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Summary: Estimation of infectiousness and fatality of the SARS-CoV-2 virus in the 
COVID-19 global pandemic is complicated by ascertainment bias resulting from 
incomplete and non-representative samples of infected individuals.  We developed a 
strategy for overcoming this bias to obtain more plausible estimates of the true values of 
key epidemiological variables.  We fit mechanistic Bayesian latent-variable SIR models 
to confirmed COVID-19 cases, deaths, and recoveries, for all regions (countries and US 
states) independently. Bayesian averaging over models, we find that the raw infection 
incidence rate underestimates the true rate by a factor, the case ascertainment ratio CARt 
that depends upon region and time. At the regional onset of COVID-19, the predicted 
global median was 13 infections unreported for each case confirmed (CARt = 0.07 C.I. 
(0.02, 0.4)). As the infection spread, the median CARt rose to 9 unreported cases for 
every one diagnosed as of April 15, 2020 (CARt = 0.1 C.I. (0.02, 0.5)).  We also estimate 
that the median global initial reproduction number R0 is 3.3 (C.I (1.5, 8.3)) and the total 
infection fatality rate near the onset is 0.17% (C.I. (0.05%, 0.9%)). However the 
time-dependent reproduction number Rt and infection fatality rate as of April 15 were 1.2 
(C.I. (0.6, 2.5)) and 0.8% (C.I. (0.2%,4%)), respectively.  We find that there is great 
variability between country- and state-level values.  Our estimates are consistent with 
recent serological estimates of cumulative infections for the state of New York, but 
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inconsistent with claims that very large fractions of the population have already been 
infected in most other regions.  For most regions, our estimates imply a great deal of 
uncertainty about the current state and trajectory of the epidemic.  

Introduction 

Nearly 3 million confirmed cases of the novel coronavirus SARS-CoV-2 infection have 
been reported worldwide as of late-April, 2020 (“COVID-19 Map” 19). However, it is 
presumed that many infections remain unreported due to either mildness of symptoms or 
inadequate testing. Knowledge of the full extent of the COVID-19 pandemic is required 
to evaluate the effectiveness of mitigation strategies such as social distancing, which have 
a major economic and social cost.  
 
In the absence of universal testing, a proportion of the infected either do not cross the 
diagnostic threshold for COVID-19 testing or are unable to acquire medical attention and 
thus remain undetected. Consequently, the fraction of infected who are reported as cases 
may be substantially less than 1.  Estimating the total case ascertainment ratio (CARt), 
defined as the ratio of the total number of confirmed cases to the total number of 
individuals infected with the novel coronavirus SARS-CoV-2 on day t, is thus important 
for constraining the initial reproduction number R0 of COVID-19, as well as recovery and 
fatality rates due to the disease. 
 
Estimating the true magnitude and dynamics of the fractions of the population who are 
infected, susceptible, or recovered is a difficult and open problem. Serological and 
molecular diagnostic tests may not have perfect specificity and sensitivity (a substantial 
problem if the true positive rates are also low), may not be widely available, and may 
continue to suffer from ascertainment bias. Recent modeling work has attempted to 
estimate the true infected population, often relying on reported deaths since there is less 
ambiguity in the definition (Lourenco et al.; Flaxman et al.). Flaxman et. al 2020 focused 
on death data from the European Centre of Disease Control and suggest that there are 
orders of magnitude more infected than detected in confirmed cases.  This claim was 
supported by a separate SIR model fitting cases, case recoveries, and case deaths that 
predicted a CAR of 1/63 for Italy (Calafiore et al.). Recent, preliminary, serological test 
results have been mixed. A study from Benavid et. al (Bendavid et al.) is consistent with 
this high number of undiagnosed cases. However a study of women admitted for delivery 
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estimated that 1 in 8 cases are symptomatic (Sutton et al.), which is consistent with a 
recent press report by New York state based on sampling grocery store customers (New 
York Times). Debates continue on the adequacy of these tests. 
 
Here, we develop a set of Bayesian, mechanistic, latent-variable, SIR models (Kermack 
and McKendrick; Wo and Ag, “Contributions to the Mathematical Theory of 
Epidemics--II. The Problem of Endemicity.1932”; Wo and Ag, “Contributions to the 
Mathematical Theory of Epidemics--III. Further Studies of the Problem of Endemicity. 
1933”) that respect the uncertainty in the underlying data. We explore multiple 
specifications and find general consensus among the models. Our models try to account 
for the effects of mitigation (such as social distancing), the possibility that CARt (either 
through changes in definition or in detection, for example via ramp-up of testing) can 
vary in time, excess variability due to reporting and heterogeneity in the regional 
population, and incomplete quarantine of reported active cases. A similar model assumed 
complete quarantine on the basis of debilitating effects of illness or strict adherence to 
policy (Pedersen and Meneghini), which we relax to quantify the effectiveness of such 
actions. Using the model, we predict the total number of infected individuals from the 
confirmed numbers of cases, case recoveries, and case deaths. These three data 
time-series are sufficient to constrain time-varying estimates for CARt as well as for the 
fraction of unobserved infected individuals from which we can obtain the total 
reproduction number Rt and total Infection Fatality Ratio (IFRt) as functions of time.  

Methods 

Our overall approach uses latent-variable Bayesian models with underlying dynamics 
given by a family of SIR models (Kermack and McKendrick).  We implement our models 
in the Bayesian inference software language Stan (Carpenter et al.; Hartikainen et al.) to 
estimate the model statistics within each region independently, using data from The Johns 
Hopkins University Center for Systems Science and Engineering (JHU CSSE; Dong et 
al.) and from The COVID Tracking Project (“The COVID Tracking Project”). 
Collectively, these data consist of daily counts for the reported new cases, deaths, and 
recoveries (as well as key regional mitigation dates, where available (Flaxman et al.; 
Mervosh et al.)).  We only consider regions that report all three of these quantities, which 
eliminates several US States and dates beyond April 15 for which the complete data was 
unavailable. 
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In the SIR models that we use to quantify the regional population dynamics of 
COVID-19, interactions between susceptible individuals (S) and infected individuals (I) 
induce an increase in I and a concomitant decrease in S. The unobserved members of I 
can either transition into a reported SARS-CoV-2 case, C, or become no longer infectious 
(either by recovering or dying). Confirmed cases C can then either recover (RC) or die 
(D C) and also infect more S at a rate that can differ from I.  Mitigation efforts (including 
any social or policy changes aimed at reducing transmission rates) are modeled by a time 
dependence on the rate of infectious transmission. This rate changes from an initial value 
to a final value on a specified day with a 5 day transition period.  We also include a 
similar time dependence in the rate of transition from I to C to account for changes in 
testing regimens, clinical classification, and awareness of infected individuals to seek 
medical attention. We consider six variations of the latent-variable SIR model of varying 
complexity.  Besides the standard nonlinear SIR models, we also fit linear 
approximations that assume that S is approximately fixed (i.e. the epidemic is small 
enough that herd immunity is not significantly affecting transmission). The linear models 
have exponential growth with growth rates that can vary in time including becoming 
negative.  
 
We tie each underlying SIR model to the available data using the generative probabilistic 
scheme shown in Figure 1.  We assume a Negative Binomial likelihood, where the 
variance is a fitted parameter, for the observable data given the model predictions. This 
formulation accounts for the inherent variability of an underlying stochastic birth-death 
process (which usually obeys a Poisson distribution), disease progression effects, 
heterogeneous mixing of population clusters, and errors in classification and reporting 
inherent in the available data.  We modeled prior probabilities for recovery and death 
rates using inverse gamma distributions derived from ref. (Verity et al.). For the other 
unknown distributions, we used weakly-informative priors for satisfying positivity and 
providing numerical and inferential stability. Priors for the day of mitigation application, 
taken from ref. (Flaxman et al.) and (Mervosh et al.), were used when available. We 
assessed models by balancing the likelihood of observing the data (given each model) 
against model complexity using a standard Bayesian model comparison metric such as 
Leave-One-Out cross validation (LOO) and WAIC (Vehtari et al.), to avoid overfitting. 
On the basis of this and other Bayesian metrics, we also report model-averaged statistics 
that take into account model specification uncertainty (Yao et al.).  
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Figure 1: Diagram of generative observation model. The SIR models consist of 
differential equations that describe the evolution of the S, I, C, RC, and D C variables.  The 
models generate the time dependent rate of appearance of cases ( ), case recoveries (λC

), and case deaths ( ).  These rates predict the observable data of daily new casesλR λD  
, new case recoveries , and new case deaths  with a Negative BinomialC△ R△ C  D△ C   

likelihood function with an excess variance 2, compared to a Poisson likelihood.  Anfλ)(  
expanded version of this diagram with additional details is available in Fig. S1. 
 
 
Computer code written for this project is available at 
https://github.com/nih-niddk-mbs/covid-sicr. 
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Results 

Global estimates for Rt, CARt, and IFRt, for 25 representative countries (selected based 
on case counts) and US states with the prerequisite data, are shown in Figures 2-4 (see 
Supplementary Material Table S1 for every region analyzed). Overall, we found a 
consensus between the different model predictions, including between linear and 
nonlinear models (Supplementary Material Figure S2). Results presented are Bayesian 
LOO weighted model averages.  CARt can be greater than 1 in rare cases where more 
cases were introduced by migration at outbreak onset than disappeared from the infected 
pool without being detected. Credible intervals were broad for most region specific 
estimates (see Supplementary Material Table S1).  
 
Global average quantiles across all regions and models are shown in Figures 2-5. The 
models capture the dynamics of Rt (Fig. 2), CARt (Fig. 3), and IFRt (Fig. 4). The global 
median R0 across all regions was 3.3 (C.I (1.5,8.3), Fig. 5). In the first week of the onset 
of COVID-19 appearance in a region (which differs by date for each region), we found 
that for every 1 case identified there are approximately 13 other infections unreported 
(CARt (week 0) of 0.07 (C.I (0.02,0.4)).  The infection fatality ratio during the first week 
from regional onset has a global median of  0.0017 (C.I. (0.0005,0.009)) or 0.17%. As the 
infection spreads these estimates evolve over time such that the Rt  on the week of April 
15th, 2020 was 1.2 (C.I (0.6,2.5)). While Rt fell, the global median CARt and IFRt 
increased over the same time period to 1 in 10 for CARt (April 15th, 2020) = 0.1 (C.I. 
(0.02,0.5)) (a larger fraction of infections ultimately detected) and  0.008 (C.I. 
(0.002,0.04)) or 0.8%  for  IFRt (April 15th, 2020). IFRt will be lower than the true 
mortality rate since it does not account for unreported deaths due to COVID-19.  We 
have also not corrected for the fact that some of the current cases are critically ill and may 
die in the future.  We should also note that since the onset date of COVID-19 varies 
regionally, the global median as of April 15 is an aggregate over different stages of 
regional pandemic progression. 
 
We also evaluated the effects of quarantine and excess variability. Across models we 
observed a substantial decrease in infection rate by active cases. However, the residual 
infection rate was still above zero with broad uncertainty. The infectiousness of active 
cases (the known infected) across all regions was much lower than that of the remaining 
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(unreported) infected (Figure 6), with a median global q  = 0.03 (C.I. (0.001,0.16)). While 
the median global quarantine attenuation was large, there was a broad distribution with 
some areas having smaller degrees than others. Within Europe, Italy had the smallest 
median case infection rate consistent with strong quarantine measures (Pedersen and 
Meneghini) (see Supplementary Figure S3 for regional details). 
 
Variability in reported data likely leads to overdispersion, i.e. to counts that are more 
variable than would be expected from a Poisson distribution.  We thus accounted for and 
analyzed overdispersion by using a negative binomial distribution in which the excess 
variance is modeled as 2 where  is the mean rate for that day and  is anfλ)( λ f  
overdispersion factor that we estimate. As shown in Supplementary Material Figure S4, 

 was approximately 1.5 across all regions.f    
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Figure 2: Estimates of the reproduction number Rt across selected regions and time.  
Upper panel: R0 for selected regions.  Bars show median, interquartile range, and 95% 
credible interval for each region.  Lower panel: Rt on April 15th in all regions.  Color 
indicates change from R0 (more red is more reduction).  

8 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprint (whichthis version posted May 5, 2020. .https://doi.org/10.1101/2020.04.29.20083485doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.29.20083485


 
 
Figure 3: Estimates of the case ascertainment ratio (CAR t) across selected regions 
and time.  Upper panel: Initial CARt for selected regions.  Bars show median, 
interquartile range, and 95% credible interval for each region.  Lower panel: CARt on 
April 15th in all regions.  Color indicates change from initial CAR (more red is more 
reduction). 
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Figure 4: Estimates of the infection fatality rate IFR t across selected regions and 
time.  Upper panel: Initial IFRt for selected regions.  Bars show median, interquartile 
range, and 95% credible interval for each region.  Lower panel: IFRt on April 15th in all 
regions.  Color indicates change from initial IFR (more red is more reduction). 
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Figure 5: Global distributions of (a) R t , (b) CAR t , and (c) IFR t using average across 
models. Figure shows quantiles median, interquartile range, and 95% credible interval. 
 
 
 
 
 
 

11 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprint (whichthis version posted May 5, 2020. .https://doi.org/10.1101/2020.04.29.20083485doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.29.20083485


Discussion 

We use our Bayesian mechanistic models to estimate the extent of COVID-19 
prevalence, from publicly-available data. Importantly, we quantify the uncertainty of our 
estimates, finding them to be large in some regions. Our models perform this estimation 
task under simplified but plausible mechanisms for infection transmission, case detection, 
recovery, death, and disease spread mitigation.  
 
The advantage of mechanistic models over non-mechanistic curve extrapolation (Murray 
and IHME COVID-19 health service utilization forecasting team) is that the model 
parameters have direct mechanistic interpretations that can be validated independently. 
More mechanisms and details can also be added incrementally. 

Estimate of the Case Ascertainment Ratio (CAR) 
We show that the unaccounted cases exceed the reported by 10 to 20 fold, which is 
consistent with two independent groups in New York (one using PCR testing) (Sutton et 
al.; New York Times) but not with a similar test in Santa Clara (Bendavid et al.). 
However, factors such as false positive rates of the serological tests and selection bias 
could affect outcomes.  Furthermore, the studies cited were not drawn from random 
samples of the population. Until wide-spread serological testing is implemented, the true 
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proportion of cumulative infections will remain unknown, but we believe that our results 
provide a credible range for this proportion. 
 
Our model could provide guidance on the effectiveness of various policies for reducing 
infectiousness until more complete data is obtained.  Similar attempts have been made to 
model these factors. However, they have relied on priors for R0 based on confirmed cases 
(Lourenco et al.; Flaxman et al.; Ferguson et al.), restricted data to reported deaths or 
cases only (Flaxman et al.; Pedersen and Meneghini; Murray and IHME COVID-19 
health service utilization forecasting team), made strong assumptions about quarantine 
(Pedersen and Meneghini), or ignored the underlying mechanisms that guide the 
dynamics of epidemics (Murray and IHME COVID-19 health service utilization 
forecasting team). We are able to improve identifiability of key parameters compared to 
previous results as in (Lourenco et al.) because we use more information.  The motivation 
to use only case death data is understandable as it may be a more reliable measure than 
case counts but it is insufficient to constrain the dynamics alone and thus has much less 
predictive power. However, as shown in the Supplementary Material (Sec. S2), models 
that includie cases, case recoveries, and case deaths, provide sufficient information for 
identifiability of undocumented infections although the uncertainty can be large. 

Estimate of the time-dependent reproduction number (Rt) 
Our model predicts the time dependent reproduction number Rt for each region, which 
can give an estimate as to how well mitigation policies are working. Our results are 
consistent with social distancing, or other policies reducing transmission, as shown by the 
decrease in Rt relative to R0 at outbreak onset.  Our directly inferred region-wide R0 
estimate of 3.3 is larger than the mean of priors chosen for some other models (Lourenco 
et al.; Flaxman et al.; Ferguson et al.), but it is consistent with estimates from other work 
(Cao et al.; Sanche et al.) including several reviewed in (Liu et al.). Our estimate is close 
to the upper estimates for Italy by Pedersen and Menegheni (Pedersen and Meneghini) of 
3.5 when removing quarantine on active cases. Using a similar linear SIR model with 
complete quarantine lowered their R0 estimate to 2.6. Our estimate of R0 was robust to 
assumptions on the effectiveness of quarantine (models without this factor gave similar 
estimates for R0 see Supplementary Material Figure S2). Our estimate of parameter q near 
zero for Italy implies near perfect quarantine. There was more incomplete quarantine in 
other regions.  
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Policy implications 
We found a decrease in Rt over time with the global estimate currently near 1, though 
many regions are still well above this as of April 15. However, Rt does not need to be 
below 1 for herd immunity to stop the spread of COVID-19.  When the fraction of 
infected individuals reaches 1-1/Rt regionally, then in the absence of reinfection from 
outside, herd immunity will quench the pandemic locally (Fine et al.).  Although there are 
regional variations, if the current estimate of Rt persists then the pandemic will begin to 
extinguish itself when 17% (C.I. (0%, 60%)) of the susceptible global population has 
achieved resistance due to either recovery from prior infection or vaccination (0% means 
we have herd immunity now, under the current mitigation measures). However, if 
mitigation measures are lifted and Rt returns to R0, then that fraction rises to 70% (C.I. 
(33%, 88%)) to guard against further waves of illness upon reinfection.  
 
The time-varying models give other notable results. On average CARt has increased, 
indicating that a larger proportion of infections are being detected. This might be 
explained by recognition of symptoms increasing during the pandemic coupled with 
broader availability of testing. Our estimate of IFRt also increased during the spread of 
the infection. This is probably due to the fact that early in the pandemic those fated to die 
would have been less likely to be identified as COVID-19 deaths, or more generally from 
changes in how deaths are reported over time. Because the IFR that we report uses the 
conventional definition, it is “right censored” -- at any given time point the number of 
deaths from the current number of infections will continue to grow for some time -- it 
could reflect an underestimate of the true mortality rate.  Because our models explicitly 
estimate the rate at which both case and non-case infected either die or recover, one can 
derive a closed form expression for the true mortality rate. 

Assumptions and Limitations 
Driven by mechanistic considerations, we make several simplifying modeling 
assumptions that we believe to be reasonable. Chiefly, we make the standard assumptions 
of SIR models. For instance, we ignore heterogeneity within populations and the effect of 
connectivity between populations. We subsume heterogeneity of populations themselves 
into the model parameters, which are to be interpreted as population-averaged quantities. 
While mitigation measures have greatly reduced travel, cross-population transmission 
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may still be occurring at low levels. Although our models account for mitigation and for 
diagnostic changes, our rigid implementation of these factors is unlikely to fully capture 
the true time course of their effects.  Finally, biologically, our model considers an 
extremely simplified version of disease progression within individuals, ignoring time 
inhomogeneous mechanisms that may be significant (Bottcher et al.).  
 
Motivated by statistical considerations, we also consider reduced linear approximations to 
the SIR models, where changes in the size of the susceptible pool are ignored. 
Empirically, we find these approximations to be more stable for fitting the pandemic in 
the early stages than the standard nonlinear SIR model. A complication in using the 
standard nonlinear SIR model lies in the knowledge of the size of the susceptible 
population.  In addition to the fact that it is not known what fraction of the population has 
innate immunity, the inherent heterogeneity of the spread of disease in the early stages 
renders the susceptible population estimate problematic if not impossible. (In our 
nonlinear models we fit it as an adjustable parameter). The linearized model circumvents 
this difficulty by scaling out the population, and to some degree ameliorates the 
homogeneous assumption, by averaging over the initial growth of the local clusters. 
Hence, for the linearized model during the early stages of an epidemic, heterogeneity in 
infectiousness has less of an impact on the underlying aggregate state variables, and so 
does not provide a worse fit than a well-mixed population with the same observed data. 
Only later in the epidemic when the effects of herd immunity are important will the 
limitations of a linear model with homogeneous mixing be revealed, although the time 
dependence in the infectiousness we introduce could also be capturing the effects of herd 
immunity. 
 
Outside of our modeling assumptions, issues of data quality may affect the accuracy of 
our estimates. Disparate criteria exist across regions for defining cases and case deaths, 
oftentimes changing within regions themselves as each epidemic progresses. 
Additionally, data (including death counts) reported by many regions is likely incomplete 
or unreliable, as evidenced in large spikes of unexplained deaths not officially recognized 
as Covid-19 deaths (Covid-19 Data - Tracking Covid-19 Excess Deaths across Countries 
| Graphic Detail | The Economist); while we believe that systematic under-testing can be 
overcome up to a point, totally inconsistent or fraudulent reporting cannot be.  
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Future Extensions 
Additional factors need to be explored in future models. For example, a more robust and 
flexible implementation of mitigation, as well as heterogeneity of disease progression 
within individuals and in their social interactions, is essential. Rather than fitting regions 
independently it should be possible to fit a hierarchical global model in which 
region-specific parameters are partially pooled to achieve additional regularization and to 
narrow credible intervals. The linear model is robust to uncertainty in the size of the 
initial susceptible population but if the disease progresses such that we begin to reach 
population saturation, we must use a nonlinear model that explicitly accounts for 
population size to make reliable parameter estimates although the time dependence in 
infectiousness can partially mimic this nonlinear effect. We are optimistic that such a 
transition will be seamless since we find consistency in model predictions between linear 
and nonlinear models in the current work.  
 
Definitions 

Term Meaning 

Rt Reproduction number at time t: the average number of secondary 
infected individuals due to a single infected individual 

CFRt Case ascertainment ratio at time t: the cumulative number of 
cases reported over cumulative number of infections (observed or 
not) 

IFRt Infection fatality ratio at time t: the cumulative number of known 
deaths over the cumulative number of infections (observed or not) 
This will be lower than the mortality rate, as mortality includes 
unobserved deaths due to infection. 

q Relative infection rate by known active cases: this is relative to 
the baseline infection rate of unknown infected cases (including 
asymptomatic carriers). A value of q = 0 is perfect quarantine of 
active cases. 
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Over- 
Dispersion 
Factor, f 

Excess variability in counts beyond a Poisson process, modeled 
as variance = mean + (f * mean)2 

Credible 
interval 

An interval spanning the middle 95% of the (posterior) 
distribution for the estimates, i.e. 2.5th to 97.5th percentile 
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Supplementary Material 
 
Table S1  
 

Region R0 (CI) 
Rt(April 15th, 

2020) (CI) 
CAR (week 0) 

(CI) 
CAR(April 15th, 

2020) (CI) 
IFR (week 0) 

(CI) 
IFR(April 15th, 

2020) (CI) 
Number of 

weeks 

US_AK 
4.8 (1.9, 

12.1) 1.4 (0.91, 2.67) 
0.08 (0.02, 

0.39) 0.18 (0.03, 0.63) 
0.0042 

(0.0009, 
0.0234) 

0.0235 (0.0039, 
0.0956) 3 

US_AR 
4.5 (2.0, 

9.7) 1.33 (0.76, 2.34) 
0.06 (0.02, 

0.28) 0.13 (0.03, 0.5) 
0.0016 

(0.0004, 
0.0081) 

0.0095 (0.002, 
0.0383) 4 

US_AZ 
4.0 (1.8, 

8.6) 1.86 (1.02, 4.01) 
0.05 (0.02, 

0.28) 0.09 (0.02, 0.42) 
0.0037 

(0.0009, 
0.0234) 

0.0124 (0.0022, 
0.068) 4 

US_DC 
3.9 (1.9, 

8.0) 1.4 (0.89, 2.62) 
0.05 (0.02, 

0.27) 0.1 (0.02, 0.45) 
0.0017 

(0.0005, 
0.0094) 

0.0067 (0.0013, 
0.033) 4 

US_DE 
3.8 (1.7, 

8.7) 1.74 (0.97, 3.7) 
0.05 (0.02, 

0.31) 0.09 (0.02, 0.44) 
0.0034 

(0.0008, 
0.0211) 

0.0113 (0.0019, 
0.061) 4 

US_GU 
3.5 (1.6, 

7.7) 0.43 (0.13, 0.98) 
0.08 (0.02, 

0.47) 0.22 (0.03, 0.77) 
0.0053 (0.001, 

0.0318) 
0.0341 (0.0043, 

0.1389) 3 

US_HI 
3.8 (1.7, 

9.2) 1.39 (0.87, 2.7) 
0.06 (0.02, 

0.35) 0.13 (0.02, 0.56) 
0.003 (0.0007, 

0.018) 
0.0113 (0.0018, 

0.0549) 3 

US_IA 
3.6 (1.6, 

7.6) 1.77 (0.98, 3.78) 
0.05 (0.01, 

0.29) 0.08 (0.02, 0.39) 
0.0024 

(0.0006, 
0.0148) 

0.0063 (0.0011, 
0.0342) 4 

US_KY 
3.4 (1.5, 

7.3) 2.25 (1.1, 5.2) 
0.05 (0.01, 

0.35) 0.06 (0.01, 0.39) 
0.0041 (0.001, 

0.0308) 
0.0082 (0.0014, 

0.0553) 4 
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US_MD 
3.7 (1.7, 

7.8) 2.22 (1.23, 4.72) 
0.05 (0.01, 

0.29) 0.07 (0.01, 0.35) 
0.0024 

(0.0006, 
0.0153) 

0.0056 (0.0011, 
0.0318) 4 

US_ME 
6.3 (2.6, 

14.0) 1.22 (0.9, 1.89) 
0.07 (0.02, 

0.34) 0.2 (0.04, 0.62) 
0.0021 

(0.0006, 0.01) 
0.0145 (0.0032, 

0.0489) 3 

US_MI 
4.7 (2.1, 

10.2) 0.88 (0.15, 1.85) 
0.06 (0.02, 

0.28) 0.17 (0.03, 0.61) 
0.0046 (0.001, 

0.0324) 
0.0484 (0.0078, 

0.2245) 5 

US_MN 
5.7 (2.4, 

12.7) 1.08 (0.5, 1.9) 
0.06 (0.02, 

0.29) 0.19 (0.04, 0.61) 
0.0024 

(0.0006, 
0.0117) 

0.0153 (0.0032, 
0.0555) 4 

US_MT 
3.3 (1.5, 

7.9) 1.51 (0.82, 3.46) 
0.06 (0.02, 

0.37) 0.09 (0.02, 0.5) 
0.0041 

(0.0009, 
0.0296) 

0.0118 (0.0017, 
0.0727) 3 

US_ND 
6.3 (2.4, 

15.0) 1.33 (1.03, 2.12) 
0.09 (0.03, 

0.42) 0.23 (0.05, 0.68) 
0.0033 

(0.0008, 
0.0156) 

0.019 (0.0041, 
0.0619) 3 

US_NH 
3.6 (1.7, 

7.9) 1.71 (0.94, 3.73) 
0.05 (0.02, 

0.29) 0.08 (0.02, 0.41) 
0.0034 

(0.0008, 
0.0213) 

0.0097 (0.0016, 
0.0548) 4 

US_NJ 
5.2 (2.3, 

11.0) 1.59 (0.9, 3.4) 
0.05 (0.02, 

0.26) 0.12 (0.03, 0.5) 
0.0034 

(0.0008, 
0.0203) 

0.0184 (0.0034, 
0.0904) 4 

US_NM 
3.6 (1.6, 

8.2) 1.87 (0.99, 4.05) 
0.05 (0.02, 

0.31) 0.09 (0.02, 0.43) 
0.003 (0.0007, 

0.0197) 
0.0091 (0.0015, 

0.0518) 4 

US_NY 
4.7 (2.2, 

9.6) 0.41 (0.15, 1.05) 
0.05 (0.02, 

0.26) 0.19 (0.04, 0.66) 
0.0021 

(0.0006, 
0.0109) 

0.0239 (0.0047, 
0.0933) 5 

US_OK 
4.1 (1.7, 

9.5) 1.37 (0.86, 2.82) 
0.05 (0.02, 

0.31) 0.11 (0.02, 0.53) 
0.0032 

(0.0008, 
0.0195) 

0.0127 (0.0022, 
0.0674) 3 

US_RI 
4.4 (1.8, 

11.7) 2.41 (1.4, 4.82) 
0.07 (0.02, 

0.53) 0.12 (0.02, 0.59) 
0.0042 (0.001, 

0.0308) 
0.0151 (0.0023, 

0.0794) 4 

US_SD 
2.7 (1.4, 

5.5) 2.51 (1.32, 5.22) 
0.05 (0.01, 

0.36) 0.04 (0.01, 0.27) 
0.0022 

(0.0006, 
0.0172) 

0.0022 (0.0004, 
0.0158) 4 

US_TN 
4.6 (2.1, 

10.0) 1.22 (0.65, 2.59) 
0.05 (0.02, 

0.26) 0.13 (0.03, 0.51) 
0.0019 

(0.0005, 
0.0103) 

0.0108 (0.0021, 
0.0482) 4 

US_TX 
3.7 (1.7, 

7.9) 2.43 (1.26, 5.44) 
0.05 (0.01, 

0.3) 0.06 (0.01, 0.35) 
0.0028 

(0.0007, 
0.0179) 

0.0058 (0.0011, 
0.035) 4 

US_UT 
5.5 (2.2, 

12.9) 1.4 (0.59, 2.92) 
0.07 (0.02, 

0.42) 0.19 (0.04, 0.67) 
0.0044 (0.001, 

0.0291) 
0.0326 (0.0054, 

0.1436) 4 

US_VA 
4.4 (1.8, 

10.2) 2.29 (1.26, 4.73) 
0.06 (0.02, 

0.39) 0.11 (0.02, 0.52) 
0.0039 

(0.0009, 
0.0258) 

0.014 (0.0022, 
0.074) 4 

US_VI 
2.5 (1.2, 

6.2) 0.68 (0.2, 2.34) 
0.1 (0.02, 

1.02) 0.16 (0.01, 1.1) 
0.0168 

(0.0016, 
0.2274) 

0.0475 (-0.0013, 
0.5194) 2 
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US_VT 
5.0 (2.1, 

12.2) 1.17 (0.74, 2.15) 
0.07 (0.02, 

0.38) 0.19 (0.04, 0.64) 
0.0059 

(0.0012, 
0.0408) 

0.0401 (0.0062, 
0.1887) 3 

US_WV 
4.1 (1.7, 

10.4) 2.18 (1.24, 4.67) 
0.06 (0.02, 

0.37) 0.11 (0.02, 0.51) 
0.0041 

(0.0009, 
0.0259) 

0.0137 (0.0021, 
0.0756) 3 

US_WY 
3.4 (1.5, 

8.5) 1.26 (0.7, 2.61) 
0.06 (0.02, 

0.39) 0.12 (0.02, 0.57) 
0.0041 

(0.0009, 
0.0275) 

0.0142 (0.002, 
0.0785) 3 

Afghanistan 
3.4 (1.5, 

11.2) 2.4 (1.2, 6.7) 
0.07 (0.02, 

0.58) 0.08 (0.01, 0.55) 
0.0056 

(0.0012, 
0.0494) 

0.0134 (0.0018, 
0.1039) 4 

Albania 
4.0 (1.6, 

13.4) 1.52 (0.8, 6.77) 
0.14 (0.04, 

0.59) 0.35 (0.08, 0.81) 
0.0045 

(0.0011, 
0.0194) 

0.0322 (0.0072, 
0.0827) 4 

Algeria 
3.6 (1.6, 

12.3) 2.21 (1.2, 5.5) 
0.08 (0.02, 

0.58) 0.17 (0.02, 0.67) 
0.0063 

(0.0014, 0.042) 
0.0271 (0.0039, 

0.1134) 5 

Andorra 
3.4 (1.4, 

10.0) 2.52 (1.09, 8.3) 
0.07 (0.02, 

0.42) 0.11 (0.02, 0.55) 
0.0043 (0.001, 

0.028) 
0.0176 (0.0029, 

0.0946) 3 
Antigua and 

Barbuda 
3.7 (1.2, 

13.2) 2.76 (0.76, 11.51) 
0.19 (0.02, 

1.46) 0.29 (-0.05, 1.66) 
0.037 (-0.0191, 

0.3924) 
0.1144 (-0.055, 

0.8117) 2 

Argentina 
3.9 (1.8, 

8.7) 3.56 (1.7, 8.19) 
0.05 (0.01, 

0.28) 0.09 (0.02, 0.45) 
0.0025 

(0.0006, 
0.0141) 

0.0097 (0.0019, 
0.05) 4 

Armenia 
7.9 (2.8, 

20.7) 5.72 (1.95, 15.25) 
0.15 (0.04, 

0.53) 0.32 (0.08, 0.75) 
0.0042 

(0.0009, 
0.0162) 

0.0288 (0.0069, 
0.0766) 4 

Austria 
3.0 (1.6, 

6.5) 2.83 (1.62, 6.01) 
0.06 (0.01, 

0.43) 0.13 (0.02, 0.7) 
0.0015 

(0.0004, 
0.0122) 

0.0108 (0.0018, 
0.0636) 6 

Azerbaijan 
2.6 (1.3, 

7.5) 2.52 (1.32, 5.31) 
0.05 (0.01, 

0.38) 0.04 (0.01, 0.31) 
0.0033 

(0.0008, 
0.0274) 

0.0042 (0.0007, 
0.0331) 5 

Bahamas 
3.6 (1.2, 

12.7) 2.72 (0.76, 11.02) 
0.12 (0.02, 

1.1) 0.21 (0.01, 1.17) 
0.0251 (0.003, 

0.3134) 
0.0879 (0.0037, 

0.7235) 3 

Bahrain 
3.1 (1.4, 

9.2) 1.72 (1.18, 3.13) 
0.06 (0.02, 

0.33) 0.08 (0.02, 0.37) 
0.0027 

(0.0007, 
0.0159) 

0.003 (0.0004, 
0.018) 6 

Bangladesh 
2.7 (1.3, 

8.8) 2.66 (1.3, 6.98) 
0.05 (0.01, 

0.4) 0.03 (0.0, 0.25) 
0.0045 (0.001, 

0.0402) 
0.0046 (0.0005, 

0.0387) 4 

Barbados 
5.5 (1.5, 

16.8) 4.19 (1.09, 14.03) 
0.14 (0.02, 

0.83) 0.27 (0.03, 0.96) 
0.0193 

(0.0028, 
0.1623) 

0.0928 (0.005, 
0.483) 3 

Belarus 
2.7 (1.3, 

7.7) 2.6 (1.34, 5.57) 
0.05 (0.01, 

0.38) 0.04 (0.01, 0.27) 
0.0043 (0.001, 

0.0363) 
0.005 (0.0007, 

0.0399) 5 

Belgium 
4.7 (2.1, 

13.6) 3.17 (1.82, 6.47) 
0.1 (0.03, 

0.51) 0.32 (0.07, 0.81) 
0.0033 

(0.0009, 
0.0168) 

0.034 (0.0071, 
0.0947) 5 
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Benin 
3.5 (1.2, 

12.2) 2.65 (0.75, 10.98) 
0.15 (0.02, 

1.48) 0.23 (-0.05, 1.61) 
0.0303 

(-0.0136, 
0.3915) 

0.0887 (-0.0387, 
0.8195) 2 

Bolivia 
4.4 (1.6, 

13.6) 2.58 (1.23, 8.12) 
0.09 (0.02, 

0.61) 0.13 (0.02, 0.64) 
0.0082 

(0.0017, 
0.0578) 

0.0288 (0.004, 
0.1522) 4 

Bosnia and 
Herzegovina 

3.5 (1.7, 
8.4) 2.65 (1.29, 5.92) 

0.05 (0.01, 
0.31) 0.09 (0.02, 0.48) 

0.0021 
(0.0005, 
0.0132) 

0.0101 (0.0019, 
0.0543) 5 

Brazil 
6.4 (2.2, 

19.4) 3.38 (1.65, 8.4) 
0.1 (0.02, 

0.55) 0.15 (0.03, 0.61) 
0.006 (0.0013, 

0.0342) 
0.0174 (0.0035, 

0.0772) 5 

Brunei 
4.3 (1.5, 

12.5) 2.61 (0.79, 6.96) 
0.14 (0.02, 

0.59) 0.31 (0.03, 0.88) 
0.0084 

(0.0014, 
0.0378) 

0.0629 (0.0068, 
0.2025) 4 

Bulgaria 
5.9 (2.3, 

15.5) 5.15 (1.97, 13.29) 
0.08 (0.02, 

0.38) 0.18 (0.04, 0.61) 
0.0026 

(0.0006, 
0.0133) 

0.0203 (0.0043, 
0.0745) 4 

Burkina Faso 
4.9 (1.9, 

13.1) 4.03 (1.58, 11.53) 
0.09 (0.02, 

0.42) 0.17 (0.04, 0.61) 
0.0043 (0.001, 

0.0223) 
0.0195 (0.0039, 

0.0762) 3 

Burma 
2.7 (1.3, 

9.4) 2.03 (0.88, 8.53) 
0.06 (0.01, 

0.61) 0.06 (0.0, 0.61) 
0.0111 

(0.0019, 
0.1166) 

0.0173 (0.0012, 
0.2104) 2 

Cabo Verde 
3.4 (1.2, 

12.4) 2.37 (0.7, 10.1) 
0.11 (0.02, 

1.47) 0.15 (0.01, 1.67) 
0.0221 

(-0.0208, 
0.3289) 

0.0525 (-0.0726, 
0.733) 2 

Cameroon 
5.7 (1.9, 

18.2) 4.33 (1.51, 14.69) 
0.11 (0.02, 

0.6) 0.21 (0.03, 0.73) 
0.0086 

(0.0014, 
0.0519) 

0.0349 (0.0046, 
0.1586) 3 

Chile 
4.2 (2.0, 

9.1) 3.94 (1.84, 8.94) 
0.05 (0.01, 

0.27) 0.11 (0.02, 0.49) 
0.0013 

(0.0003, 
0.0073) 

0.0065 (0.0013, 
0.033) 5 

China 
9.6 (4.1, 

19.2) 0.96 (0.38, 1.56) 
0.08 (0.03, 

0.21) 0.16 (0.02, 0.66) 
0.0007 

(0.0002, 0.002) 
0.0094 (0.0012, 

0.0387) 11 

Colombia 
6.6 (2.5, 

18.1) 4.83 (1.81, 13.04) 
0.12 (0.03, 

0.49) 0.25 (0.06, 0.68) 
0.0031 

(0.0007, 
0.0137) 

0.0204 (0.0049, 
0.0611) 4 

Congo 
(Brazzaville) 

3.6 (1.4, 
12.5) 2.27 (0.7, 9.02) 

0.09 (0.01, 
0.94) 0.12 (0.01, 0.96) 

0.0154 
(0.0018, 
0.1975) 

0.036 (0.0016, 
0.5313) 3 

Congo 
(Kinshasa) 

4.1 (1.5, 
11.3) 2.86 (1.15, 9.25) 

0.09 (0.02, 
0.61) 0.15 (0.03, 0.69) 

0.0103 
(0.0022, 
0.0732) 

0.0407 (0.0064, 
0.2076) 3 

Costa Rica 
4.7 (1.8, 

13.6) 3.12 (1.31, 8.73) 
0.09 (0.02, 

0.46) 0.17 (0.03, 0.64) 
0.0037 

(0.0008, 
0.0215) 

0.0231 (0.0041, 
0.0975) 4 

Croatia 
3.1 (1.5, 

7.1) 2.65 (1.32, 6.89) 
0.04 (0.01, 

0.28) 0.07 (0.01, 0.54) 
0.0017 

(0.0004, 
0.0112) 

0.0058 (0.0006, 
0.0498) 6 
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Cuba 
3.7 (1.6, 

10.4) 2.77 (1.28, 8.21) 
0.06 (0.02, 

0.45) 0.08 (0.02, 0.48) 
0.0027 

(0.0006, 
0.0207) 

0.0074 (0.0013, 
0.047) 4 

Cyprus 
6.5 (2.2, 

18.0) 3.73 (1.4, 10.95) 
0.14 (0.03, 

0.57) 0.27 (0.06, 0.74) 
0.0067 

(0.0013, 
0.0312) 

0.0405 (0.0076, 
0.1334) 4 

Czechia 
3.9 (1.8, 

8.8) 2.89 (1.39, 6.27) 
0.06 (0.02, 

0.38) 0.13 (0.03, 0.57) 
0.0016 

(0.0004, 
0.0108) 

0.0114 (0.0022, 
0.0539) 5 

Denmark 
6.0 (2.5, 

15.4) 3.6 (1.53, 8.47) 
0.06 (0.01, 

0.34) 0.18 (0.03, 0.63) 
0.0022 

(0.0005, 
0.0128) 

0.0194 (0.0035, 
0.0765) 5 

Diamond 
Princess 

3.1 (1.3, 
8.3) 0.29 (0.01, 0.85) 

0.09 (0.02, 
0.68) 0.2 (0.02, 0.88) 

0.0086 
(0.0014, 
0.0602) 

0.0614 (0.0052, 
0.3591) 9 

Djibouti 
4.2 (1.6, 

13.7) 2.54 (0.95, 8.5) 
0.08 (0.02, 

0.53) 0.09 (0.01, 0.57) 
0.0068 

(0.0013, 0.049) 
0.012 (0.0014, 

0.092) 2 

Dominican 
Republic 

4.3 (1.9, 
10.7) 4.01 (1.7, 12.67) 

0.05 (0.01, 
0.29) 0.07 (0.01, 0.46) 

0.0031 
(0.0006, 
0.0204) 

0.0106 (0.0016, 
0.0709) 4 

Ecuador 
3.3 (1.5, 

8.6) 3.39 (1.48, 10.94) 
0.04 (0.01, 

0.3) 0.04 (0.0, 0.4) 
0.0032 

(0.0006, 
0.0253) 

0.0057 (0.0005, 
0.0612) 5 

Egypt 
4.9 (1.7, 

13.7) 2.11 (1.13, 6.06) 
0.11 (0.03, 

0.62) 0.18 (0.04, 0.68) 
0.0053 

(0.0014, 
0.0292) 

0.0213 (0.005, 
0.0818) 4 

El Salvador 
5.0 (1.8, 

14.2) 4.14 (1.49, 12.83) 
0.1 (0.02, 

0.56) 0.16 (0.03, 0.65) 
0.0069 

(0.0014, 
0.0406) 

0.0209 (0.0032, 
0.0993) 2 

Estonia 
4.6 (1.9, 

12.8) 3.55 (1.51, 9.52) 
0.07 (0.02, 

0.38) 0.15 (0.03, 0.57) 
0.0031 

(0.0007, 
0.0174) 

0.0198 (0.0037, 
0.0859) 4 

Ethiopia 
2.8 (1.3, 

9.6) 2.12 (0.93, 7.84) 
0.07 (0.01, 

0.75) 0.07 (0.01, 0.72) 
0.0109 

(0.0019, 
0.1224) 

0.0218 (0.0018, 
0.2655) 3 

Finland 
4.8 (1.9, 

14.7) 3.24 (1.53, 7.86) 
0.07 (0.02, 

0.46) 0.15 (0.03, 0.61) 
0.0047 (0.001, 

0.0312) 
0.0249 (0.0041, 

0.1203) 5 

France 
1.5 (1.1, 

5.1) 1.21 (0.73, 2.55) 
0.53 (0.01, 

7.18) 0.11 (0.02, 0.63) 
0.0422 (0.001, 

0.6573) 
0.0163 (0.003, 

0.1028) 10 

Gabon 
3.2 (1.3, 

10.7) 2.2 (0.8, 8.6) 
0.07 (0.01, 

0.87) 0.08 (0.01, 0.89) 
0.0129 

(0.0019, 
0.1629) 

0.023 (0.0016, 
0.354) 2 

Georgia 
4.6 (1.7, 

12.5) 1.81 (1.11, 4.45) 
0.09 (0.02, 

0.57) 0.16 (0.03, 0.65) 
0.0056 

(0.0013, 
0.0364) 

0.0238 (0.0039, 
0.1085) 5 

Germany 
1.7 (1.0, 

4.9) 0.9 (0.56, 1.79) 
0.19 (0.01, 

8.09) 0.11 (0.03, 0.71) 
0.0074 

(0.0004, 
0.3351) 

0.0081 (0.0018, 
0.0614) 10 
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Ghana 
5.2 (1.7, 

15.8) 3.69 (1.41, 12.56) 
0.1 (0.02, 

0.61) 0.17 (0.03, 0.71) 
0.0105 

(0.0019, 0.072) 
0.0361 (0.0039, 

0.2002) 3 

Greece 
4.4 (2.0, 

12.0) 2.76 (1.4, 5.82) 
0.06 (0.02, 

0.4) 0.19 (0.03, 0.67) 
0.0038 

(0.0008, 
0.0247) 

0.0407 (0.0067, 
0.1635) 6 

Guatemala 
3.2 (1.3, 

10.7) 2.29 (1.03, 8.5) 
0.07 (0.02, 

0.61) 0.09 (0.01, 0.61) 
0.0091 

(0.0018, 
0.0768) 

0.0208 (0.002, 
0.1621) 3 

Guinea 
4.4 (1.7, 

14.3) 3.51 (1.31, 12.58) 
0.08 (0.02, 

0.55) 0.1 (0.01, 0.6) 
0.0076 

(0.0014, 
0.0553) 

0.0153 (0.0018, 
0.1137) 2 

Guyana 
3.5 (1.2, 

12.0) 2.22 (0.64, 9.12) 
0.16 (0.02, 

1.34) 0.25 (-0.07, 1.49) 
0.0318 

(-0.0086, 
0.3779) 

0.1119 (-0.0393, 
0.8531) 3 

Haiti 
3.6 (1.2, 

12.6) 2.88 (0.81, 11.47) 
0.15 (0.02, 

1.18) 0.24 (0.01, 1.25) 
0.0308 

(0.0019, 
0.3536) 

0.0929 (-0.0005, 
0.7396) 2 

Honduras 
3.9 (1.6, 

12.7) 2.85 (1.24, 8.47) 
0.07 (0.02, 

0.48) 0.13 (0.02, 0.62) 
0.0089 

(0.0016, 
0.0672) 

0.0384 (0.0052, 
0.2132) 4 

Hungary 
5.0 (2.0, 

14.0) 3.23 (1.49, 7.81) 
0.07 (0.02, 

0.42) 0.14 (0.03, 0.55) 
0.0035 

(0.0008, 
0.0203) 

0.0177 (0.0035, 
0.0742) 5 

Iceland 
4.4 (1.8, 

14.5) 2.58 (1.34, 7.08) 
0.11 (0.02, 

0.48) 0.31 (0.06, 0.77) 
0.0026 

(0.0006, 0.012) 
0.0098 (0.0017, 

0.0419) 5 

India 
6.8 (2.3, 

23.6) 2.64 (1.5, 5.17) 
0.14 (0.04, 

0.67) 0.22 (0.05, 0.7) 
0.004 (0.001, 

0.0194) 
0.014 (0.0034, 

0.0484) 5 

Indonesia 
5.6 (2.3, 

14.5) 5.21 (2.1, 14.94) 
0.05 (0.01, 

0.31) 0.12 (0.02, 0.6) 
0.0021 

(0.0005, 
0.0133) 

0.0159 (0.0031, 
0.0845) 5 

Iran 
7.9 (3.2, 

17.4) 1.34 (1.1, 1.86) 
0.06 (0.02, 

0.28) 0.29 (0.07, 0.73) 
0.0016 

(0.0004, 
0.0075) 

0.0272 (0.0062, 
0.0722) 7 

Iraq 
2.5 (1.3, 

9.6) 1.65 (1.11, 3.18) 
0.09 (0.02, 

0.79) 0.2 (0.03, 0.8) 
0.0036 

(0.0008, 
0.0295) 

0.0188 (0.0027, 
0.0789) 6 

Ireland 
5.5 (2.0, 

16.6) 3.2 (1.53, 7.74) 
0.08 (0.02, 

0.51) 0.14 (0.03, 0.6) 
0.0055 

(0.0012, 
0.0354) 

0.0229 (0.0042, 
0.1075) 5 

Israel 
3.7 (1.8, 

8.3) 3.05 (1.54, 6.34) 
0.05 (0.02, 

0.34) 0.1 (0.02, 0.48) 
0.0013 

(0.0003, 
0.0083) 

0.0053 (0.0011, 
0.0284) 5 

Italy 
3.4 (1.0, 

8.4) 0.83 (0.21, 1.19) 
0.05 (0.01, 

5.16) 0.03 (0.01, 0.54) 
0.0031 

(0.0005, 
0.3228) 

0.0062 (0.0014, 
0.1103) 10 

Jamaica 
2.2 (1.2, 

6.2) 0.94 (0.5, 3.55) 
0.05 (0.01, 

0.46) 0.04 (0.01, 0.4) 
0.0091 

(0.0018, 
0.0839) 

0.0121 (0.0012, 
0.1249) 3 
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Japan 
3.3 (1.5, 

7.2) 1.93 (1.25, 3.36) 
0.05 (0.02, 

0.41) 0.08 (0.01, 0.44) 
0.0023 

(0.0006, 
0.0168) 

0.0081 (0.0013, 
0.0481) 10 

Jordan 
6.1 (2.2, 

16.9) 5.31 (1.91, 15.22) 
0.12 (0.03, 

0.48) 0.28 (0.06, 0.73) 
0.0049 

(0.0011, 0.022) 
0.0274 (0.0054, 

0.0855) 3 

Kazakhstan 
5.4 (2.0, 

14.4) 3.14 (1.36, 9.36) 
0.1 (0.03, 

0.53) 0.16 (0.04, 0.61) 
0.0034 

(0.0009, 
0.0177) 

0.0131 (0.0029, 
0.0526) 4 

Kenya 
4.2 (1.7, 

12.9) 3.45 (1.41, 10.74) 
0.08 (0.02, 

0.5) 0.13 (0.02, 0.61) 
0.0057 

(0.0011, 
0.0397) 

0.0203 (0.0028, 
0.1114) 3 

Korea, South 
3.1 (1.4, 

5.8) 0.43 (0.05, 0.87) 
0.04 (0.01, 

0.79) 0.1 (0.0, 0.74) 
0.0014 

(0.0003, 
0.0287) 

0.0071 (0.0002, 
0.066) 9 

Kosovo 
2.4 (1.2, 

8.0) 1.88 (0.91, 7.16) 
0.06 (0.02, 

0.47) 0.06 (0.01, 0.5) 
0.0076 

(0.0015, 
0.0671) 

0.0143 (0.0017, 
0.1404) 2 

Kuwait 
4.3 (1.4, 

15.9) 1.79 (1.15, 3.5) 
0.07 (0.02, 

1.09) 0.09 (0.01, 0.73) 
0.0037 

(0.0009, 
0.0506) 

0.01 (0.0007, 
0.0893) 6 

Kyrgyzstan 
5.2 (1.8, 

15.2) 3.71 (1.44, 12.44) 
0.11 (0.02, 

0.6) 0.17 (0.03, 0.68) 
0.0075 

(0.0015, 
0.0452) 

0.026 (0.0041, 
0.1207) 3 

Latvia 
4.7 (1.8, 

14.4) 3.06 (1.26, 9.05) 
0.09 (0.02, 

0.53) 0.19 (0.03, 0.71) 
0.007 (0.0013, 

0.0465) 
0.0406 (0.0058, 

0.1909) 4 

Lebanon 
4.3 (1.9, 

13.3) 2.53 (1.2, 5.94) 
0.07 (0.02, 

0.49) 0.2 (0.03, 0.71) 
0.0033 

(0.0007, 
0.0221) 

0.0321 (0.005, 
0.1285) 5 

Liberia 
4.9 (1.6, 

15.3) 4.3 (1.27, 14.09) 
0.12 (0.02, 

0.8) 0.18 (0.02, 0.87) 
0.0189 

(0.0025, 
0.1474) 

0.0427 (0.0032, 
0.3093) 1 

Libya 
3.9 (1.3, 

13.4) 3.18 (0.99, 12.24) 
0.1 (0.02, 

1.01) 0.13 (0.01, 1.11) 
0.0178 

(0.0012, 
0.2248) 

0.0331 (0.0017, 
0.4473) 1 

Liechtenstein 
4.6 (1.3, 

15.4) 2.66 (0.62, 10.71) 
0.21 (0.02, 

1.31) 0.38 (-0.05, 1.51) 
0.0332 

(-0.0119, 
0.3348) 

0.1426 (-0.0647, 
0.841) 3 

Lithuania 
5.3 (2.1, 

15.5) 4.22 (1.67, 11.85) 
0.08 (0.02, 

0.44) 0.19 (0.04, 0.66) 
0.0038 

(0.0008, 
0.0241) 

0.0288 (0.0051, 
0.1178) 4 

Luxembourg 
6.1 (2.5, 

15.9) 4.69 (1.85, 12.82) 
0.08 (0.02, 

0.43) 0.3 (0.06, 0.78) 
0.0038 

(0.0008, 
0.0223) 

0.0535 (0.0096, 
0.1865) 4 

Malaysia 
1.8 (1.2, 

3.4) 1.12 (0.72, 1.76) 
0.03 (0.01, 

0.17) 0.2 (0.05, 0.46) 
0.0015 

(0.0005, 
0.0074) 

0.0111 (0.0027, 
0.0305) 10 

Mali 
7.1 (2.2, 

19.7) 5.93 (1.99, 18.52) 
0.15 (0.04, 

0.67) 0.25 (0.06, 0.76) 
0.0124 

(0.0027, 
0.0606) 

0.0409 (0.0077, 
0.1521) 2 
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Malta 
4.5 (1.7, 

12.9) 2.43 (1.15, 7.18) 
0.09 (0.02, 

0.6) 0.16 (0.03, 0.69) 
0.0081 

(0.0016, 0.056) 
0.0344 (0.0049, 

0.1712) 4 

Mauritius 
5.8 (1.8, 

17.2) 4.4 (1.46, 14.06) 
0.13 (0.02, 

0.59) 0.26 (0.04, 0.77) 
0.0086 

(0.0015, 
0.0455) 

0.0464 (0.007, 
0.1733) 3 

Mexico 
3.0 (1.4, 

8.4) 2.95 (1.4, 6.71) 
0.05 (0.01, 

0.35) 0.04 (0.01, 0.3) 
0.0038 

(0.0009, 
0.0307) 

0.0045 (0.0007, 
0.0365) 5 

Moldova 
6.1 (2.2, 

17.6) 3.79 (1.58, 10.86) 
0.11 (0.03, 

0.53) 0.17 (0.04, 0.62) 
0.0034 

(0.0008, 
0.0179) 

0.0138 (0.003, 
0.0535) 4 

Monaco 
4.4 (1.4, 

12.7) 3.21 (1.02, 10.28) 
0.1 (0.02, 

0.82) 0.19 (0.02, 0.91) 
0.0155 

(0.0027, 
0.1382) 

0.0668 (0.0067, 
0.3948) 3 

Montenegro 
6.3 (2.1, 

17.9) 4.55 (1.59, 14.45) 
0.14 (0.03, 

0.63) 0.26 (0.05, 0.77) 
0.0104 

(0.0018, 
0.0538) 

0.0487 (0.0079, 
0.1812) 3 

Morocco 
6.3 (2.5, 

15.5) 5.69 (2.25, 14.53) 
0.08 (0.02, 

0.35) 0.21 (0.05, 0.64) 
0.0024 

(0.0006, 0.011) 
0.022 (0.0052, 

0.0715) 4 

Netherlands 
5.2 (2.3, 

13.2) 4.15 (1.9, 9.34) 
0.06 (0.02, 

0.31) 0.17 (0.04, 0.6) 
0.0062 

(0.0013, 
0.0558) 

0.0498 (0.0094, 
0.2306) 5 

New Zealand 
3.3 (1.5, 

8.3) 3.63 (1.55, 12.14) 
0.03 (0.01, 

0.28) 0.03 (0.0, 0.58) 
0.0015 

(0.0003, 
0.0124) 

0.002 (0.0001, 
0.0403) 5 

Niger 
5.0 (1.7, 

15.6) 3.81 (1.26, 12.6) 
0.09 (0.02, 

0.51) 0.14 (0.02, 0.66) 
0.0069 

(0.0011, 
0.0454) 

0.0216 (0.0025, 
0.1255) 2 

Nigeria 
5.4 (2.0, 

13.9) 4.04 (1.55, 11.73) 
0.11 (0.03, 

0.48) 0.18 (0.04, 0.62) 
0.0046 

(0.0011, 
0.0221) 

0.0183 (0.0039, 
0.0684) 3 

North 
Macedonia 

4.6 (1.9, 
13.3) 3.47 (1.55, 9.41) 

0.07 (0.02, 
0.46) 0.12 (0.02, 0.56) 

0.0039 
(0.0008, 
0.0255) 

0.0163 (0.0027, 
0.0827) 4 

Norway 
5.2 (2.2, 

14.1) 3.4 (1.53, 7.46) 
0.07 (0.02, 

0.36) 0.21 (0.04, 0.68) 
0.0051 

(0.0009, 
0.1817) 

0.0542 (0.009, 
0.4432) 5 

Oman 
2.6 (1.3, 

7.9) 2.28 (1.29, 4.58) 
0.05 (0.01, 

0.38) 0.04 (0.01, 0.3) 
0.0043 (0.001, 

0.0342) 
0.0054 (0.0008, 

0.0463) 6 

Pakistan 
3.5 (1.6, 

8.5) 3.36 (1.59, 9.15) 
0.04 (0.01, 

0.28) 0.07 (0.01, 0.47) 
0.0019 

(0.0004, 
0.0121) 

0.0066 (0.0006, 
0.0461) 6 

Panama 
5.4 (2.0, 

15.9) 3.38 (1.41, 10.05) 
0.1 (0.02, 

0.49) 0.17 (0.04, 0.61) 
0.0049 

(0.0011, 0.026) 
0.0232 (0.0049, 

0.0938) 4 

Paraguay 
3.5 (1.4, 

10.6) 2.3 (1.12, 7.34) 
0.07 (0.02, 

0.55) 0.11 (0.02, 0.61) 
0.0076 

(0.0015, 
0.0594) 

0.0268 (0.0034, 
0.1633) 4 
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Peru 
4.5 (1.8, 

12.9) 3.63 (1.66, 9.75) 
0.07 (0.02, 

0.41) 0.09 (0.02, 0.46) 
0.0029 

(0.0007, 
0.0187) 

0.0065 (0.0013, 
0.0355) 4 

Philippines 
5.7 (2.1, 

15.8) 2.8 (1.09, 8.22) 
0.17 (0.05, 

0.57) 0.34 (0.09, 0.75) 
0.0059 

(0.0015, 
0.0207) 

0.0373 (0.0095, 
0.0933) 4 

Poland 
4.8 (1.9, 

13.5) 2.53 (1.05, 7.23) 
0.1 (0.03, 

0.51) 0.19 (0.05, 0.64) 
0.0031 

(0.0008, 
0.0158) 

0.0156 (0.0035, 
0.0563) 4 

Portugal 
4.9 (2.2, 

10.5) 4.33 (1.99, 9.17) 
0.05 (0.02, 

0.31) 0.14 (0.03, 0.57) 
0.0022 

(0.0006, 
0.0129) 

0.0172 (0.0037, 
0.0761) 5 

Qatar 
7.1 (2.4, 

19.4) 2.29 (1.22, 6.02) 
0.14 (0.03, 

0.57) 0.26 (0.06, 0.72) 
0.0055 

(0.0012, 
0.0257) 

0.0302 (0.0056, 
0.1028) 5 

Romania 
4.1 (2.0, 

8.3) 4.09 (1.98, 8.43) 
0.05 (0.01, 

0.25) 0.08 (0.02, 0.43) 
0.0014 

(0.0004, 
0.0075) 

0.0057 (0.0013, 
0.0301) 5 

Russia 
1.9 (1.1, 

4.6) 2.74 (1.33, 6.82) 
0.04 (0.01, 

0.76) 0.0 (0.0, 0.13) 
0.0021 

(0.0005, 
0.0391) 

0.0003 (0.0, 
0.0084) 9 

San Marino 
4.5 (1.6, 

12.1) 1.38 (0.85, 3.72) 
0.1 (0.02, 

0.61) 0.2 (0.04, 0.74) 
0.0112 

(0.0023, 
0.0711) 

0.0633 (0.0105, 
0.2618) 5 

Saudi Arabia 
4.9 (2.0, 

12.3) 4.17 (1.83, 9.86) 
0.06 (0.02, 

0.32) 0.12 (0.03, 0.5) 
0.0015 

(0.0004, 
0.0084) 

0.0079 (0.0016, 
0.0354) 5 

Senegal 
3.4 (1.7, 

7.6) 3.25 (1.64, 7.42) 
0.05 (0.01, 

0.28) 0.09 (0.02, 0.46) 
0.0028 

(0.0007, 
0.0167) 

0.009 (0.0016, 
0.0477) 5 

Serbia 
5.9 (2.1, 

17.3) 3.13 (1.36, 9.61) 
0.12 (0.03, 

0.61) 0.19 (0.04, 0.68) 
0.0077 

(0.0017, 
0.0438) 

0.0295 (0.0058, 
0.1247) 4 

Singapore 
3.8 (1.6, 

8.7) 2.27 (1.17, 4.72) 
0.06 (0.02, 

0.43) 0.01 (0.0, 0.32) 
0.002 (0.0005, 

0.0152) 
0.0005 (0.0, 

0.0157) 11 

Slovakia 
7.0 (2.2, 

19.2) 3.25 (1.33, 10.2) 
0.15 (0.04, 

0.65) 0.28 (0.06, 0.78) 
0.0092 

(0.0019, 
0.0456) 

0.0453 (0.0086, 
0.1595) 4 

Slovenia 
7.0 (2.6, 

19.4) 4.02 (1.59, 9.6) 
0.12 (0.03, 

0.5) 0.33 (0.08, 0.78) 
0.0047 

(0.0009, 
0.0225) 

0.0592 (0.0128, 
0.1663) 5 

Somalia 
3.7 (1.5, 

12.2) 2.78 (1.06, 10.19) 
0.06 (0.01, 

0.51) 0.06 (0.01, 0.55) 
0.0105 

(0.0016, 
0.0958) 

0.0133 (0.0012, 
0.1486) 1 

South Africa 
5.8 (2.3, 

17.5) 5.01 (1.98, 13.49) 
0.08 (0.02, 

0.45) 0.19 (0.04, 0.66) 
0.0044 

(0.0009, 
0.0273) 

0.0285 (0.005, 
0.1202) 4 

Spain 
5.2 (2.5, 

9.8) 4.14 (2.1, 7.65) 
0.05 (0.02, 

0.24) 0.21 (0.05, 0.64) 
0.0017 

(0.0005, 
0.0079) 

0.0289 (0.0067, 
0.0913) 6 
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Sri Lanka 
7.0 (2.4, 

17.5) 3.11 (1.04, 10.37) 
0.2 (0.05, 

0.62) 0.4 (0.1, 0.82) 
0.0103 

(0.0026, 
0.0355) 

0.0689 (0.0166, 
0.1615) 4 

Sudan 
3.4 (1.2, 

11.8) 3.2 (1.03, 11.68) 
0.11 (0.02, 

1.05) 0.13 (0.01, 1.13) 
0.022 (0.0018, 

0.2961) 
0.0414 (0.0013, 

0.5452) 1 

Sweden 
5.2 (2.1, 

14.4) 2.27 (1.25, 5.1) 
0.08 (0.02, 

0.42) 0.17 (0.04, 0.6) 
0.0052 

(0.0011, 
0.0298) 

0.0334 (0.0065, 
0.1377) 6 

Switzerland 
3.6 (1.8, 

8.0) 3.12 (1.68, 6.5) 
0.06 (0.02, 

0.33) 0.16 (0.03, 0.68) 
0.002 (0.0005, 

0.0124) 
0.0186 (0.0034, 

0.0901) 6 

Syria 
3.2 (1.2, 

10.9) 2.57 (0.77, 10.07) 
0.15 (0.02, 

1.42) 0.22 (-0.01, 1.49) 
0.0312 

(-0.0053, 
0.3978) 

0.0896 (-0.0146, 
0.8161) 2 

Taiwan* 
2.0 (1.2, 

5.1) 0.74 (0.18, 2.0) 
0.05 (0.01, 

0.32) 0.08 (0.0, 0.48) 
0.0045 

(0.0011, 
0.0324) 

0.0148 (0.0006, 
0.0936) 10 

Tanzania 
2.7 (1.3, 

8.8) 1.48 (0.65, 5.67) 
0.06 (0.01, 

0.57) 0.05 (0.0, 0.58) 
0.011 (0.0019, 

0.1148) 
0.0145 (0.0009, 

0.2131) 3 

Thailand 
1.9 (1.2, 

3.5) 0.81 (0.18, 1.59) 
0.04 (0.01, 

0.16) 0.23 (0.04, 0.56) 
0.0024 

(0.0007, 
0.0107) 

0.016 (0.0027, 
0.0556) 11 

Togo 
4.1 (1.4, 

11.4) 2.94 (1.03, 9.48) 
0.09 (0.02, 

0.73) 0.17 (0.02, 0.82) 
0.0113 

(0.0023, 0.09) 
0.0431 (0.0048, 

0.2472) 3 

Trinidad and 
Tobago 

5.6 (1.9, 
17.9) 4.3 (1.37, 12.93) 

0.14 (0.02, 
0.61) 0.32 (0.04, 0.86) 

0.0156 
(0.0022, 
0.0917) 

0.1051 (0.0128, 
0.3855) 3 

Tunisia 
4.7 (1.9, 

14.2) 3.43 (1.45, 9.6) 
0.08 (0.02, 

0.47) 0.16 (0.03, 0.64) 
0.0056 

(0.0011, 
0.0359) 

0.033 (0.0053, 
0.1501) 4 

Turkey 
8.2 (3.2, 

20.1) 8.45 (3.27, 25.28) 
0.05 (0.01, 

0.26) 0.13 (0.03, 0.51) 
0.0009 

(0.0002, 
0.0046) 

0.0068 (0.0014, 
0.0267) 3 

Ukraine 
6.1 (2.4, 

16.8) 5.79 (2.28, 16.3) 
0.07 (0.02, 

0.37) 0.12 (0.03, 0.5) 
0.0024 

(0.0005, 
0.0135) 

0.0097 (0.002, 
0.0437) 3 

United Arab 
Emirates 

1.8 (1.1, 
4.1) 2.22 (1.23, 5.1) 

0.04 (0.01, 
0.48) 0.01 (0.0, 0.18) 

0.0035 
(0.0008, 
0.0409) 

0.0011 (0.0001, 
0.0204) 10 

United 
Kingdom 

2.7 (1.3, 
6.3) 2.61 (1.31, 6.58) 

0.04 (0.01, 
0.33) 0.01 (0.0, 0.3) 

0.0061 
(0.0013, 
0.0649) 

0.0021 (0.0001, 
0.0822) 9 

Uruguay 
6.2 (2.1, 

18.8) 3.44 (1.13, 11.59) 
0.13 (0.03, 

0.54) 0.29 (0.05, 0.77) 
0.0072 

(0.0013, 
0.0358) 

0.0388 (0.0063, 
0.139) 3 

Uzbekistan 
4.4 (1.6, 

13.7) 3.07 (1.31, 10.6) 
0.08 (0.02, 

0.62) 0.11 (0.02, 0.62) 
0.005 (0.0012, 

0.0368) 
0.0134 (0.0021, 

0.08) 3 

Venezuela 
8.4 (2.7, 

23.2) 5.69 (1.86, 17.88) 
0.23 (0.05, 

0.68) 0.47 (0.11, 0.87) 
0.0153 

(0.0031, 
0.0555) 

0.0804 (0.0171, 
0.2025) 3 

29 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprint (whichthis version posted May 5, 2020. .https://doi.org/10.1101/2020.04.29.20083485doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.29.20083485


West Bank 
and Gaza 

3.9 (1.4, 
12.0) 1.6 (0.99, 3.97) 

0.09 (0.02, 
0.68) 0.14 (0.01, 0.7) 

0.0087 
(0.0018, 
0.0688) 

0.0312 (0.0027, 
0.1843) 5 

Zambia 
4.0 (1.2, 

14.4) 2.79 (0.7, 11.78) 
0.16 (0.02, 

1.19) 0.29 (-0.04, 1.31) 
0.0295 (-0.001, 

0.3355) 
0.1194 (-0.0155, 

0.7793) 3 

Zimbabwe 
3.5 (1.2, 

12.0) 2.69 (0.79, 10.72) 
0.17 (0.02, 

1.29) 0.25 (-0.01, 1.39) 
0.0345 

(-0.0033, 
0.3862) 

0.1018 (-0.0159, 
0.7856) 2 

 
 

 
 
Figure S2 R 0 estimates across models showing model consistency.  
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Figure S3 Median case infectiousness factor q for all regions  
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Figure S4 Median overdispersion factor for all regions. Blue line is median of 1.5 
across all regions.  
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S1 Latent variable SIR Model

We consider a latent variable SIR model where the observables are cases C,
case recoveries RC , and case deathsDC . The latent variables are the numbers
of susceptible S and undetected infected I individuals. Assuming probability
of contact between people is completely random and uniform and ignoring
the possibility of births, migration, or deaths due to other causes, the mass
action equations for the model are

dS

dt
= � �

N
S(I + qC) (S1)

dI

dt
=

�

N
S(I + qC)� �CI � �UI (S2)

dC

dt
= �CI � �RC � �DC (S3)

where N is the population of the region in question, � is the infection rate per
contact, �C is the transition rate from I to C, �U is the disappearance rate of
I not transitioning to C, and � = �R+�D is the disappearance rate for cases.
The parameter q accounts for possible di↵erences in virus transmission rate
from non-cases. It can be less than one due to say lower social contact or
higher due to a larger viral load. If q = 0 then the model is identical to an
SEIR model.

The equations obey the conservation condition

N = S + I + C +RC +DC + U

where

dRC

dt
= �RC, (S4)

dDC

dt
= �DC (S5)

dU

dt
= �UI. (S6)

The population U represents the portion of I that either recover or die but
remain undetected.

If initially S = N , I << N , and the parameters are such that the right
hand side of (S2) is positive, then I will grow until it reaches a peak where

1
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İ = Ċ = 0, which is given by the condition

S⇤

N
=

�(�C + �U)

�(� + q�C)

where � = �R + �D. The fraction of the population remaining susceptible at
the peak of the epidemic is the inverse of the reproduction number

R0 =
�(� + q�C)

�(�C + �U)
(S7)

(R0 can also be computed using the next generation method). The pandemic
will spread if R0 > 1. The total number that becomes infected and thus are
no longer susceptible is NI = N � S. The peak of this number is given by

N⇤
I = N

R0 � 1

R0
, R0 > 1

I will decrease after NI passes N⇤
I . Thus, the pandemic can be mitigated by

reducing N⇤
I , which can be achieved by either decreasing R0 or decreasing N .

We model the e↵ects of mitigation with a time dependence in � via � ! �t

where

�t = �(m1 +
1�m1

1 + exp((t�m50)/5)
) (S8)

where t = 0 is the day of the first case. �t transitions from its initial value
to a new value �m1 on day m50 with a transition time of 5 days. We also
account for the possibility that the case detection rate can change in time
with with �C ! �t where

�Ct = �C(c1 +
1� c1

1 + exp((t� c50)/5)
) (S9)

For example, the method of classification of cases changed in China on a
single day leading to spike in the number of cases and this time dependence
accounts for situations such as that.

The mean field SIR model assumes a well mixed population where the
probability of interactions are homogeneous that does not reflect actual hu-
man interactions. An actual epidemic, rather than growing homogeneously
throughout the population, will be seeded locally and spread within clusters

2
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that then propagate to other local clusters. Each cluster may locally satu-
rate before spreading to another cluster and thus the average dynamics of
the epidemic over a large region is not reflected by the actual spread at the
local level. Hence, the population size N in the SIR model is not simply the
regional population but a complex aggregation over many interacting local
clusters, which may be di�cult to estimate. This is a major limitation of
mean field models since N is a major factor in determining the eventual rise
and fall of the pandemic. However, this limitation can be circumvented by
noting that in the initial stages of the epidemic where I is small and less
than even the cluster population, we can fix S = N and the system (S1),
(S2), and (S3) reduces to the two dimensional linear system

dI

dt
= �tI � �CtI � �UI + q�C (S10)

dC

dt
= �CtI � �RC � �DC (S11)

N is scaled out of the dynamics.
The eigenvalues for the linear system (S10) and (S11) assuming that �t

and �Ct are constant in time are

r± =
Tr2

2
± 1

2

p
Tr2 � 4Det

where Tr = �t � �Ct � �U � � and Det = ��(�t � �Ct � �U) � q��Ct. For
q = 0 the eigenvalues simplify to

r+ = �t � �Ct � �U

r� = ��

For most parameter values r+ will dominate the temporal dynamics. The
pandemic will grow when it is positive and begin to extinguish only when �t

falls below �Ct + �U .
We can use the eigenvalues for a lower bound on the rate for the pan-

demic to extinguish. In the nonlinear equations, we can consider an e↵ective
infectiousness �⇤ = �tS(t)/N = �t(1 � nI), where nI is the fraction of the
population that is immune, either innately or by recovering from the infec-
tion. From (S7) we can set

�t = Rt(�Ct + �U)

3
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for q = 0 to obtain

r+ ⇡ (Rt(1� nI)� 1)(�U + �C)

Thus the pandemic will extinguish at the rate of infection disappearance
moderated by the residual spread.

S2 Parameter identifiability

Here, we investigate whether the parameters in (S10) and (S11) are in prin-
ciple identifiable from the observable data. We first consider the case with-
out mitigation in which there are six parameters, �, �C , �R, �D, �U , and
q together with the dynamic variables I(t) and C(t). The observable data
consists of the time series of cases, case recoveries, and case deaths, which we
denote by �C(t), �R(t),and �D(t), respectively. For this analysis, we assume
perfect information with no uncertainty.

From the data, we can immediately construct the following conditions

�CI(t) = �C(t) (S12)

�RC(t) = �R(t) (S13)

�DC(t) = �D(t) (S14)

dC

dt
= �C(t)� �R(t)� �D(t) (S15)

From these conditions we immediately obtain C(t), �R, and �D. Dividing
(S10) by (S11), we obtain

dI

dC
=

↵1I + q�C

�CI � �RC � �DC
(S16)

where ↵1 = ���U ��C . Given that the epidemic is initiated with I > 0 and
C = 0, then prior to the first case arising we can assume dI/dC = ↵1/�C ,
from.which we can integrate to obtain �CI(0) = ↵1C(0), where t = 0 marks
the day of appearance of the first case. This then gives ↵1 = �C(0)/C(0).

Multiplying (S10) by �C gives

L(t) ⌘ d�C/dt� ↵1�C = �Cq�C (S17)

4
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and thus �Cq� = L/C. Finally, we can also rewrite (S10) as

d�C

dt
� (↵1 � �C)�C = �C�C + L(t) (S18)

from which �C can be inferred. Given �C we can then infer I(t) from �C(t)
from which we can derive conditions for � � �U and q�, which are only two
conditions for three unknowns. Thus, the observable data can at most specify
five out of the six unknown parameters.

We can resolve this nonidentifiability in two ways. The first is by speci-
fying one of the parameters. For example, we can specify �U given that we
have a prior on the rate of recovery or death from the infection. We can
also specify q since it is a measure of how e↵ective the isolation of cases are.
The second is to utilize the fact that mitigation acts as a time dependent
perturbation on � assuming all the other parameters are fixed. The mitiga-
tion is set by two parameters, the day it is applied and the e↵ectiveness in
diminishing �. Essentially the model can be applied separately before and
after mitigation where only � has a di↵erent value. If the day of mitigation
is known then this results in four conditions for four unknowns, i.e. �before,
�after, q, and �U and the parameters can be identified. Thus in principle,
with perfect information, the model can be identified if given some prior
information.

S3 Parameter estimation

We estimate the parameters and their uncertainties using Bayesian methods,
by putting prior distributions on each of the model parameters. A schematic
of our overall Bayesian latent-variable model is shown in Fig. S1

We consider various versions of the model with varying number of param-
eters and weigh them using model comparison measures such as WAIC and
LOO.

Considering the mean field SIR equations as a birth and death process im-
plies a Poisson likelihood. However, in addition to this inherent stochasticity,
errors will be introduced due to variability in criteria for measurement and
recording. We account for this additional variance with a Negative Binomial

5
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Figure S1: Bayesian Model diagram showing variable dependencies and prior
distribution families.

distribution cf.

nC(d) ⇠ NegBinom(�cc(d)I(d),�) (S19)

nR(d) ⇠ NegBinom(�RC(d),�) (S20)

nD(d) ⇠ NegBinom(�DC(d),�) (S21)

where nC,R,D are the total number of new cases, recovered cases, and case
deaths on day d, I(d), C(d) are the total number for day d, and � is a
fitted factor quantifying the extra variance where x ⇠ NegBinom(µ,�) with
E[X] = µ and var[X] = µ+ µ2/�. We use inverse gamma distributed priors
on �U , �R and �D using parameters derived from ref X. We fit from the first
day in which the daily case count is greater than one, which we call day 0.
We then set C(0) to this count and I(0) = (� � �U � �C)/�CC(0).

The cumulative population that becomes infected and cumulative cases

6
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at time t are given by

NI(t) =

Z t

0

�m(s)(1 + qC(s))I(s)ds (S22)

NC(t) =

Z t

0

�CI(s)ds (S23)

The cumulative totals for recovered and dead are RC and DC . From these
quantities we can estimate the case ascertainment ratio, NC/NI and the total
infection fatality ratio, DC/NI .

S4 Data and Software

All data and code can be found at https://github.com/nih-niddk-mbs/
covid-sicr. This repository contains several python scripts and Jupyter
notebooks for replicating our findings, as described in the README file
there. These can be used to obtain new post-publication estimates with ad-
ditional data, provided that the data providers listed in the main text con-
tinue to provide a consistent API. We used Stan, which provides Bayesian
inference using a heavily-optimized No-U-Turn sampler, a variant of Hamil-
tonian Monte Carlo, and each model described here is available as a .stan
file. Python 3 was used for all other reported results, including interaction
with Stan (via pystan). A subset of the work implemented in Julia is also
available in the repository.
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