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Abstract

microRNAs (miRNAs) are a new class of non-protein-coding small RNAs, which regulate the expression of
more than 30% protein-coding genes. The unique expression profiles of different miRNAs in different types
of cancers and at different stages in one cancer type suggest that miRNAs can function as novel biomarkers
for disease diagnostics and may present a new strategy for miRNA gene therapy. Anti-miRNAs and antisense
oligonucleotides (ASO) have been employed to inhibit specific miRNA expression in vitro and in vivo for inves-
tigational and clinical purposes. Although miRNA-based diagnostics and gene therapy are still in their infan-
cy, their huge potentials will meet our need for future disease diagnostics and gene therapy. High efficient
delivery of miRNAs into targeted sites, designing accurate anti-miRNA/ASOs, and related biosafety issues
are three major challenges in this field.
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Introduction

Disease diagnosis and gene therapy are two exciting
fields in modern medicine. To better protect people
from disease, many scientists have attempted to 
find new approaches for early detection of diseases
and curing these diseases, particularly for serious 

diseases, such as cancer. Although several biomark-
ers have been developed for detecting various dis-
eases, it is still difficult to diagnose many in very early
stages, especially cancers. Gene therapy is one new
technology for curing gene-related diseases, which
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was developed at the later 1980s and the early
1990s. Currently, more than 1000 clinic trials have
been reported to cure different diseases, including
autosomal dominant disorders, autosomal recessive
single gene disorders (such as haemophilia and cys-
tic fibrosis) and some forms of cancers (such as
brain tumours, colon cancer) [1]. However, due to the
potential toxicity of delivered gene fragments, effi-
ciency of carriers and other potential limitations, there
is still a long time before gene therapy becomes a
mature technology for curing human diseases.

A recently identified extensive class of small RNAs,
called microRNAs (miRNAs), may provide a new
insight in this field. Although they were discovered and
recognized just a few years ago, miRNAs have become
the most important gene regulators at the post tran-
scriptional level, and several studies indicated that
miRNAs regulate the expression of more than 30%
protein-coding genes [2, 3]. Exponentially growing
evidence demonstrates that miRNAs play a versatile
function in multiple biological and metabolic progress-
es although the functions are still unclear for a major-
ity of identified miRNAs [4–7]. Recent investigations
demonstrate that miRNAs have a unique expression
profiles in different cancer types at different stages
and play an important role in many diseases and viral
infections. These result suggests that miRNAs can
function as a novel biomarker for disease diagnostics
and perform a new strategy for miRNA gene therapy.

Brief history, biogenesis and the 

regulated mechanism of miRNAs

The first miRNA (lin-4) was discovered by Ambros
group at Harvard University (now at the Dartmouth
Medical School) in 1993 [8]. The story begins with
the identification of a mutation in the nematode
Caenorhabditis elegans, which disrupted the phase
change from larval to adult [9]. After more than 10
years of searching for a responsible protein, Lee and
colleagues (1993) found that a small non-protein-
coding RNA, called lin-4, is essential for the pheno-
type of this mutation. Further investigations demon-
strated that lin-4 negatively controls lin-14 gene
expression by binding to the 3� untranslated region
(3� UTR) of lin-14 mRNA via an antisense RNA-RNA
interaction [8, 10]. However, the important function of
miRNAs was not known until another miRNA (let-7)
was identified in a variety of organisms [11, 12] and

an extensive class of similar small RNAs were dis-
covered in C. elegans, Drosophila melanogaster and
humans [13–15]. Since then, miRNA-related research
has become one of the hottest research topics in
biology and medicine. It appears that miRNAs, gen-
erally speaking, exist and function in every biological
and metabolic progress in any eukaryotes; and more
than 5000 miRNAs have been identified and deposit-
ed in the miRNA database [16,17].

miRNAs are one class of non-protein-coding small
RNAs of 19–24 nucleotides. miRNA can be encoded
anywhere in the genome [18]. A majority (61%) of
miRNA genes are located at an intronic region of a
protein-coding genes; however, miRNA genes can
also be located in regions of exons or intergenes
[18]. miRNAs are transcribed from genes, called
miRNA genes, by RNA polymerase II (pol II); some
miRNAs can also be transcribed by pol III [19].
However, miRNA biogenesis is much more compli-
cated than mRNA biogenesis. Producing miRNAs is
a multiple steps of processes involving in several dif-
ferent enzymes. Firstly, miRNA genes are tran-
scribed into primary miRNAs (pri-miRNA) with 5’ cap
and 3’ poly A tails by pol II or pol III [20–22]. miRNA
genes can be located anywhere in the genome,
some in introns, some in exons and some also can
be found in intergenic regions [18]. Some miRNA
genes are transcribed individually; some are clus-
tered together and co-transcribed as a one poly-
cistronic transcript. The lengths of pri-miRNAs vary
from several tenths to more than 1000 nucleotides.
Then, a pri-miRNA is recognized by microprocessor
complex, which is composed of the nuclear RNase III
Drosha together with its double-stranded RNA bind-
ing domain (dsRBD) partner DiGeorge syndrome
critical region 8 (DGCR8), and cut into a miRNA pre-
cursor (pre-miRNA) with an approximately 70
nucleotide stem-loop structure [23–25]. The pre-
miRNAs with 2nd hairpin structure are then transport-
ed into cytoplasm by the transporter Exportin 5, and
this process is RanGTP dependent [26–30]. In the
cytoplasm, the pre-miRNAs were further processed
into the 19–24 nucleotide double-stranded
miRNA:miRNA* complex by another RNase III
enzyme, called Dicer, together with its dsRBD part-
ner TRBP [31–33]. Then, the mature miRNA
sequences enter the RNA-induced silence complex
(RISC) and target specific gene expression awhile
the opposite strand miRNA* sequences are degrad-
ed by unknown mechanism.
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There are many common characteristics between
miRNAs and other RNAs, particularly other small
RNAs. Usually when we consider a RNA as a
miRNA, it should have the following characteristics
[34]: (1) all mature miRNAs are processed from long
miRNA precursors by multiple processes, although
recent evidence suggested that in worm and fruit fly,
precursors of some miRNAs derived from excised
introns bypass Drosha cleavage step [35]; (2) miRNA
precursors can be formed into a secondary stem-
loop hairpin structure with high negative minimal
folding free energy; (3) miRNAs are located within
one arm of the secondary stem-loop hairpin struc-
tures; (4) there are no internal loops or bulges in the
miRNA:miRNA* complex. Small number of mis-
matches are allowed in miRNAs, but there is at least
16 base pairs between miRNAs and their miRNA*
sequences; (5) some miRNAs are highly evolutionar-
ily conserved from species to species [12, 36]; how-
ever, this is not universal characteristic for all
miRNAs. There are also many species-specific
miRNAs; (6) miRNA precursors have high minimal
folding free energy index (MFEI) [37]. Two recent
studies demonstrated that miRNA precursors have
much lower MFEI than that of other RNAs [37, 38].
The above are biogenesis criteria for identifying
miRNAs. In addition to the biogenesis criteria, at
least one of the following expression criteria also
should be considered when designing a new miRNA:
(7) miRNAs should be expressed and detected in at
least one tissue or organ by traditional molecular
technologies, including northern blotting, microarray
and/or real-time PCR; (8) miRNA expression is effect
by reduced the expression of miRNA biogenesis-
related enzymes, such as Dicer and Drosha.

In the past 7 years, incredible growth has been
seen in the field of miRNA biology as evidence by the
exponential number of miRNA-related manuscripts
published in a wide range of journals [39]. This
expansion is shown by the following several aspects:
(1) The total number of miRNAs has increased dra-
matically from 218 in 2002 to 5071 in 2007 according
to the public available miRBase miRNA database
[16, 17]; although the first miRNA was identified in
1993 in C. elegans [8], its function was not recog-
nized until 2000s when an extensive number of
miRNAs were identified from three different species
(C. elegans, fruit fly and human) [11–15]. Currently,
more than 400 miRNAs have been identified in
human and computational programs have predicted

that there are more than 1000 miRNA genes in the
human genome [40]. (2) miRNAs are widely distrib-
uted in almost all eukaryotic organisms and some
types of viruses, including plants and animals. (3)
miRNAs regulate the expression of more than 30%
of protein-coding genes; currently, miRNAs have
become one of the most important gene regulators.
(4) miRNAs control a multiple biological and meta-
bolic progresses, ranging from developmental timing,
organ and tissue development and signal transduc-
tion to diseases including cancers and human
immunodeficiency virus (HIV) infection. (5) New tech-
nologies, including computational and experimental
approaches, have been developed and applied to
identify miRNA genes and their targets; for example,
in the past several years, more than 10 computation-
al programs have been developed for predicting
miRNAs and their targets in plants and animals; in
the past several years, quantitative real time PCR
(RT qPCR) and miRNA microarray technology also
allow us to better understand the expression patterns
and functions of miRNAs. (6) miRNAs have huge
potentials for clinical applications, including diagnos-
tics and gene therapy.

There are three major currently-known mecha-
nisms for miRNA-mediated gene regulation: transla-
tion repression, direct mRNA degradation and
miRNA-mediated mRNA decay [41, 42]. Generally
speaking, which mechanism controls gene expres-
sion is entirely dependent on the degree of miRNA
complementarity to their targeted mRNAs. Although
both miRNAs and small interfering RNAs (siRNAs)
are incorporated into RISC and inhibit gene expres-
sion at the post transcriptional levels, their interac-
tions with targeted mRNAs are different [43]. siRNAs
perfectly bind to their targeted mRNAs and guide
mRNA cleavage endonucleolytically by RISC [44]. In
contrast, miRNAs bind, in most cases, with imperfect
complementarity to their targeted mRNAs and guide
mRNA translation repression [45, 46]. However,
there are also several miRNAs which directly
degrade their targeted mRNAs. For example, miR-
196 directly cleaves the mRNA of HOXB8 [47–49],
which plays important role in animal development
[50–53]. The exact mechanism for miRNA-mediated
translation repression is still unknown, and one pos-
sible mechanism is miRNA-RISC complex may inhib-
it the initiation and/or elongation of protein translation
by interacting with a various translation factors, such
as eIF4F [54–58]. Recently, several investigations

© 2008 The Authors
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also demonstrated that miRNAs mediate gene
expression by guiding mRNA decay through de-
adenylation and de-capping process of targeted
mRNAs [59–61], which is completely different from
normal translation repression and/or direct mRNA
degradation. It is well known that the 3� poly(A) tail
and 5� cap are very important for mRNA stability and
avoiding mRNA decay. When miRNAs guide the
removal of the 3� poly(A) tail and 5� cap of the target-
ed mRNAs, these targeted mRNAs will be quickly
degraded by cellular enzymes.

In a majority of cases, miRNAs bind to their target-
ed mRNAs at the 3� UTR with multiple sites. However,
miRNAs targeted to the 5� UTR and/or the open read-
ing frame (ORF) can also repress gene expression
[62–64]. miRNAs interact with their targeted mRNAs
primary through the six to eight nucleotides at the 5�
end of miRNAs, which is perfectly bound to the target-
ed mRNAs. This region is called ‘seed’ sequence in
miRNAs and is high conserved in a same miRNA
family from species to species [2, 65, 66]. This char-
acteristic has been employed to design different com-
putational programs for predicting miRNAs and their
targets in animals [65–69].

Roles of miRNAs in human 

disease and miRNAs as a novel

biomarker for cancer and disease

diagnostics

More and more evidence indicates that miRNAs play
an important role in many human diseases, ranging
widely from cancers, HIV to metabolic diseases. This
evidence includes, but not limited to, (1) a unique set
of miRNAs exists in a specific disease; (2) a unique
expression of miRNAs in a certain human disease and
(3) aberrant expression of miRNAs in human disease.

Cancers

The first evidence that miRNAs is related to cancers
came from Croce group. In their study, they found two
miRNA genes (miR-15 and miR-16) are located at
the chromosome 13q14 region, which is frequently
deleted or down-regulated in the majority (~68%) of
B cell chronic lymphocytic leukaemias (B-CLL) cases

[70]. Subsequent investigations demonstrated that
almost all cancers have alternative miRNA expres-
sion profile compared to their adjunct normal tissues.
These cancer types include several important can-
cers, for example lung cancer, leukaemia, brain can-
cer and breast cancer, which together cause the
majority of cancer-related death in the past decades.
Significant progress has been made on the relation-
ship between miRNAs and cancers, and the impor-
tant function of miRNAs in a variety of cancers has
been reviewed by several research groups [41,
71–73]. More interestingly, recently studies also
demonstrated tumour invasion and metastasis is
also initiated by miRNAs [74].

Table 1 summarizes the alternative miRNA
expression in the major cancer types. It should be
noted that for every cancer type, at least two miRNAs
are aberrantly expressed. Table 1 also clearly shows
that some miRNAs are overexpressed in cancers, for
example miR-17-92 is highly expressed in lung can-
cer cell; in this case the miRNA functions as onco-
gene. In contrast, some miRNAs, for example let-7 in
lung cancer tissue, are down-regulated, and there-
fore function as tumour suppresses genes. More
importantly, some miRNAs have different expression
profile pattern in different cancer types [75]. Several
studies also demonstrated that miRNA expression
aberration exists at the early stage of cancer patho-
genesis and the expression pattern varies as the car-
cinogenesis develops, suggesting the important
function of miRNAs in the developmental lineage and
differentiation state of the tested tumours [75]. This
alternative and unique expression pattern allows
miRNA become a novel biomarker for early detection
of cancers and may lead to clinical applications.

It is a challenge to identify a poorly differentiated
tumour [76]. To test the possible that miRNAs as a
biomarker for early detection of cancers, Lu and col-
leagues (2005) employed a new bead-based flow
cytometric miRNA expression profiling method to
analyse 17 poorly differentiated tumours. Their
results demonstrated that miRNAs can be used to
correctly diagnose and classify these non-histologi-
cal-diagnostic poorly differential tumours with a great
accuracy although the global levels of miRNAs were
lower than the more-differentiated tumours [75].
miRNA microarray expression profiles have been
correlated with survival of human lung adenocarcino-
mas, including those classified as disease stage I
[77]. Blenkiron and colleagues (2007) employed a

© 2008 The Authors
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Table 1 Cancer-related miRNAs and their aberrant expression

* Listed are miRNAs that are significantly changed in expression between cancer tissue and adjacent normal tissue ↑
overexpression; ↓ down-regulation

Cancer miRNAs involved * References

Brain cancer
(Glioblastoma)

miR-21↑, miR-221↑, miR-12↓, miR-181a,b,c↓ [166]
[150]

Breast cancer miR-21↑, miR-146↑, miR-155↑, miR-10b↓, miR-17-5p↓,
miR-125b↓, miR-145↓, miR-125b↓

[167]
[168]
[169]
[170]
[74]

Cholangiocarcinoma miR-21↑, miR-141↑, miR-200b↑ [171]

Chronic lymphocytic leukemia (CLL) miR-15↓, miR-16↓ [70]
[172]
[173]

Colorectal neoplasia miR-10a↑, miR-17-92↑, miR-20a↑, miR-31↑, miR-96↑,
miR-183↑, let-7↓, miR-143↓, miR-145↓

[174]
[170]
[109]
[175]
[176]
[174]

Diffuse large B cell lymphoma (DLBCL) miR-21↑, miR-155↑, miR-221↑ [80]

Head and neck cancer miR-21↑, miR-205↑ [177]

Hepatocellular carcinoma (HCC) miR-18↑, miR-224↑, miR-199↓,
miR-195↓, miR-200↓, miR-125↓

[178]

Lung cancer let-7↓, miR-17-92↑ [114]
[109]
[179]
[77]
[180]

Lymphomas miR-155↑, miR-17-92↑ [181]
[182]
[183]
[184]

Ovarian cancer miR-200a,b,c↑, miR-141↑, miR-199a↓, miR-140↓, 
miR-145↓, miR-125b↓

[185]

Pancreatic cancer miR-221↑, miR-181a↑, miR-21↑, miR148a,b↓ [186]

Papillary thyroid carcinoma miR-221↑, miR-222↑, miR-146↑, miR-181↑ [183]
[187]

Pituitary adenomas miR-212↑, miR-026a↑, miR-150↑, miR-152↑, miR-191↑,
miR-192↑, miR-024-1↓, miR-098↓, miR-15a↓, miR-16-1↓

[188]
[189]

Prostate cancer let-7↑, miR-195↑, miR-203↑, miR-128a↓ [170]

Stomach cancer miR-21↑, miR-103↑, miR223↑, miR-218↓ [170]

Testicular germ cell tumours miR-372↑, miR-373↑ [190]
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bead-based flow cytometric miRNA expression pro-
filing method to analyse the expression profiles of
309 human miRNAs in human breast and breast
tumours. Their results show that miRNAs had differ-
ent expression profiles in the different stages of
human breast cancers and individual miRNAs are
associated with clinicopathological factors [78].
According to their finding, they classified the breast
tumours into four subtypes: Luminal A, Luminal B,
Basal-like, HER2+ and Normal-like. In an independ-
ent data set, miRNAs could be employed to classify
basal versus luminal tumour subtypes suggesting
that miRNA expression profiling might be a suitable
platform to classify breast cancer into prognostic
molecular subtypes [78]. One recent study indicated
that miRNA let-7 has a different expression profile in
two differentiation stages (SC1 and SC2) of human
tumour cell line NCI 60, and SC1 cells express low
and SC2 cells high levels of miRNA let-7, respective-
ly, suggesting that let-7 is a marker for less advanced
cancers [79]. miRNA expression profiles can also be
used to distinguish two subtypes of diffuse large B
cell lymphoma (DLBCL): germinal center B cell-like
(GCB) and activated B cell-like (ABC) DLBCL, in
which miR-21, miR-155 and miR-221 were more
highly expressed in ABC-type than GCB-type DLBCL
[80]. Those suggest that miRNA expression profile is
a feasible novel biomarker for early detection of can-
cers, particularly for poorly understand tumours.

Metabolic disease

In the past several years, metabolic disease (such as
diabetes) has become the attention of scientists and
a major challenge for global health. Any process that
disrupts normal metabolism can cause metabolic dis-
ease. Several studies demonstrated that miRNAs
may have an important function in metabolism. The
first evidence for miRNA function in metabolism came
from a forward genetic screen in the fruit fly [81]. Xu
and colleagues (2003) observed that loss-of-function
of miR-14 significantly increased the amount of total
fly body triacylglycerides. Although the overall cellular
architecture was normal, the adipocyte lipid droplets
were greatly enlarged in mir-14Δ1 flies and this phe-
notype was suppressed and triacylglyceride contain
was decreased in fly body by over-expressed miR-14
[81]. A subsequent study demonstrated that miR-278
plays a role in the control of insulin production and

loss-of-function of miR-278 elevated insulin produc-
tion and circulating sugar in the fruit fly [82]. Another
study demonstrated that islet-specific miR-375 regu-
lated glucose-dependent insulin secretion [83]. In this
study, Poy and colleague (2004) show that overex-
pression of miR-375 inhibited glucose-induced insulin
secretion. In conversion, down-regulated miR-375
promoted insulin secretion. It is obvious that diabetes
is related to insulin resistance. This suggests that
miR-278 and miR-375 is a regulator of insulin secre-
tion and may become a novel pharmacological target
for the treatment of diabetes [83].

A recent study demonstrated that another miRNA,
miR-122, regulated lipid metabolism in liver [84].
Esau and colleagues (2006) observed the decrease
in plasma cholesterol level and a significant improve-
ment in liver steatosis in mice by inhibiting miR-122
expression through an antisense oligonucleotide
(ASO) technique. This phenomenon was also
observed by Krutzfeldt and colleagues [85]. They
employed a new class of miRNA inhibitors (called
antagomirs) to knockdown miR-122 and they found
that down-regulation of miR-122 significantly
decreased the plasma cholesterol levels after four
days of treatment. All these evidences suggest that
miR-122 is a key regulator of cholesterol and fatty-
acid metabolism in the adult liver and an attractive
therapeutic target for metabolic disease [84, 86, 87].

miRNAs also participate amino acid metabolism. In
a bioinformatics paper, Stark and colleagues predict-
ed that several amino-acid-metabolism-related
enzymes are targeted by several miRNAs [88]. A fol-
lowed study demonstrated that miR-29b controls the
amount of branched chain (�-ketoacid dehydrogenase
complex [89], which play an important role in the first
irreversible step in branched-chain amino acid synthe-
sis. As we know, several human metabolic diseases
are related to a specific amino acid synthesis, this sug-
gests that a specific miRNA may become a therapeu-
tic target for amino-acid-related metabolic disease.

Virus infection

It is well known that plants and some animals employ
the RNA interference (RNAi) pathway to against viral
infection [90]. Several recent investigations demon-
strated that miRNAs, with a similar gene regulation
mechanism to RNAi, also play an important role in
both animal and plant response to viral infection

© 2008 The Authors
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[91–94]. Many miRNAs have also identified in sever-
al viruses, including HIV, Epstein Barr virus (EBV)
and human cytomegalovirus (HCMV), by computa-
tional and experimental methods [38, 95–99],
although the mechanisms for virus-encoded miRNA
biogenesis are still unclear.

One important function of miRNAs is to control
viral replication when the virus infects a cell and to
further control virus infection. For example, hepatitis
C virus (HCV) is a small (50 nm in size) single-
stranded positive-sense RNA virus belonging to the
family Flaviviridae, which is one of the major causes
of chronic liver disease, including cirrhosis and live
cancer, with an estimated 170 million people infected
[100]. A recent study shows that a liver-specific
miRNA miR-122 modulates HCV RNA abundance
and HCV replication. In that study, the authors
observed that knockdown miR-122 using an
antagomir antisense 2’-O-methylated RNA oligonu-
cleotide (2’-OMe-anti-miR-122) resulted in a signifi-
cant loss (about 80%) of autonomously replicating
hepatitis C viral RNAs [101]. However, studies with
replication-defective RNAs demonstrated that miR-
122 did not significantly influence mRNA translation
or RNA stability, suggesting that miR-122 is likely to
facilitate replication of the viral RNA [101]. This con-
clusion is also confirmed by the same study on two
types of human hepatocytes: Huh7 and HepG2, in
which Jopling and colleagues (2005) only observed
HCV RNA was only replicated in Huh7 cells (miR-

122 positive), but not in HepG2 cells (miR-122 nega-
tive). A further study demonstrated that a partial
sequence in the 5’ non-coding region (NCR) is
responsible for miR-122 targeting although there is
also a potential binding sequence in 3’NCR of HCV
RNA [101]. This system is remarkably different from
previous observations that a majority of miRNAs tar-
get the 3’ UTR to repress protein translation or to
degrade the targeted mRNAs in animals [42].
Currently, the molecular mechanism that miR-122
regulate HCV replication is still unclear. However,
due to this phenomena and the fact those current
therapies against HCV are frequently ineffective,
miR-122 may present a novel alternative target for
antiviral intervention and also provide a possible
antiviral tool against a rapidly evolving viral genome.

Host miRNAs also can target a specific virus RNA
to restrict viral infection and protect cell itself. A recent
study demonstrated that a cellular miRNA (miR-32)
effectively restricts the accumulation of the retrovirus
primate foamy virus type 1 (PFV-1) in human cells by
targeting a PFV-1-encoding protein, Tas [91].

In addition to the diseases reviewed above,
miRNAs also regulate several other diseases (Table
2). For example, miRNAs regulate brain and neuron
development [102–104]; aberrant expression of
these miRNAs are associated with several neuronal
diseases [105], including Tourette’s syndrome [106],
Alzheimer’s disease [107], schizophrenia and
schizoaffective disorder [108].

© 2008 The Authors
Journal compilation © 2008 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd

Table 2 Disease-related miRNAs and their aberrant expression

* ↑ overexpression; ↓ down-regulation.

Disease miRNAs involved * Reference

Cardiac hypertrophy miR-1↓, miR-133↓ [132]
[191]

Alzheimer’s disease miR124a↓, miR-9↑, miR-128↑ [107]

Psoriasis miR-203↑, miR-146a↑, miR-21↑, miR-125b↑ [192]

HCV infection miR-122↑ [101]

PFV-1 infection miR-32↓ [91]

Tourette's syndrome (TS) miR-189↑ [106]

Parkinson's disease miR-133b↓ [193]

Schizophrenia miR-130b [194]
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miRNAs as new targets for gene

therapy

The unique aberrant (up- or down) expression of
specific miRNAs in a specific disease state suggests
new targets and strategies for gene therapy. As the
expression profiles of miRNAs in certain diseases,
by overexpression or down-regulation of the specific
miRNAs it may become possible to treat and perhaps
even cure the specific genetic disease.

miRNAs as a target for gene therapy

Cancers

Cancer is one of the most obstinate group of dis-
eases currently and in the past several decades. To
date, the most popular therapeutic tool is surgical
removal of the tumour with subsequent chemothera-
py and/or radiation therapy. However, the cure rate is
low, particularly for a majority of malignant tumours.
The surprising aberrant expression of specific
miRNAs in a specific cancer type suggests that those
miRNAs may serve as a novel target for cancer treat-
ment and a possible new approach for gene therapy.

Let-7 is a remarkable miRNA in lung cancer.
Several investigations demonstrated that let-7
expression level is associated with the pathogenesis
of lung cancer and the expression of let-7 is signifi-
cantly reduced in lung cancer tissues [109–114].
Takamizawa et al. (2004) found that let-7 was poorly
expressed in lung cancers and reduced let-7 expres-
sion was significantly associated with shortened after
operative survival independent of disease stage
[114]. More interesting and importantly, an in vitro
study show that transient overexpression of miRNA
let-7 in the A549 lung adenocarcinoma cell lines
inhibited lung cancer cell proliferation [114]. Recent
studies indicate that let-7 inhibits tumour growth by
targeting several oncogenes including RAS and high-
mobility group A2 (HMGA2) [109, 111, 112, 114,
115]. Hmgo2 was found to be expressed in a wide
variety of benign and malignant tumours [116–122]
and overexpression of HMGA2 gene caused the
onset of specific tumours [123]. miRNA let-7 regu-
lates the HMGA2 gene expression by binding to
seven conserved HMGA2 3’ UTR complementary
sites [2, 111]. Disrupting the bind pairing between let-

7 and HMGA2 caused HMGA2 overexpression,
which enhanced anchorage-independent growth in
several cell lines, and further promoted oncogenic
transformation [112]. These results suggest that over-
expressing miRNA let-7 may inhibit lung cancer
growth and even cure lung cancer in the future.
However, this possibility still needs to be tested in vivo
in a live animal model, and finally in clinical trials.

Cardiac diseases

Cardiac disease is one primary cause of morbidity
and mortality in industrialized countries as well as
the most frequent reason for non-infectious mortality
in infants [124–126]. Recently, several investigations
demonstrated that miRNAs play an important role in
cardiac development and contractility, and several
heart diseases are associated with the aberrant
expression of certain miRNAs [124, 127–133].
Cardiac-specific overexpression of miR-1 inhibits
cardiomyocyte in the embryonic heart [133] and
exacerbated arrhythmogenesis [131]. In contrast,
inhibiting miR-1 expression in infarcted rat hearts
relieved arrhythmogenesis [131]. These suggest that
miR-1 may have an important pathophysiological
functions in heart failure and may serve as a poten-
tial antiarrhythmic target for gene therapy.

Recent studies show that another miRNA, miR-
133, was associated with cardiac hypertrophy [129,
132, 134, 135]. Overexpression of miR-133 inhibits
hypertrophic symptom in both neonatal and adult
mouse myocytes [132]. In contrast, down regulation
of miR-133 enhances hypertrophic growth in mouse
heart [132]. This suggests that miR-133 controls the
pathogenesis of heart hypertrophy and overexpress-
ing miR-133 in heart hypertrophic patients may serve
as a novel gene therapy for preventing pathological
cardiac hypertrophy.

Strategies for targeting miRNAs

There are two critical processes for targeting a spe-
cific miRNA: designing molecules for targeting
miRNAs and delivering these molecules to the spe-
cific targeted sites.

Designing molecules for targeting miRNAs

Antisense oligonucleotide (ASO) technology is a
powerful technique to selectively modify gene

© 2008 The Authors
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expression in vitro and in vivo. In the past several
years, ASO technology has been employed to clinic
application on gene therapy for human disease [136].
Currently, ASOs are becoming the most accepted
approaches technology for controlling miRNA
expression experimentally and/or therapeutically
[43]. According to the specific characteristics of
miRNAs, ASOs have been chemically modified 
to single-stranded RNA analogues complementary
to specific miRNAs, and a new name has been given
to these modified ASOs: anti-miRNA ASOs (AMOs).
Some people also termed these olignucleotides as
antagomirs [85]. In the past several years, many
groups have employed the AMOs/antagomirs tech-
nology to inhibit miRNA activity in both in vitro and in
vivo studies for investigating the function of miRNAs
and their potential application on the clinic.

To the best of our knowledge, the first report on
inhibiting miRNAs using AMOs came from a group of
scientists working in Greece. In their study, antisense
DNA oligonucleotides complementary to 11 miRNAs
were synthesized and injected to Drosophila embryos;
after injection, a variety of developmental defects were
observed, suggesting that AMOs inhibited miRNA
activity [137]. However, this study and a later study
show that unmodified DNA oligonucleotides were not
enough to inhibit miRNA activity [137, 138] possibly
due to the low-binding affinity between DNA oligonu-
cleotides and miRNAs. In the following years, several
investigations have been performed to modify AMOs
for increasing the AMO-binding affinity for miRNAs
and further inhibiting miRNA activity in vitro and in
vivo. The most effective modifications are ASOs with
the addition of a chemical group to the 2’-hydroxyl
group, locked nucleic acid (LNA) ASOs and ASO with
phosphorothioate backbone modification [139].
However, in a majority of cases, adding a chemical
group and modifying the backbone with phosphorami-
date are used together to further increase the efficien-
cy of AMO inhibition [84, 85].

Three successful modifications with addition of a
chemical group to the 2’-hydroxyl group are 2’-O-
methyl (2’-OMe), 2’-O-methoxyethyl (2’-MOE) and 2’-
flouro (2’-F). 2’-OMe is one of the oldest, simplest
and most frequently used chemicals to modify
oligonucleotides; in this modification, the methyl
group enhance RNA resistance to nuclease cleavage
and improve AMO-binding affinity to miRNAs [139].
Krutzfeldt and colleagues (2005) employed 2’-OMe
and phosphoramidate to modify AMO and synthe-

sized antogomir-122, an AMO specifically inhibiting a
live-specific miR-122. After injection of antagomir-
122 to normal mice, expression level of miR-122 was
significantly decreased; in contrast, the mRNA levels
of miR-122 targeted genes are increased in liver by
up to 6.8 fold [85]. In a same study, Krutzfeldt and
colleagues (2005) also observed that the same
antagomir technology significantly reduced the
expression of three other miRNAs (miR-16, miR-192
and miR-194) in 11 different tissues or organs (liver,
lung, kidney, heart, intestine, fat, skin, bone marrow,
muscle, ovaries and adrenal). Almost at a same time,
another independent laboratory also significantly
inhibited miR-122 expression in mice with a 2’-MOE
phosphorothioat-modified ASO [84]. Both studies
found that silencing miR-122 with antisense AMO
reduced plasma cholesterol levels [84, 85].

LNA-modified ASOs is structurally different from
2’-O-modifed ASOs. In LNA-modified ASOs, the 2’-
oxygen is bridged to the 4’-postion of ribose via a
methylene linker to form a rigid bicycle [139–141].
Due to its unprecedented affinity, good or even
improved mismatch discrimination, low toxicity and
increased metabolic stability, LNA has attracted the
attention of scientists for in vivo applications of inhi-
bition of miRNA activity [141]. In the past several
years, LNA technology has been employed to detect
miRNA function, to identify miRNA targets, and to
inhibit miRNA activity by LNA-modified ASOs/AMOs
[142–149]. A recent study demonstrated that LNA-
modified oligonucleotides (ASOs) stoichiometrically
and reliably inhibited miRNAs with high specificity in
a heterologous human embryonic kidney cell line
HEK293 and in fruit fly cells [148]. A mixture of 2’-O-
methyl- and LNA-modified ASOs was also employed
to inhibit miR-21 expression for understanding the
function of miRNAs in apoptosis progress in human
glioblastoma cells [150].

To further investigate the potential application of
ASOs and AMOs/antagomirs, the subcellular local-
ization and effect factors on ASOs/AMOs have been
studied. Davis and colleagues (2006) evaluated the
effect of 2’-sugar and backbone ASO modification on
anti-miRNA activity of ASO/AMO using a luciferase
reporter mRNA assay in Hela cells. Their results
demonstrated that all 2’-sugar substitution 
significantly increased AMO-binding affinity to
miRNAs and increased the ASO/AMO efficiency on
silencing miRNA activities [151]. High activity of
AMOs/antagomirs required an optimal number 
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of phosphorothioate modifications and minimum
length (>19 nt) [152].

The above evidence suggests that ASOs/
AMOs/antagomirs may become a powerful tool to
inhibit specific miRNA activity and a therapeutic
strategy for miRNA therapy in a specific human dis-
ease, including cancers.

Delivering molecules to specific targeted sites

The success of miRNA therapy depends on effective
systems to deliver ASOs/AMOs/antagomirs to the
targeted sites. RNAi has been employed for gene
therapy in the past 5 years [153]. Because both
RNAi-mediated gene therapy and miRNA therapy
are based on the development of antisense thera-
peutics that knockdown gene expression after tran-
scription, and miRNAs are also chemically identical
to small interfering RNAs (siRNAs), all methods used
in RNAi gene therapy can be theoretically employed
to deliver therapeutic molecules in miRNA therapy.

It is well established that cholesterol-conjugated
miRNA and siRNAs can be delivered into cell and
cause gene silence in vivo. Recently, Wolfrum and
colleagues (2007) demonstrated that the efficiency of
siRNA delivery into cells depend on the interactions
with lipoprotein particles, lipoprotein receptors and
transmembrane proteins. siRNA conjugation to
lipophilic molecules increased the efficiency of siRNA
delivery into cells. High-density lipoprotein (HDL) tar-
gets siRNA delivery into liver, gut, kidney and
steroidogenic organs; however, low-density lipopro-
tein (LDL) delivers siRNA primarily to the liver [154].
Therefore, these molecules will provide a potential
mechanism for miRNA delivery into certain tissues.

Viruses have been widely used as vectors to deliv-
er siRNA and/or short haipin RNA (shRNA) into cells
for gene function studies in vitro and in vivo. For
example, modified adenovirus, adeno-associated
virus (AAV) and lentivirus have been employed to
successfully deliver siRNA/shRNA into cells and sta-
bly integrate siRNA/shRNA into targeted genome
[155–158]. This method also has been employed
successfully to deliver miRNAs into cells in vitro or
animals in vivo. Krutzfeldt and colleagues (2005)
inserted miR-122 and antagomirs into adenovirus
genome and then transferred them into mice by
direct intravenous injection to study the function of
miRNAs and the efficiency of antagomir-induced
miRNA silencing.

Currently, several companies have developed sev-
eral RNAi expression vectors, which are also capable
to deliver miRNAs into cells and to integrate into the
genome. To enhance the delivery of miRNA-vectors,
specific chemicals are also being developed for this
transfection. Currently, more and more scientists are
employing the commercially-developed vectors and
chemical reagents for delivering miRNAs into cells.

Concluding remarks and future

perspectives

Rapid progression of miRNA-related research has
been revealing the huge potential of miRNAs as
novel diagnostic and gene therapy tool as well as a
novel class of drug targets for cancers, anti-virals
and potentially many other diseases. However, many
miRNA-related therapeutic fields are still in their
infancy. Before miRNA therapy can become a wide-
spread therapeutic tool for detecting and treating dis-
eases, including cancers, new technologies and new
strategies need to be developed. It is likely that much
significant progress will be achieved in the therapeu-
tic usage of miRNAs in the next few years.

Early detection of cancers

Although several studies demonstrated that miRNA
expression profile can be used to identify and classi-
fy poor-differentiated tumours, there remains much
work before it can be directly applied to clinical diag-
nostics. Currently, a majority of studies focus on the
comparison of miRNA expression profiles between
tumour and normal tissues, but it is more useful to
correlate miRNA expression level with tumour sub-
types.This issue has beginning to attract the attention
of scientists, and several studies started to show the
promise in this direction [78, 79, 159]. Recently, a
bead-based flow cytometric miRNA expression profil-
ing method was employed to identify the four sub-
types of breast cancers: Luminal A, Luminal B, Basal-
like, HER2+ and Normal-like [78]; a real time qPCR
was used to identify the differentiation stages of ovar-
ian cancer [79] and breast cancer [159] based on the
miRNA expression profiles. Tissue sampling is anoth-
er big issue for diagnostic applications. It is probably
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not a good strategy to collect samples from all possi-
ble tissues or organs due to their heterogeneity and
specific location in body. A more useful strategy is col-
lecting blood samples to use for miRNA expression
profile analysis, and correlating those results with dis-
ease state. Such a data set will make a huge contribu-
tion for approaching direct diagnostics. Thus, more
data need to be gathered and perhaps more new
miRNAs need to be identified in the next few years. In
addition, we need to focus on identifying new
approaches for developing biomarker kits for early
monitoring of potential carcinogenesis.

Delivery miRNAs and/or anti-miRNAs

for miRNA gene therapy

As mentioned, RNAi-based gene therapy has been
in use for several years, and many strategies and
technologies for delivering small interfering RNA
(siRNA) into cells also can be used in miRNA deliv-
ery. However, novel strategies may need to be devel-
oped for miRNA therapy based on the unique char-
acteristics and small size of miRNAs. A major chal-
lenge for miRNA therapy is to deliver miRNAs/anti-
miRNAs into a specific tissue and express them at
certain times for targeting a specific gene and mini-
mize their introduction into other non-targeted sites.

Although ASOs/AMOs are a powerful tool to silence
miRNA activity in miRNA functional studies, the ASO-
mediated miRNA silencing mechanism is still unclear
The efficiency of ASOs/AMOs on therapeutic usage is
dependent on miRNA silence mechanism and miRNA
activity in vivo [152]. Therefore, the better our under-
standing of the miRNA silencing mechanism, the more
efficient strategies we may develop in the future.

Another challenge is that certain tissues/organs
may be refractory to miRNA therapy. Possibly due to
the blood–brain barrier, systemic infusion of
antagomir did not change the miRNA levels in the
brain [152]. Thus, more efficient delivery methods
and/or strategies need to be developed for brain dis-
ease therapy, such as brain tumours.

Potential toxicity effect of miRNA 

gene therapy

Before miRNA gene therapy can be used clinically, the
potential toxicity effect and immune responses of deliv-

ered miRNAs or anti-miRNAs should be fully investi-
gated. At the early stage of gene therapy, because of
the dose-dependent induction of both innate and adap-
tive immune responses, delivered vectors and/or
genes have resulted in inflammatory toxicity in certain
patients [160]; one of the most serious example is to
cause patient death after an adenoviral gene transfer
because of fatal systemic inflammatory response
[161]. miRNA therapy follows the similar strategy as tra-
ditional gene therapy, and whether or not miRNA ther-
apy causes innate and/or adaptive immune response is
still unclear because of current limited data. In most
gene therapy applications, a very large amount of
agent, for example miRNAs, is introduced into cells.
How large amounts of miRNA affects the homologous
miRNA pathway in cells is unknown. A recent study
demonstrated that overexpression of shRNA in mice
saturated the miRNA pathway and caused severe tox-
icity in liver [162]. It is possible that introducing a large
amount of miRNA caused feedback inhibition that inter-
rupted the normal miRNA synthesis pathway.This pos-
sibility raises the safety concern about gene therapy
including miRNA therapy.

Another issue is that a majority of current studies are
performed for a short-term period, and we need to
determine what will happen if a specific miRNA is
down-/up-regulated for a long-term period. A recent
study demonstrated that miR-122 promotes the HCV
RNA replication and may contribute to chronic liver dis-
ease; blocking miR-122 expression using antagomir
inhibited HCV replication in human hepatocytes [101].
Based on this finding, several research groups propose
that blocking miR-122 may become a novel strategy for
anti-HCV therapy. Recently, two impendent groups
found the antagomirs can efficiently inhibit the expres-
sion of miR-122 and no apparent toxicity was observed
in both studies based on a limited study period [84, 85].
However, Kutay and colleagues (2006) observed that
reduced expression of miR-122 is associated with neo-
plastic transformation in rodent and human cells after a
long-term treatment [163]. This suggests that more
experiments should be performed before miRNA ther-
apy can be tested in a clinical trial.

Potential effect of miRNAs on 

non-target genes

Many miRNAs have hundreds of conserved targets
as well as additional non-conserved targets [12, 164,
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165]; miRNAs regulate specific targets by expressing
at different times in different tissue. However, it is a
challenge for miRNA therapy to control the delivery
of miRNAs or other molecules expressing at a spe-
cific cellular compartment, such as ER and cytosol.
For a majority of cases, miRNAs regulate human dis-
ease by targeting a specific gene, so it is also a chal-
lenge to avoid delivering miRNAs to other non-target-
ed genes instead of the targeted genes. Because
many miRNA targets are unknown and/or poorly
understood, it is difficult to predict the potential effect
of miRNAs on non-targeted genes.

Currently, more than 500 miRNAs are already
found in human genome [17] and computational
approach predicts that human may have more than
1000 miRNAs [40]. Computational analysis also
demonstrated that more than 30% of protein-coding
genes are regulated by at least one miRNAs at the
post transcriptional level [2, 3]. In a majority of cases,
several miRNAs can regulate the same gene. How
these miRNAs relate with each other and what kind
of mechanisms control these miRNAs for targeting a
same gene are still unclear. When performing
miRNA-mediated gene therapy, the interaction of
these miRNAs also needs to be considered.
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