
Research Article
Identification of Prognostic Markers of
N6-Methylandenosine-Related Noncoding RNAs in
Non-Small-Cell Lung Cancer

Zexin Zhang ,1 Jing Li ,2 Ke Lu ,1 Wenfeng Wu ,3 Ziyi Huang ,3 Chi Zhang ,1

Wei Guo ,1 Jiayin Li ,4 and Lizhu Lin 4,5

1
e First Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
2
e First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
3
e Second Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
4
e First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
5Cancer Project Team of China Center for Evidence Based Traditional Chinese Medicine, Guangzhou, China

Correspondence should be addressed to Lizhu Lin; linlizhu@gzucm.edu.cn

Received 17 January 2022; Accepted 23 February 2022; Published 1 April 2022

Academic Editor: Dong-Hua Yang

Copyright © 2022 Zexin Zhang et al. ,is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. Non-small-cell lung cancer (NSCLC) is a major type of lung carcinoma that threatens the health and life of humans
worldwide. We aimed to establish an n6-methyladenosine (m6A)-relevant ncRNA model to effectively evaluate the outcome of
patients.Methods. m6A-Related ncRNAs (lncRNA/miRNA) were acquired from the UCSC Xena database. Pearson’s correlation
analysis among 21 m6A regulatory factors and ncRNAs were implemented to explore m6A-relevant ncRNAs. Weighted gene co-
expression network analysis (WGCNA) identified hub modules of gene associated with prognosis of NSCLC patients. Univariate
Cox regression analysis identified 80 m6A-related ncRNAs. Least absolute shrinkage and selector operation (LASSO) filtered out
redundant factors and established a risk score model (m6A-NSCLC) in the TCGA training data set. Validation of prognostic
ability was performed using testing data sets from the TCGA database. We also conducted a correlation analysis among the risk
score and different clinical traits. Both univariate and multivariate Cox analyses were combined to verify prognostic factors which
have independent value, and a nomogram on the basis of m6A-NSCLC risk scores and clinical traits was constructed to assess the
prognosis of patients. In addition, we screened differentially expressed genes (DEGs) based on different risk scores and performed
enrichment analysis. Finally, 21 m6A regulators were detected to be differentially expressed between two risk groups. Results. An
m6A-NSCLC risk model with 18 ncRNAs was constructed. By comparison with low-risk patients, high-risk score patients had
poor prognosis.,e distribution of risk score in the tumor size and extent (T), number of near lymph nodes (N), clinical stage, sex,
and tumor types was significantly different. ,e risk score could act as an independent prognostic factor with the nomogram
assessing overall survival in NSCLC. DEGs inherent to cell movement and immune regulation were involved in NSCLC de-
velopment. Furthermore, 18 of 21 m6A regulators were differentially expressed, implying their correlation to survival prognosis.
Conclusion. ,e m6A-NSCLC could be effectively utilized for evaluation of prognosis of patients.

1. Introduction

Lung cancer is one of the most prevalent malignancies
threatening the health and life of humans in the world.
Studies have demonstrated that non-small-cell lung cancer
(NSCLC) is the major pathological type of lung cancer, with
lung adenocarcinoma (LUAD) and lung squamous cell

carcinoma (LUSC) accounting for approximately 85% of
NSCLC cases [1]. ,e prognosis for patients with LUAD is
very poor, with a 5-year survival rate of less than 15% [2]. In
addition, the incidence rate of LUSC, which has a poor
response to therapy, high recurrence rates, and poor
prognosis, is second only to that of LUAD [3, 4]. At present,
surgery remains the main approach for the treatment of
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NSCLC. However, adjuvant treatments mainly involve
chemotherapy, targeted therapy, and immunotherapy [5, 6].
Despite the apparent shrinkage in tumor volume and size
and prolonging patient survival, these treatments have been
reported to cause unavoidable deleterious side-effects, such
as nausea, bone marrow suppression, and vomiting, which
seriously impact the quality of life in NSCLC patients [7–9].

To date, studies on n6-methyladenosine (m6A) are on-
going. In particular, m6A has been proved to play a pivotal
role in the splicing, export, translation, and stability of RNAs
[10]. More importantly, the m6A modification which is
known to be regulated by various factors, including “readers”
(signal transducers), “writers” (methyltransferases), and
“erasers” (demethylases), was shown to be highly relevant to
the onset and progression of NSCLC [11]. For example, Jin
et al. revealed that methyltransferase like 3 (METTL3) fa-
cilitated expression and activity of Yes-associated protein
(YAP), inducing drug resistance and metastasis of NSCLC
[12], whereas ALKBH5 repressed the expression of YT521-B
homology domain-containing family (YTHDF)-mediated
YAP and inhibited the activity of miR-107/LATS2-mediated
YAP, thus suppressing the growth and metastasis of lung
tumors [13]. Shi et al. experimentally confirmed that lacking
of YTHDF1 was able to restrain NSCLC cells proliferating
and xenograft tumors formating [14].

Furthermore, noncoding RNAs (ncRNA: lncRNA/
miRNA) have been demonstrated to play pivotal roles in the
progression of a lot of cancers, and multiple studies have
demonstrated that dysregulation of ncRNAs could affect the
progression of NSCLC [15]. In the cytoplasm, lncRNAs are
known to influence the stability and translated regulation of
mRNA mainly through the adsorption of miRNAs [16].
Moreover, lncRNAs have been shown to bind not only their
own miRNAs, but also miRNA binding sites on their target
mRNAs, hence further regulating the activity of their target
miRNAs [17]. In contrast, miRNAs are known to target
lncRNAs to alter their stability, thereby mediating their
abundance, and affecting different cellular processes [18].
,erefore, the attention for lncRNAs and miRNAs has in-
creased in tumor studies. For instance, knockdown of the
DLEU2 lncRNA was found to inhibit the expression of
SOX9 and the onset and development of NSCLC through
up-regulation of miR-30c-5p [19]. High levels of SNHG1
were shown to act as a tumorigenic lncRNA, accelerating the
occurrence of NSCLC tumors by curbing miR-101-3p and
actuating the Wnt/β-catenin pathway [20]. Moreover,
bladder-cancer-associated transcript 1 (BLACAT1) was re-
ported to stimulate the expression of ATG7 by miR-17 and
promote autophagy and drug resistance in NSCLC cancer
cells [21]. Although the interaction between m6A modifi-
cations and the dysregulation of ncRNAs remains unknown,
few researches have attempted to delve the mechanism of
m6A-related ncRNAs in NSCLC. ,erefore, understanding
the mechanism by which m6A-relevant ncRNAs in the
progression of NSCLC is able to help identify biomarkers
and might also serve as a useful therapeutic strategy.

In this study, we identifiedm6A-relevant ncRNAs for the
prognosis of NSCLC based on TCGA training (n� 705) and
TCGA testing (n� 301) data sets, using bioinformatics and

statistical analyses. Moreover, we established an m6A-rel-
evant ncRNA risk score model (m6A-NSCLC) on the basis
of the ability of 18 m6A-related ncRNAs to predict the
survival status of patients with NSCLC and identified in-
dependent prognostic factors and constructed a nomogram
for predicting overall survival (OS) in NSCLC patients.
Furthermore, differentially expressed genes (DEGs) in-
volved in enrichment analysis were analyzed to explore the
connections between cell movement and immune regulation
and the development of carcinoma. Finally, a total of 21 m6A
regulatory factors were investigated to determine whether
differences between the two risk groups are significant.

2. Materials and Methods

2.1. Data Downloading and Processing from UCSC Xena
Database. ,e expression, phenotype, and survival data of
NSCLC were obtained from the UCSC Xena database (https://
xenabrowser.net/), while information on ncRNAswas acquired
from the GTF file (Homosapiens.GRCh38.99.gtf.gz) down-
loaded from the Ensemble database (http://www.ensembl.org/
info/data/ftp/index.html). TCGA-NSCLC included both
LUAD and LUSC cases. Eventually, TCGA data sets corre-
sponding to 1006 patients with NSCLCwere obtained from the
UCSC Xena database. ,e technology roadmap is shown in
Figure 1(a). ,e Cart package in R was applied to divide these
patients into training (705) and testing groups (301), as shown
in Table 1. ,e expression matrix of 21 m6A regulatory factors
was extracted from the training group. Pearson’s correlation
analysis with the standard of correlation coefficient >0.35, and
p< 0.05, identified m6-related ncRNAs. Finally, these m6A-
related ncRNAs were subjected to WGCNA.

2.2. Identification of Prognosis Modules of m6A-Related
ncRNAs Based on Weighted Gene Co-Expression Network
Analysis (WGCNA). ,egenemodules related to the survival
status of NSCLC were distinguished by WGCNA package in
R. WGCNA is a method that was used to analyse gene ex-
pression patterns of multiple samples. Genes with similar
functions are clustered together, and the relationships among
different modules and clinical traits or phenotypes can be
analyzed.WGCNA is applied in the analysis of diseases, traits,
and gene associations widely.,e pickSoft,reshold function
was applied to select an optimum soft power ratio β to es-
tablish a scale-free network. Using the formula AIJ� | SIJ | β,
this was transformed into a topological overlapmatrix (TOM)
and its related dissimilarity degree (1-TOM) (AIJ: adjacency
matrix between gene I and gene J, SIJ: similarity matrix
obtained by Pearson’s correlation of all gene pairs, β: soft
power value). ,e gene modules that correlated significantly
with NSCLC clinical traits were retained and displayed in
different colors. We then chose the most significant gene
modules of the prognosis of patients for the subsequent
construction of the risk model.

2.3. Construction and Evaluation of the Risk Model in m6A-
Related ncRNAs of NSCLC. Gene modules significantly
relevant to the prognosis outcome of patients with NSCLC
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were further analyzed using univariate Cox regression
analysis with a standard p value< 0.05 through the surv-
miner and survival package of R. To establish a robust and
accurate risk model, we subsequently carried out a least
absolute shrinkage and selector operation (LASSO) analysis
to filter out redundant factors through the glmmet package
in R. ,e lambda value was screened through cross-vali-
dation, and the model was constructed using the lambda.-
min value. ,e gene expression matrix was extracted from
this model, and each sample’ risk score was calculated by the
following formula:

RScorei � 􏽘
n

j�1
expji × βj, (1)

where exp represents the expression of the corresponding
genes, β is the regression coefficient (coef), and i stands for
sample, whereas j stands for gene. Summation of multiple
samples by genes led to the final risk score. According to the
risk score, we divided the model into two risk groups based
on themedian.,e calculated area under the curve (AUC) of
the obtained ROC curve was applied to evaluate our risk
model. ,e testing group confirmed the prediction ability of
our model.

2.4. Correlation Analysis between m6A-NSCLC and Clinical
Factors. In order to explore the clinical indicators related to
the m6A-NSCLC risk score, we combined the TNM stage,
clinical stage, age, sex, and tumor type of NSCLC, which are
broadly applied in the evaluation of clinical prognosis and
are beneficial for guiding the treatment of patients.

2.5. Validation of Independent Prognostic Factors and
Construction of Nomogram Based on Univariate and Mul-
tiple Cox Analysis. To verify whether risk score was a prog-
nostic factor that has independent value or combined with
other prognostic factors, including age, gender, pathologic M,
pathologic N, and pathologic T, we performed univariate and
multiple Cox analyses. Clinical indicators with significant
differences in both univariate and multivariate Cox analyses
were considered independent prognostic factors. Furthermore,
we established a nomogram formulating scoring standards on
the basis of the regression coefficients of all independent
variables and providing a score for each value level of inde-
pendent variables. Using this nomogram, we calculated a total
score for patients with NSCLC, and transformed the scores to
the odds of a resulting function to calculate the probability of
the outcome time of each patient. ,e drawing of the no-
mogram was based on the ms and survival packages of R. We
first constructed the Cox proportional risk regression model
using the cph function, then calculated the survival probability
using the survival function, and finally constructed the objects
using the nomogram function. Calibration and multivariate
ROC predictive curves were also drawn to evaluate their
reliability.

2.6. Differentially Expressed Genes and Function Enrichment
Analysis between High- and Low-Risk Groups. Using the
m6A-NSCLC risk score, we set the criteria of |logFC|> 1 and
FDR < 0.05 for differential expression analysis to distinguish
genes with specificity in the high- and low-risk groups using
the edgeR package in R. We investigated the biological
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Figure 1: Technology roadmap and m6A-related ncRNAs: (a) technical roadmap of the study and (b) heatmap of the correlations between
21 m6A regulatory factors and the ncRNAs of NSCLC.
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processes of these DEGs and also carried out functional
enrichment analysis through Metascape online database
(http://metascape.org/gp/index.html#/main/step1) to dig
out the mechanics of their functions.

2.7. ExpressionAnalysis of 21m6ARegulatory Factors inHigh-
and Low-Risk Groups. ,e expression matrix of m6A reg-
ulatory factors was extracted, and their differential expres-
sion in high- and low-risk groups was calculated. We used
the Wilcox test to calculate the level of significant differ-
ences. Any differences identified in these m6A regulatory
factors between risk groupsmight be related to the prognosis
of NSCLC.

3. Results

3.1. Screening of m6A-Related Non-small-Cell Lung Cancer
ncRNAs. We downloaded gene expression, phenotype, and
survival data of NSCLC tumors from the UCSC Xena da-
tabase. Following the integration of expression and survival
information, the final NSCLC data set encompassed 1006
samples, which were further divided into training (701) and
testing (305) groups. We also extracted information on
14,899 ncRNAs from the GTF profile and then integrated
them into the expression matrix. By calculating the corre-
lation between 21 m6A regulatory factors and ncRNAs using

the criteria of correlation coefficients > 0.35 and p val-
ue< 0.05, we finally screened 4208 m6A-related ncRNAs.
Accordingly, m6A-related ncRNAs with positive and neg-
ative correlations ranking in the top 10 were drawn in a
heatmap (Figure 1(b)).

3.2. Identification of Prognosis Modules of m6A-Related
ncRNAs Based on Weighted Gene Co-Expression Network
Analysis (WGCNA). We then subjected the obtained 4208
ncRNAs and clinical data of the training group (705) to
WGCNA analysis. We used the R2> 0.85 as the standard to
screen soft threshold 5 (Figure 2(a)) and then constructed
the network to obtain eight (8) modules (Figure 2(b)). In the
correlation analysis of the 8 gene modules, we included
prognostic factors, such as age, sex, TNM stage, clinical
stage, event, and time. Our results showed that the black and
blue modules were the most significant modules relevant to
the outcome of NSCLC patients with a p< 0.003 and cor-
relation coefficient of 0.11 (Figure 2(c)). We then calculated
the correlationmatrix between ncRNAs of the eight modules
and the outcome of patients to obtain gene significance (GS)
(Figure 2(d)). We found that the black and blue modules
showed the highest score, ranking first and second, re-
spectively. Consequently, we used these two gene modules
with 1139 ncRNAs for the construction of the risk model.

3.3. Construction of Risk Model of m6A-Related ncRNA.
Using univariate Cox analysis based on the 1139 ncRNAs,
we identified 80 m6a-related ncRNAs with prognostic ability
(Figure 2(e)).,ese ncRNAs with p < 0.05 ranking in the top
4 in the low-risk score and top 2 in the high-risk score were
drawn in a Kaplan–Meier (KM) survival curve (Figure 2(f )).
Our results revealed a greater drop in the survival curve of
the AC027627.1 and AC020915.1 in the high-risk group,
indicating a lower survival rate with time. In contrast, other
ncRNAs, such as DCTN1-AS1, AL133445.2, AC0077494-2,
and ZRANBS-AS2, exhibited a greater drop in the survival
curves in the low-risk group. Interestingly, these ncRNAs
exhibited the same trend whether in univariate Cox or KM
survival analysis (hazard ratio <1 or >1.95% confidence
intervals), suggesting a stable predictive effect. Subsequent
LASSO analysis filtered out redundant factors (Figures 3(a)
and 3(b)). Using lambda.min through cross-validation, we
screened 18 m6a-related ncRNAs and incorporated them in
a risk model (Figures 3(c) and 3(d)). ,e optimized model
was as follow: Risk score � MIR4639 × (−0.1065) +
AL118556.2 × (−0.0860) + LINC00528 × (−0.0840) +
AC011477.3 × (−0.0586) + AC009299.3 × (−0.0510) +
SMCR5 × (−0.0423) + AC034102.8 × (−0.0399) +
AL117339.4 × (−0.0378) + AL121672.1 × (−0.0261) +
AL157832.1 × (−0.0261) + (DCTN−AS1) × (−0.0233) +
(ZRANB2−AS2) × (−0.0138) + AC009133.3 × (−0.0134) +
AC005005.4 × (−0.0134) + AC009119.1 × (−0.0074) +
AL133445.2 × (−0.0061) + AC020915.1 × 0.0720 +
AC027627.1 × 0.2116. We calculated the risk score of all
samples and divided them into high- and low-risk groups
based on the median value. ,e distribution of clinical traits
between two risk groups showed in Figure 3(e). We thus

Table 1: Clinical information of 1006 NSCLC patients.

train_data test_data
Gender
Male 430 172
Female 275 129

Age (years)
Mean 66 67
Median 67 68

Tumor_stage
Stage I 364 157
Stage II 187 91
Stage III 120 43
Stage IV 24 8
Not reported 10 2

Pathologic_M
M0 517 230
M1 23 8
MX 158 61
NA 7 2

Pathologic_N
N0 456 195
N1 151 70
N2 83 26
N3 4 3
NX 11 6
NA 0 1

Pathologic_T
T1 191 94
T2 401 160
T3 78 38
T4 32 9
TX 3 0
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Figure 2: Identification of prognostic gene modules of m6A-relevant ncRNAs based on weighted gene co-expression network analysis
(WGCNA): (a) screening of the best soft-thresholding, (b) cluster dendrogram of genemodules, (c) correlation analysis among clinical traits
and gene modules, (d) gene significance across modules, (e) prognosis-related ncRNAs screened by univariate Cox regression analysis, and
(f) drawn of KM survival curve of the 6 ncRNAs.
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Figure 3: Construction of the risk model in m6A-related ncRNAs of NSCLC: (a) Lambda.min through cross-validation filtered out
redundant factors, (b) weighted gene co-expression network analysis (WGCNA)-confirmed number of ncRNAs, (c) coefficients of 18 m6a-
related ncRNAs, (d) forest plot of m6A-NSCLC, and (e) heatmap of the associations between the expression levels of the nine m6A-related
ncRNAs and clinical traits in the TCGA training data sets.
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obtained 353 high- and 352 low-risk samples for subsequent
analysis.

3.4. Predictive Efficacy Analysis of Prognostic Model. To
validate the predictive efficacy of our risk model, we used
KM analysis to calculate the survival difference between the
two risk groups. We found that the low-risk group exhibited

better survival compared with the high-risk group over time
(p< 0.0001) (Figure 4(a)) and the mortality of patients in-
creased with the increase in the risk score (Figures 4(c) and
4(d)). We then drew the ROC curve of 1, 2, and 3 years and
observed that the AUC was 0.63, 0.6, and 0.6, respectively,
further indicating the good prognostic prediction efficacy of
the m6A-NSCLC risk model (Figure 4(b)). We used the
testing group to verify the reliability of the m6A-NSCLC
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Figure 4: Efficacy evaluation of training group: (a) KM survival analysis between high- and low-risk group, (b) area under ROC curve of 1, 2,
and 3 years, (c) change of risk score over time, and (d) change of survival days and survival status over time.
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model using the same coefficient as that in the training group
and noticed significant differences between the high- and
low-risk groups (p< 0.0081) (Figure 5(a)). Simultaneously,
calculation of the AUC of the ROC curve showed that the
AUCs of 1, 2, and 3 years were 0.66, 0.6, and 0.6, respectively,
effectively verifying the efficacy of our model (Figure 5(b)).
Similarly, the mortality of patients increased with the in-
crease in the risk score (Figures 5(c) and 5(d)).

3.5. Relationship of m6A-NSCLC with Different Clinical
Traits. We observed that tumor infiltration, lymph node,
and metastasis were the three main clinical traits correlated
with the prognosis of patients, whereas age and sex were
found to exhibit inconsistent results regarding the occur-
rence and development of carcinomas. Here, the risk score
of all samples was calculated according to age, sex, TNM
stage, clinical stage, and tumor types (LUAD and LUSC).We
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Figure 5: Efficacy evaluation of testing group: (a) KM survival analysis between high- and low-risk group, (b) area under ROC curve of 1, 2,
and 3 years, (c) change of risk score over time, and (d) change of survival days and survival status over time.
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found that the risk scores for sex, TN stage, clinical stage,
and tumor type were significantly different, suggesting that
the consistency of these clinical traits with our risk score;
LUSC was observed to exhibit a higher risk scores than
LUAD and poor prognosis compared with LUAD (Figure 6).

3.6. Risk Score Was an Independent Prognostic Factor
through Univariate and Multiple Cox Analyses. In order to
validate the predictive efficacy of the risk score, we con-
ducted univariate and multiple Cox regression analyses
incorporating age, sex, and TNM stage. Our results showed
that the risk score had the highest hazard ratio (HR) and p

value< 0.001, thus exhibiting the best efficacy. Other factors,
such as T stage and N stage were found to be second to risk
score with HR> 1, exhibiting a steady ability. In contrast, the
95% confidence interval across 1 and p value> 0.05 of the
remaining factors suggested their poor ability for prognosis
(Figure 7(a)). We subsequently used the aforementioned
factors to construct a nomogram (Figure 7(b)). As the
nomogram showed, the contribution of the risk score was
the highest, with the AUC of the nomogram and risk score
being 0.69 and 0.67, indicating their powerful prognostic
ability (Figure 7(c)). Moreover, the simulation curve of the
nomogram is almost distributed around the diagonal, which
indicates that the model has a good fitting degree
(Figures 7(d)–7(g)).

3.7. Differentially Expressed Genes in Functional Enrichment
Analysis. According to the criteria of |FDR|> 1 and p

value< 0.05, we identified 1465 DEGs, which included 826
mRNAs, 6 miRNAs, and 426 lncRNAs (Figures 8(a) and
8(b)). We observed that more genes were down-regulated in
the high-risk group than the low-risk group, indicating a
close correlation among high-risk samples and the down-
regulating genes. We then used the Metascape online
analysis tool for functional enrichment analysis of 826
different mRNAs. We found that cellular processes, cellular
component organization or biogenesis, developmental
processes, locomotion and immune system, and process

response to stimulus were the main mechanisms, suggesting
the importance of genes involved in cell movement and
immune regulation (Figures 8(c)–8(e)).

3.8. Significant Differential Expression of m6A Regulatory
Factors inRiskGroups. In order to determine whether the 21
m6A regulatory factors were consistent with our risk score,
we also performed a different analysis, which showed that 18
of 21 m6A regulatory factors were differentially expressed
between the high- and low-risk groups. ,is finding sug-
gested that the level of expression of these 18m6A regulatory
factors might be relevant to the prognosis of patients with
NSCLC (Figure 9).

4. Discussion

In this study, we established a prognostic model of m6A-
related noncoding RNAs in 1006 patients with NSCLC from
TCGA training and testing data sets. Among them, 80 m6A-
related ncRNAs were confirmed to have prognostic value,
and 18 of them were used in an m6A-NSCLC model to
predict the survival status of patients with NSCLC. ,e
performance of m6A-NSCLC was evaluated by dividing the
NSCLC samples into high- and low-risk subgroups, using
the median risk score as a cutoff. ,e log-rank test of KM
survival analysis showed significant differences between the
two subgroups, and the calculated area under the ROC curve
demonstrated the reliability of the model. Investigation of
the relationship of the m6A-NSCLC model with different
clinical traits revealed that sex, TN stage, clinical stage, and
tumor type were consistent with our risk score. Interestingly,
compared with LUAD, LUSC had a higher risk score, im-
plying a worse outcome of patients. Simultaneously, uni-
variate and multivariate Cox regression analysis showed that
risk score was an independent prognostic factor with the
highest hazard ratio. Other independent prognostic factors
encompassed T and N stage, which also showed a steady
ability of prognosis. We observed that the area under the
ROC curve of the risk score and nomogram were 0.67 and
0.69, further verifying their prognostic efficacy. Functional
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enrichment analysis revealed that DEGs were enriched in
cell movement and immune regulation in NSCLC. Finally,
analysis regarding the expression of m6A regulatory factors
towards high- and low-risk groups implied that 18 of 21
m6A regulatory factors were possible relevant to the
prognosis of NSCLC.

Indeed, a plethora of studies have demonstrated that
m6A is the most abundant modification in mRNAs, [22] and
its regulatory factors have been reported to play pivotal roles
in the occurrence and development of tumors through
various mechanisms, [23] thus providing more evidence for
the early diagnosis and treatment of cancer [24]. However,
the biological roles of ncRNAs (lncRNA/miRNA) in the
onset and development of NSCLC, and the relationship
between the expression of m6a-relevant ncRNAs and
prognosis have not been fully clarified [25]. For instance,
m6A was shown to modify specific ncRNAs to maintain the
survival of malignant tumor cells by affecting the produc-
tion/metabolism of RNAs. ,e alkylation repair homolo-
gous protein 5 (ALKBH 5) is a demethylase that can mediate
the reversal of methylation. ,e combination of ALKBH 5

and NEAT 1 was reported to promote demethylation of the
NEAT 1 lncRNA, giving a result to the metastasis and in-
vasion of gastric cancer cells [26]. YTHDF 3, which belongs
to the YTHDF family, is known to be a “reader” of m6A. In
colorectal cancer tissues, the increase in the level of YTHDF
3 was reported to reduce the expression of the GAS 5
lncRNA, which is regulated by m6A [27] and related to
colorectal cancer cells. MALAT 1 is known to bind to miR-
204 by modifying and recognizing m6A, thereby up-regu-
lating IGF2BP2 to facilitate the growth, migration, prolif-
eration, and invasion of thyroid cancer cells [28]. Likewise,
METTL 3-mediated m6A inhibited miR-647 through ZFAS
1 and promoted tumor growth and metastasis in cervical
cancer [29].

,e ncRNA study of m6A could be used as a pivotal
factor for predicting the poor prognosis of tumours [30].
ncRNAs, as important regulators that target m6A modu-
lators, [31] have significant carcinogenic relevance in various
cancers and are expected to become new targets for tumor
treatment [32]. In summary, we believe that m6a-related
ncRNAs are strongly related to the prognosis of NSCLC, and
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Figure 7: Validation of independent prognostic factors and construction of nomogram based on univariate and multiple Cox analysis: (a)
univariate Cox regression and multivariate Cox regression analysis, (b) nomogram of different clinical traits of 1, 3, 5, and 8 years, (c) area
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interacting biological processes, and (e)p value of interacting biological processes.

12 Journal of Oncology



are very likely to become new diagnostic biomarkers for
NSCLC.

Using TCGA training data sets, we obtained 80 prog-
nostic ncRNAs related to m6A from 705 patients with
NSCLC, 18 of which were included in the m6A-NSCLC risk
model. LINC00528 has been shown to be highly expressed in
tumor tissues of patients with laryngeal squamous cell
cancer and was related to the poor prognosis of patients [33].
ZRANB2-AS2 is a novel susceptibility gene for human
anthropometric variation and has been demonstrated to be a
clinical biomarker in glioblastoma that affects tumor de-
velopment through mTOR signaling pathways [34].
miRNA4639 is a novel miRNA, and researches showed that
plasma levels of hsa-miR-4639-5p in patients with Parkin-
son’s disease were significantly up-regulated, making cells
more susceptible to oxidative stress [35]. Current research
on DCTN1-AS1 has mainly focused on the immune di-
rection of Alzheimer’s disease, with DCTN1 possibly
physically connecting the EEF1A1-recognized cytoplasmic
aggregates to the power protein motor and participating in
the retrograde transport of the microtubule cargo [36]. A
number of ncRNAs has been reported to be correlated with
cancer or other diseases; nevertheless, there have been few
studies on ncRNAs in NSCLC, and evenmore rare reports of
m6A-related ncRNAs in NSCLC. Hence, we hope that our
study will be beneficial to identify novel m6A-related

ncRNAs, provide new strategy for the diagnosis of NSCLC,
and elucidate the possible mechanics of its onset or
development.

,is study used ,e Cancer Genome Atlas (TCGA) data
sets for analysis, including data collection, centralized data
analysis, and validation in testing data sets. As we only
carried data sets for validation, there were certain limitations
to our study. ,erefore, we acknowledge that more inde-
pendent NSCLC data should be tested to further validate this
hypothesis. Moreover, the molecular mechanism by which
m6A-associated ncRNAs are involved in the development of
NSCLC should be further explored both in vivo and in vitro.
Consequently, our study provides a useful clue for further
studies on NSCLC therapy.

5. Conclusion

In summary, we provided a strategy for evaluating the
prognosis of patients with NSCLC utilizing an m6A-NSCLC
model, which was an independent predictor relevant to OS
in NSCLC.

Data Availability

,e data of this study were acquired from UCSC Xena and
TCGA databases.
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Figure 9: Expression level of 21 m6A regulatory factors in high- and low-risk group. ∗<0.05, ∗∗<0.01, ∗∗∗<0.001, and ∗∗∗∗<0.0001.
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