on the group-level
correlation map (positive and negative correlation maps
separately). These clusters represent the brain surface regions
that have the strongest correlations with the ASD functional
network. A voxel-wise level threshold of p < 0.001 and a cluster
level family-wise error (FWE) of p < 0.05 were applied to obtain
group-level correlation maps of the ROIs.

Pipeline 3. We saved the group-level correlation maps of each
ASD-associated ROI to a binary mask. The binary masks of all
ROIs were added together to form a third-level map, positive
correlation map, and negative correlation map separately. The
intensity of each voxel in the third-level map may represent the
number of ASD ROIs correlated to the voxel. Then, we selected
4–6 brain surface clusters with the largest peak z-scores among
all clusters with a voxel size larger than 50 and intensity larger
than 4 on the third-level correlation map as potential regions.
These clusters represent the brain surface regions correlated with
the largest number of ASD ROIs. A voxel-wise level threshold of
FIGURE 1 | Methods and tools. ROI, regions of interest; ASD, autism spectrum disorder; FC, functional connectivity.
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p < 0.001 and a cluster level family-wise error (FWE) of p < 0.05
were applied to obtain group-level correlation maps of the ROIs.

The results from the three pipelines were mapped onto a
standard brain using Surf Ice (https://www.nitrc.org/projects/
surfice/) and a standard head using MRIcroGL (http://www.
mccauslandcenter.sc.edu/mricrogl/) with the international 10-20
system in MNI space. The MNI coordinates of the 10-20 system
were extracted from a previous study (29).
RESULTS

Participant Demographics and
Characteristics
Demographic and clinical characteristics of the study groups are
summarized in Table 1. In total, 70 ASD subjects (58 males) were
included in the study. The mean age of the study group was
Frontiers in Psychiatry | www.frontiersin.org 4
8.98 ± 1.97 (SD) years old with an average FIQ of 112.79 ±
16.67 (SD).

Regions of Interest Identified From the
Meta-Analysis
Twenty-one peak coordinates were identified from the uniformity
test map of the meta-analysis (Table 2). The 21 coordinates were
then used to create 6-mm radius spherical masks (see
Supplementary Material Figure S2 for the 21 spherical masks).
The masks included the bilateral hippocampus/amygdala, bilateral
fusiform gyrus, medial prefrontal cortex (mPFC), bilateral insula,
bilateral ventral lateral prefrontal cortex (vlPFC), bilateral dorsal
lateral prefrontal cortex (dlPFC), bilateral supplementary motor
area (SMA), bilateral caudate, bilateral angular gyrus (AG),
posterior cingulate gyrus (PCC), left middle temporal gyrus
(MTG), left lateral occipital gyrus, right superior temporal gyrus
(STG), left frontal eye field (FEF), left superior parietal gyrus, left
postcentral gyrus, and left precentral gyrus. Themaskswere refined
by taking the overlap of the masks and the original forward
inference map. Then, the refined masks were used as ROIs in the
seed-to-voxel connectivity analysis.

Potential NIBS Locations for ASD
The results of the three pipelines were mapped onto a standard
brain and a standard head in MNI space (Table 3 and Figure 2).

In Pipeline 1, the mPFC, bilateral AG, bilateral dlPFC,
inferior frontal gyrus (IFG), precentral gyrus, MTG/superior
temporal sulcus (STS), lateral occipital cortex (LOC), left SMA/
FEF, superior parietal lobe (SPL), and postcentral gyrus were
identified as brain surface regions that may be directly involved
TABLE 2 | Coordinates of ASD ROIs identified from meta-analysis.

Cluster
ID

Cluster
size

Peak T Peak coordinates Brain regions

x y z

1 390 11.3205 26 −6 −18 Hippocampus/amygdala_R (BA54/53)
2 355 11.3205 −22 −8 −20 Hippocampus/amygdala_L (BA54/53)
3 740 8.3575 40 −50 −20 Fusiform gyrus/LOC/MTG_R (BA37/19/21)
4 136 5.9871 −36 −50 −16 Fusiform gyrus_L (BA37)
5 533 7.1723 −2 58 20 mPFC (BA10)
6 86 7.1723 −60 −14 −14 aMTG_L (BA21)
7 1,053 10.1353 −34 22 4 Insula//IFG/dlPFC/precentral_L(BA13/44/45/47/9/6)
8 1,302 12.5057 36 22 0 Insula/IFG/dlPFC/precentral_R(BA13/44/45/47/9/6)
9 103 6.5797 22 −30 −4 Hippocampus_R (BA53)
10 52 5.9871 8 8 −4 Caudate_R (BA48)
11 271 8.3575 −46 −66 0 LOC_L (BA19)
12 65 5.3945 −10 10 −8 Caudate_L (BA48)
13 78 5.9871 −56 −42 2 pMTG/STS_L(BA21)
14 141 6.5797 54 −32 6 STS_R (BA22)
15 236 7.1723 50 −58 24 AG_R (BA39)
16 348 7.1723 −2 −54 24 PCC (BA23)
17 90 5.9871 −48 −66 28 AG_L (BA39)
18 397 8.3575 −2 10 52 SMA/FEF_L (BA6/8)
19 190 5.9871 −40 −42 48 SPL_L (BA7)
20 59 4.8019 −46 −30 52 Postcentral gyrus_L (BA1)
21 53 5.3945 −26 0 56 Precentral gyrus_L (BA6)
ASD, autism spectrum disorder; ROI, regions of interest; L, left; R, right; BA, Brodmann area; mPFC, medial prefrontal cortex; aMTG, anterior middle temporal gyrus; pMTG, posterior
middle temporal gyrus; LOC, lateral occipital cortex; IFG, inferior frontal gyrus; dlPFC, dorsal lateral prefrontal; SMA, supplementary motor area; STS, superior temporal sulcus; AG, angular
gyrus; PCC, posterior cingulate cortex; FEF, frontal eye field; SPL, superior parietal lobule.
TABLE 1 | Subject demographics and characteristics.

Characteristics Mean ± SD (n = 70)

Age 8.98 ± 1.97
Gender (female/male) 12/58
Full-scale IQ 112.79 ± 16.67
SRS Total 76.19 ± 16.15
ADI-R Social Interaction 18.57 ± 5.66
ADI-R Communication 15.14 ± 4.75
ADI-R RRB 5.77 ± 2.39
SRS, Social Responsiveness Scale; ADI-R, Autism Diagnostic Interview; RRB, Restrictive
and Repetitive Behavior.
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in the pathophysiology of ASD (see Supplementary Material
Figure S3 for statistical maps of pipeline 1). The 10-20 system
coordinates corresponding to the centers of these regions were
located approximately at Fz, P3, and P4 (left and right AG),
posterior to F3 and F4 (left and right dlPFC), posterior to F7 and
F8 (left and right IFG), anterior to C3 and C4 (left and right
precentral gyrus), center at T3 and T4 (left and right MTG),
center at T5 and T6 (left and right LOC), posterior to Fz, anterior
to P3, and posterior to C3.

In Pipeline 2, the bilateral SPL, SMA / paracentral gyrus, right
dlPFC, AG, and postcentral gyrus were identified as brain surface
regions positively correlated with the ASD network (see
Supplementary Material Figure S4 for statistical maps of
pipeline 2). The 10-20 system coordinates corresponding to the
centers of these regions were located approximately anterior to
P3 and P4 (left and right SPL), posterior to Cz, posterior to F4,
center at P4, and posterior to C4, respectively. No cluster was
found to be negatively correlated with the ASD network.

In pipeline 3, the mPFC, bilateral precuneus, temporal pole
(TPO)/MTG/STS, AG, dlPFC, IFG, SPL, postcentral gyrus, LOC,
Frontiers in Psychiatry | www.frontiersin.org 5
right supramarginal gyrus (SMG), and left precentral gyrus were
identified as brain surface regions positively correlated with ASD
ROIs (see Supplementary Material Figure S5 for positive
statistical maps of pipeline 3). The 10-20 system coordinates
corresponding to the centers of these regions were located
approximately at Fz, posterior to Cz, T3, and T4 (left and right
TPO/MTG/STS), P3 and P4 (left and right AG), posterior to F3
and F4 (left and right dlPFC), posterior to F7 and F8 (left and
right IFG), anterior to P3 and P4 (left and right SPL), posterior to
C3 and C4 (left and right postcentral gyrus), center at T5 and T6
(left and right LOC), anterior to P4, and anterior to C3,
respectively. The mPFC, bilateral dlPFC, precuneus, and right
SMGwere found to be brain surface regions negatively correlated
with ASD ROIs (see Supplementary Material Figure S6 for
negative statistical maps of pipeline 3). The 10-20 system
coordinates corresponding to the centers of these regions were
located approximately at Fz, posterior to F3 and F4 (left and right
dlPFC), posterior to Cz, and anterior to P4.
DISCUSSION

In this study, we combined resting-state functional connectivity
and meta-analysis to identify potential NIBS targets for ASD. We
found the brain regions overlapping between the meta-analysis
and seed-based analysis to be potential targets, including the
mPFC, bilateral AG, dlPFC, IFG, MTG/STS, LOC, left SPL,
postcentral gyrus, precentral gyrus, and SMA. Stimulation
locations on the scalp corresponding to these brain targets
were also provided based on the EEG 10-20 system.

Consistent with the general consensus on cortical stimulation
sites for ASD (10, 12), we identified the bilateral dlPFC, IFG, and
AG as potential NIBS targets. The effectiveness of stimulating
these three regions for ASD has been tested in previous studies
(7, 30, 31).

Several neuropsychology studies have revealed impaired
executive function in patients with pervasive developmental
disorders such as ASD (32). Executive function encompasses a set
of mental processes involved in planning, working memory,
attention, problem solving, verbal reasoning, and mental flexibility
(33), all of which are highly associated with activation of the dlPFC
(34). As the most preferable target region, stimulation of the dlPFC
may induce reduction in comorbid depression (35) and social-
related impairments (36, 37) and yield improvement in attention
(36) in individuals with ASD (38, 39). Sokhadze and colleagues
reported improved executive functioning in individuals with ASD as
evidence of normalization of event-related potential responses and
behavioral accuracy after 1 Hz rTMS to the dlPFC (6). Thus, the
dlPFC may be a potential target to treat symptoms associated with
executive function and depression.

The IFG has been extensively associated with functions such
as language processing, response inhibition, and social cognition
and may be directly involved in the pathophysiology of ASD (40–
46). For instance, Grace and her colleagues reported that
activation in the left IFG was reduced in individuals with ASD
compared to typically developing controls during speech
TABLE 3 | Potential locations for NIBS in ASD identified from the three pipelines.

Pipeline number Identified brain regions 10-20 system
locations

Pipeline 1 mPFC
AG_bilateral
dlPFC_bilateral
IFG_bilateral
Precentral_bilateral
MTG/STS_bilateral
LOC_bilateral
SMA/FEF_L
SPL_L
Postcentral Gyrus_L

Fz
P3 (P4)
Posterior to F3 (F4)
Posterior to F7 (F8)
Anterior to C3 (C4)
T3 (T4)
T5 (T6)
Posterior to Fz
Anterior to P3
Posterior to C3

Pipeline 2 Positive SPL_bilateral
SMA/paracentral gyrus
dlPFC_R
AG_R
Postcentral_R

Anterior to P3 (P4)
Posterior to Cz
Posterior to F4
P4
Posterior to C4

Negative None None
Pipeline 3 Positive mPFC

Precuneus_bilateral
TPO/MTG/STS_bilateral
AG_bilateral
dlPFC_bilateral
IFG_bilateral
SPL_bilateral
Postcentral_bilateral
LOC_bilateral
Precentral_L
SMG_R

Fz
Posterior to Cz
T3 (T4)
P3 (P4)
Posterior to F3 (F4)
Posterior to F7 (F8)
Anterior to P3 (P4)
Posterior to C3 (C4)
T5 (T6)
Anterior to C3
Anterior to P4

Negative mPFC
dlPFC_bilateral
Precuneus_bilateral
SMG_R

Fz
Posterior to F3 (F4)
Posterior to Cz
Inferior to P4
positive: brain surface regions positively correlated with the ASD ROIs; negative: brain
surface regions negatively correlated with the ASD ROIs.
L, left; R, right; mPFC, medial prefrontal cortex; AG, angular gyrus; IFG, inferior frontal
gyrus; LOC, lateral occipital cortex; dlPFC, dorsal lateral prefrontal cortex; STS, superior
temporal sulcus; TPO, temporal pole; MTG, middle temporal gyrus; SMA, supplementary
motor area; FEF, frontal eye field; SPL, superior parietal lobule; ITG, inferior temporal
gyrus; SMG, supramarginal gyrus.
May 2020 | Volume 11 | Article 388

https://www.frontiersin.org/journals/psychiatry
http://www.frontiersin.org/
https://www.frontiersin.org/journals/psychiatry#articles


Huang et al. Potential NIBS Locations for ASD
stimulation (47). Moreover, Leehe et al. showed that anodal
tDCS targeting the right IFG (rIFG) can modulate participants'
emotional ratings to social touch.

As part of the TPJ, the AG integrates multi-sensory and
cognitive processes that are implicated in the theory of mind and
the attention network (48, 49). A recent study found that tDCS
on the TPJ can influence social-cognitive performance as
assessed by the Autism Spectrum Quotient (AQ) score (50).
These studies demonstrate the functional alterations of the IFG
and AG in ASD and provide support for using these regions as
treatment targets, particularly in language and attention-
related symptoms.

The motor system is another commonly used target for ASD
(5). We found the left precentral gyrus and SMA in both the
meta-analysis and seed-based analysis pipelines. A recent
systematic review (11) on TMS neurophysiology revealed
motor cortex excitatory and inhibitory imbalances in ASD,
thereby providing a basis for targeting these regions. Thus, we
speculate that the region may be associated with repetitive
behavior and other motor-related symptoms.

In addition, our results suggest that the mPFC, bilateral
MTG/STS, LOC, left SPL, and postcentral gyrus as other
overlapping results of the meta-analysis and seed-based
analysis should also be considered as potential targets for ASD
treatment. Numerous functional imaging studies have
demonstrated the important role of the prefrontal cortex in
social cognition (51, 52), and the mPFC is particularly
highlighted in the pathophysiology of ASD in both functional
imaging and gene expression studies (53). Indeed, Enticott et al.
Frontiers in Psychiatry | www.frontiersin.org 6
found that deep rTMS to the bilateral mPFC can reduce social-
related impairment and social-related anxiety in ASD patients
(37), indicating that the mPFC may be a target region for
these symptoms.

An extensive body of literature has shown the STS to be an
established node of a “social network” (54) involved in language
processing and social perception (55, 56), and it is a key region of
numerous functional differences between ASD and typically
developing individuals (57, 58). Beauchamp et al. reported that
applying single-pulse TMS to the STS could significantly disrupt
the McGurk effect (59), a perceptual phenomenon integrating
hearing and vision in speech perception. Moreover, Daniel et al.
found that theta burst TMS to the STS could produce a
significant change in resting-state functional connectivity
across the face-processing network (60). As findings have
indicated that individuals with ASD may suffer from a weak
McGurk effect and impaired face processing in daily settings (61,
62), these studies provide an interesting basis and guide for
future stimulation of the STS in ASD treatment. Adjacent to the
STG, the MTG is a brain area that is unique to humans (63).
Previous studies have demonstrated the function of the MTG in
language processing (64), and Acheson et al. reported a
modulation effect on the language network when applying
rTMS to the posterior MTG (64–67). These findings suggest
that the STG and MTGmay be potential targets for treating ASD
symptoms related to language processing and social perception.

The SPL plays an important role in many cognitive,
perceptive, and motor-related processes (68). In particular,
event-related fMRI studies have shown that the SPL is critical
FIGURE 2 | Potential locations for noninvasive brain stimulation (NIBS) in autism spectrum disorder (ASD) identified from the three pipelines. IFG, inferior frontal
gyrus; AG, angular gyrus; LOC, lateral occipital cortex; mPFC, medial prefrontal cortex; STS, anterior superior temporal sulcus; MTG, middle temporal gyrus; dlPFC,
dorsolateral prefrontal cortex; SMG, supramarginal gyrus; SPL, superior parietal lobule.
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for sensorimotor integration (69, 70), highlighting its potential
role in the pathophysiology of repetitive and restrictive behaviors
identified as additional core traits of ASD. Travers and colleagues
reported that individuals with ASD had reduced fMRI activation
in the SPL compared to typically developing individuals during
motor-linked implicit learning, and they found that the more
severe the traits of repetitive and restrictive behaviors, the greater
the decrease in activation in the SPL (71). Furthermore,
transcranial magnetic stimulation to the SPL was found to
affect the planning of reaching movements (72). The SPL may
therefore be considered a potential target for repetitive and
restrictive behaviors.

As part of the lateral occipital-temporal complex (73), the
LOC is an important region involved in object recognition (74)
and multiple sensory integration. Studies have indicated that
individuals with ASD may have difficulties integrating verbal and
nonverbal cues during social interactions (75). Our previous
study also found that reduced structural connectivity and
resting-state brain activity in the LOC is associated with social
communication deficits in boys with ASD (18).

Activation of the postcentral gyrus has been widely reported
in previous studies when subjects were observing another person
being touched (76, 77), suggesting the role of the postcentral
gyrus in empathetic sharing of somatosensations. These findings
suggest that this region may be used to relieve sensory-related
symptoms in children with ASD (76, 77).

Finally, it is worth noting that identifying these locations may
not necessarily be limited to NIBS, but may also be applied in other
interventions such as scalp acupuncture (stimulating the area of
scalp corresponding to brain regions believed to be involved in
disorder pathology using acupuncture needles) and transcutaneous
electrical nerve stimulation. Thus, results obtained from this study
may facilitate the development of acupuncture and other
therapeutic methods for the treatment of ASD.

There are several limitations to our study. First, the excitatory
and inhibitory natures of these identified regions are indefinable
usingmethods in this study. For someNIBS techniques like TMS, it
is important to know the direction of the stimulation. How to apply
andoptimize different treatmentmodalities to target the brain areas
identified in our study is beyond the scope of this manuscript.
Investigators should consider the characteristics of different tools
when attempting to stimulate these areas. Second, we do not know
which pipeline is optimal for identifying potential NIBS targets for
ASD. Regions identified frompipeline 1 are directly associatedwith
ASD pathophysiology, regions identified from pipeline 2 have the
strongest correlation with the ASD network, and regions identified
from pipeline 3 correlate with the largest number of ASD ROIs.
Understanding the derivative of these locations may help
researchers choose target regions during clinical practice. Third,
the meta-analysis conducted by Neurosynth is not flawless.
Potential errors may occur during automatic extraction and
synthesis of fMRI activation coordinates. However, several
supporting analyses have been conducted to confirm the validity
and sensitivity of Neurosynth-based meta-analysis and may
provide evidence for the feasibility of this method. Finally, we
applied peak z-scores to create spherical ROIs within these clusters.
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Asa result, eachROI shouldhave a similar size (voxelnumber), thus
avoiding the potential influence of cluster size. Nevertheless, using
original clusters as ROIs is also a reasonable method. One potential
limitation of using the cluster derived from Neurosynth is that the
cluster size may vary when different thresholds are applied.

In conclusion, we identified several potential NIBS targets and
their corresponding stimulation locations on the scalp for the
treatment of ASD. As ASD displays significant clinical
heterogeneity with respect to stimulation sites, a clear link
between neurobiological targets and clinical outcome
measurements may be a future step toward optimizing NIBS
for ASD treatment. Although further testing of these identified
targets is needed, these results may help clinicians optimize the
application of NIBS therapy in individuals with ASD.
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