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Abstract
Background: Safety issues are detected in about one third of prescription drugs in the years following regulatory 
agency approval. Older adults, especially those with chronic kidney disease, are at particular risk of adverse reactions to 
prescription drugs. This protocol describes a new approach that may identify credible drug-safety signals more efficiently 
using administrative health care data.
Objective: To use high-throughput computing and automation to conduct 700+ drug-safety cohort studies in older adults 
in Ontario, Canada. Each study will compare 74 acute (30-day) outcomes in patients who start a new prescription drug (new 
users) to a group of nonusers with similar baseline health characteristics. Risks will be assessed within strata of baseline 
kidney function.
Design and setting: The studies will be population-based, new-user cohort studies conducted using linked administrative 
health care databases in Ontario, Canada (January 1, 2008, to March 1, 2020). The source population for these studies will 
be residents of Ontario aged 66 years or older who filled at least one outpatient prescription through the Ontario Drug 
Benefit (ODB) program during the study period (all residents have universal health care, and those aged 65+ have universal 
prescription drug coverage through the ODB).
Patients: We identified 3.2 million older adults in the source population during the study period and built 700+ initial 
medication cohorts, each containing mutually exclusive groups of new users and nonusers. Nonusers were randomly assigned 
cohort entry dates that followed the same distribution of prescription start dates as new users. Eligibility criteria included a 
baseline estimated glomerular filtration rate (eGFR) measurement within 12 months before the cohort entry date (median 
time was 71 days before cohort entry in the new user group), no prior receipt of maintenance dialysis or a kidney transplant, 
and no prior prescriptions for drugs in the same subclass as the study drug. New users and nonusers will be balanced on 
~400 baseline health characteristics using inverse probability of treatment weighting on propensity scores within 3 strata of 
baseline eGFR: ≥60, 45 to <60, <45 mL/min per 1.73 m2.
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Outcomes: We will compare new user and nonuser groups on 74 clinically relevant outcomes (17 composites and 57 
individual outcomes) in the 30 days after cohort entry. We used a prespecified approach to identify these 74 outcomes.
Statistical analysis plan: In each cohort, we will obtain eGFR-stratum-specific weighted risk ratios and risk differences 
using modified Poisson regression and binomial regression, respectively. Additive and multiplicative interaction by eGFR 
category will be examined. Drug-outcome associations that meet prespecified criteria (identified signals) will be further 
examined in additional analyses (including survival, negative-control exposure, and E-value analyses) and visualizations.
Results: The initial medication cohorts had a median of 6120 new users per cohort (interquartile range: 1469-38 839) and 
a median of 1 088 301 nonusers (interquartile range: 751 697-1 267 009). Medications with the largest number of new users 
were amoxicillin trihydrate (n = 1 000 032), cephalexin (n = 571 566), prescription acetaminophen (n = 571 563), and 
ciprofloxacin (n = 504,374); 19% to 29% of new users in these cohorts had an eGFR <60 mL/min per 1.73 m2.
Limitations: Despite our use of robust techniques to balance baseline indicators and to control for confounding by 
indication, residual confounding will remain a possibility. Only acute (30-day) outcomes will be examined. Our data sources 
do not include nonprescription (over-the-counter) drugs or drugs prescribed in hospitals and do not include outpatient 
prescription drug use in children or adults <65 years.
Conclusion: This accelerated approach to conducting postmarket drug-safety studies has the potential to more efficiently 
detect drug-safety signals in a vulnerable population. The results of this protocol may ultimately help improve medication 
safety.

Abrégé 
Contexte: Des problèmes d’innocuité sont détectés dans environ un tiers des médicaments d’ordonnance au cours 
des années qui suivent leur approbation par l’organisme de réglementation. Les personnes âgées, en particulier celles qui 
sont atteintes d’insuffisance rénale chronique, sont particulièrement exposées aux effets indésirables des médicaments 
d’ordonnance. Ce protocole décrit une nouvelle approche qui, à partir des données administratives du système de santé, 
pourrait permettre d’identifier plus efficacement les signaux crédibles sur la sécurité des médicaments.
Objectif: Utiliser l’informatique à haut débit et l’automatisation pour mener plus de 700 études de cohorte sur l’innocuité 
des médicaments chez les adultes âgés résidant en Ontario (Canada). Chaque étude comparera 74 résultats aigus (30 jours) 
chez des patients qui commencent un nouveau médicament sur ordonnance (nouveaux utilisateurs) à ceux d’un groupe de 
non-utilisateurs avec des caractéristiques de santé initiales similaires. Les risques seront évalués par strates de la fonction 
rénale initiale.
Cadre et type d’étude: Études populationnelles de cohortes de nouveaux utilisateurs de médicaments menées à l’aide des 
bases de données administratives couplées du système de santé ontarien (Canada). Période étudiée: du 1er janvier 2008 au 
1er mars 2020. Population source: les Ontariens de 66 ans ou plus ayant rempli au moins une ordonnance pour patient non 
hospitalisé par l’entremise du Program de médicaments de l’Ontario (PMO) pendant la période de l’étude (tous les résidents 
de la province bénéficient d’un système de soins de santé universel; les personnes âgées de 65 ans et plus bénéficient d’une 
couverture universelle des médicaments d’ordonnance par l’intermédiaire du PMO).
Sujets: Nous avons identifié 3,2 millions d’adultes âgés dans la population source au cours de la période d’étude et constitué 
plus de 700 cohortes de médicaments, chacune contenant des groupes mutuellement exclusifs de nouveaux utilisateurs et de 
non-utilisateurs. Les non-utilisateurs se sont vu attribuer au hasard des dates d’entrée dans la cohorte qui suivaient les dates 
de début d’ordonnance des nouveaux utilisateurs. Les critères d’admissibilité étaient d’avoir une mesure initiale du débit 
de filtration glomérulaire estimé [DFGe] dans les 12 mois précédant la date d’entrée dans la cohorte (dans le groupe des 
nouveaux utilisateurs, le délai médian était de 71 jours avant l’entrée dans la cohorte), ne pas suivre de dialyze chronique, ne 
pas avoir eu de greffe rénale et n’avoir jamais eu de prescription d’un médicament de la même sous-classe que le médicament 
à l’étude. Les nouveaux utilisateurs et les non-utilisateurs seront jumelés selon environ 400 caractéristiques de santé initiales 
à l’aide de la probabilité inverse de traitement pondérée selon les scores de propension dans les trois strates de mesure du 
DFGe initial: ≥60 ml/min/1,73 m2; 45 à <60 ml/min/1,73 m2 et <45 ml/min/1,73 m2.
Résultats: Nous comparerons les groupes de nouveaux utilisateurs et de non-utilisateurs selon 74 critères de jugement 
cliniquement pertinents (17 critères composites et 57 critères individuels) pendant les 30 jours suivant l’entrée dans la 
cohorte. Une approche prédéfinie a permis de déterminer ces 74 résultats.
Plan d’analyze statistique: Dans chaque cohorte, nous calculerons les différences de risque (par régression de Poisson) 
et les rapports de risque (par régression binomiale) pondérés pour chaque strate de DFGe. Les interactions additives et 
multiplicatives par catégorie de DFGe seront examinées. Les associations médicaments-résultats répondant à des critères 
prédéfinis (signaux identifiés) seront examinées plus avant dans des analyses supplémentaires (survie, exposition à des 
témoins négatifs, analyses de la valeur E, etc.) et des visualizations.
Résultats: Dans les cohortes initiales de médicaments, les médianes sont de 6 120 nouveaux utilisateurs (intervalle 
interquartile de 1 469 à 38 839) et de 1 088 301 non-utilisateurs (intervalle interquartile de 751 697 à 1 267 009). Les 
médicaments comptant le plus grand nombre de nouveaux utilisateurs sont le trihydrate d’amoxicilline (n = 1 000 032), la 
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céfalexine (n = 571 566), l’acétaminophène sur ordonnance (n = 571 563) et la ciprofloxacine (n = 504 374). De 19 à 29 % 
des nouveaux utilisateurs dans ces cohortes présentaient un DFGe < 60 ml/min/1.73 m2.
Limites: Malgré l’utilization de techniques robustes pour équilibrer les indicateurs de base et pour contrôler le risque 
de confusion par indication, il pourrait subsister des facteurs de confusion résiduels. Seuls les résultats aigus (30 jours) 
seront examinés. Nos sources de données ne comprennent pas les médicaments sans ordonnance (en vente libre) ni les 
médicaments prescrits dans les hôpitaux, et n’incluent pas l’utilization de médicaments sur ordonnance en ambulatoire chez 
les enfants ou les adultes de moins de 65 ans.
Conclusion: Cette approche accélérée pour la réalisation d’études d’innocuité des médicaments après leur mise en marché 
a le potentiel de détecter efficacement les effets indésirables de ces médicaments dans une population vulnérable. Les 
résultats de ce protocole serviront à améliorer l’innocuité des médicaments.
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medication, drug, pharmaco-epidemiology, pharmaco-informatics, pharmacovigilance, postmarket drug surveillance, real-
world data
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Introduction

The safety profile of a prescription drug is not fully known at 
the time it is released to the market. The process used by 
regulatory agencies to approve drugs is primarily based on a 
review of data from clinical trials that follow a limited num-
ber of patients under highly controlled conditions. After a 
drug has been approved, regulatory agencies such as the U.S. 
Food and Drug Administration and Health Canada subse-
quently rely on further evaluation to identify unintended 
pharmacologic effects of prescription drugs. Safety issues 
are detected in about one third of drugs in the years following 
approval.1

Older adults are at particular risk—about 1 in 6 hospital-
izations among older adults are for adverse drug events.2 
Older adults with chronic kidney disease (CKD) are typi-
cally underrepresented in initial drug trials; thus, the efficacy 
and safety of approved drugs are often unclear in these 
patients. Recommended dosages may not generalize to older 
patients due to age-related changes in the body’s ability to 
absorb, metabolize, and excrete drugs. Kidney function 
declines with age, and about one third of adults older than 65 
have an estimated glomerular filtration rate (eGFR) below 
60 mL/min per 1.73 m2 (a diagnostic criterion for CKD). 
Low kidney function prolongs the half-life of drugs and 
metabolites that are cleared by the kidneys; to avoid toxicity, 
these medications often need to be dose-reduced or avoided 
entirely in patients with CKD.

Over the past decades, pharmaco-epidemiology has 
answered a wide range of study questions using various data 
sources and analytic methodologies. Several population-
based studies have quantified the risk of unintended harms of 
medications and informed safer prescribing in vulnerable 
populations, including those excluded from trials, such as 
pregnant women, multimorbid patients, and older adults. 
Unfortunately, this process can be slow and inefficient. 
Unanticipated harmful drug effects usually first come to light 

in case reports and from the analysis of spontaneous report-
ing databases. If enough reports accumulate, large pharmaco-
epidemiologic studies may be conducted. However, each of 
these pharmaco-epidemiologic studies usually examines 
only 1 or 2 drugs and only a few outcomes. With this 
approach, many harmful effects are missed, and small knowl-
edge gains take years to achieve.

In this protocol, we describe our plan to detect drug-safety 
signals more efficiently in older adults with CKD in routine 
care. Using high-throughput computing and automation, we 
will conduct 700+ population-based, new-user, drug-safety 
studies using 12 years of data from Ontario’s administrative 
health care databases (2008-2020). These databases contain 
encrypted data on all health care visits, hospitalizations, and 
laboratory results of Ontario residents—all residents have 
universal access to hospital care and physician services 
through a government-funded single-payer system, and 
Ontarians aged 65 years and older also receive universal out-
patient prescription drug coverage.

We describe the methods we used to build these 700+ 
medication cohorts, each containing new-user and nonuser 
groups that will be statistically balanced on 400+ baseline 
health characteristics. We describe the process we used to 
select and define 74 clinically relevant outcomes and our 
statistical analysis plan for the main analysis to identify 
potential drug-safety signals in CKD and minimize the 
chance of false discoveries. Drug-outcome associations that 
meet prespecified criteria will be examined further in mul-
tiple additional and exploratory analyses, including sur-
vival, negative-control exposure, and E-value analyses.

Methods

Study Design, Setting, and Data Sources

Using high-throughput computing and automation, we  
will conduct 700+ population-based, new-user, drug-safety 
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cohort studies using linked administrative health care data-
bases in Ontario, Canada. The study period will be from 
January 1, 2008, to March 1, 2020. All study data will be 
obtained from Ontario’s linked administrative health care 
databases housed at ICES.3 These databases contain 
encrypted, person-level data for Ontario residents, all of 
whom have universal access to hospital care and physician 
services through a government-funded single-payer sys-
tem. Residents aged 65 years and older also receive univer-
sal prescription outpatient drug coverage, whereas residents 
of all ages receive universal prescription drug coverage 
when they are in the emergency department or are admitted 
to hospitals. Thus, our studies will use outpatient dispens-
ing information of all prescription drugs for residents aged 
65 years and older. We have previously used these data-
bases to study adverse drug events and health outcomes.4-8 
Except for data on prescriber specialty (10%-20% missing) 
and neighborhood income quintile (0.01%-1.72%), these 
databases are complete for all variables. Emigration from 
the province, which occurs at a rate of 0.5% per year, is the 
only reason for the loss to follow-up.9 The use of data in 
this study is authorized under section 45 of Ontario’s 
Personal Health Information Protection Act, which does 
not require review by a research ethics board. The datasets 
will be linked using unique encoded identifiers and ana-
lyzed at the ICES.

More details on the databases, study variables, and the 
codes used to ascertain baseline comorbidities are provided 
in Supplemental eTable 1. Study conduct and reporting will 
follow recommended guidelines for observational pharmaco-
epidemiology studies that use routinely collected health 
data.10-12

In preparation for conducting these studies, we built multi-
ple medication cohorts of new users and nonusers. We will 
employ a high-throughput computing environment to facili-
tate the parallel processing of medication cohorts. Our statisti-
cal and machine learning operations will be carried out using 
SAS, R, and Python. In addition, we plan to use the open-
source JavaScript library D3 for the development of interac-
tive visualizations. Described below is the process we used to 
integrate data from different sources (Supplemental eFigure 
1), build the cohorts, define clinically relevant outcomes for 
testing in the main analysis (Supplemental eFigure 2), create 
eGFR-specific cohorts, and calculate propensity scores 
(Supplemental eFigure 3). We then describe the statistical 
analysis plan for the main analysis (Supplemental eFigure 4).

Source Population

The source population for the cohort studies comprised resi-
dents of Ontario aged 66 years or older who filled an outpa-
tient prescription through the Ontario Drug Benefit (ODB) 
program from January 1, 2008, to March 1, 2020. The age 
restriction was applied to ensure at least 1 year of prior 
prescription drug coverage in this population. The source 

population contained 3.2 million patients who filled 1.1 bil-
lion prescriptions for 745 distinct oral medications during 
this time. These prescriptions were prescribed by 106 578 
unique physicians. This population was restricted to patients 
with a valid ICES key number (the common number used to 
link the same patient across different health care databases; 
restricted to those with a valid ICES key number in prescrip-
tion records) and to those who had valid/nonmissing data on 
date of birth and sex (missing in 0.1%-0.2% of prescription 
records).

Selection of New Users for the Medication Cohorts

We applied the following exclusion criteria to the set of 1.1 bil-
lion prescription records for 3.2 million patients (Supplemental 
eFigure 5). These criteria were applied on or before the first 
date a medication was dispensed to a patient—this date is 
termed the index date and was also the patient’s cohort entry 
date. Patients who were prescribed multiple distinct medica-
tions had multiple index dates. As part of data cleaning, we 
excluded prescription records for patients who were nonperma-
nent residents of Ontario, who were aged <66 or >105 years 
on or before the index date, or who had a date of death on or 
before the index date. The number of records removed for each 
exclusion step is shown in Supplemental eFigure 6.

We then excluded prescription records with a day-supply 
≥100 because these prescriptions were likely for patients 
planning to leave the province for more than 3 months. While 
the ODB program allows a maximum prescription duration 
of 100 days, patients leaving Ontario for more than 3 months 
are allowed a greater supply (e.g., many Ontarians leave the 
province for several months during the winter; termed snow-
birding). Given the low use of healthcare services by this 
group in Ontario from January to March, it is advisable for 
researchers to take into account the snowbird population and 
its potential influence on evaluations that assume continuous 
observation.13 These prescriptions were excluded to avoid 
incomplete follow-up because the follow-up period for out-
comes is only 30 days. We also excluded records with a day-
supply <3 days.

For each prescription record, we used a 180-day lookback 
period to determine if the medication had been previously 
prescribed to the patient or if a nonoral version had been pre-
scribed (codes for nonoral versions are provided in 
Supplemental eTable 2), or if another medication in the same 
subclass had been prescribed. If any of these criteria were 
met, the prescription record was excluded. For example, a 
prescription record for furosemide would be excluded if the 
patient had been prescribed another loop diuretic (e.g., 
bumetanide or ethacrynic acid) in the 180 days up to and 
including the furosemide index date.

We excluded prescriptions for patients with no outpatient 
test results for serum creatinine in the year before the index 
date and in those whose baseline eGFR was >150 mL/min 
per 1.73 m2, as the latter are likely the result of data entry 
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errors. We calculated the patients’ baseline eGFRs using 
the most recent outpatient serum creatinine measurement 
recorded in the year before the index date. Most older adults 
in Ontario have at least one serum creatinine measurement 
each year, and we have shown that single outpatient measures 
of creatinine can be used to group patients into clinically rel-
evant stable eGFR strata (≥60, 45 to <60, <45 mL/min  
per 1.73 m2) with reasonable accuracy.14 In Ontario, serum 
creatinine concentrations are assessed using a method cali-
brated to isotope dilution mass spectroscopy. The eGFR was 
calculated using the new race-free eGFR equation.15 
Additional information about this equation is provided in 
Supplemental eTable 3.

To ensure the prescription was a new outpatient prescrip-
tion, we excluded records for patients who were discharged 
from a hospital or emergency department 2 days before the 
index date or on the index date because patients in Ontario who 
start a prescription during a hospital admission would have 
their outpatient prescription dispensed on the same day or the 
day after hospital discharge. Finally, we excluded prescription 
records for patients who were treated for kidney failure (i.e., if 
the patient received maintenance dialysis or a kidney trans-
plant; diagnosis codes are in Supplemental eTable 4).

Following these exclusions, there were 2 754 744 patients 
who filled 32 876 726 prescriptions for 717 unique medica-
tions. We then restricted this sample to the first prescription 
filled, which left 2 754 744 patients (new users) who filled 
23 457 350 prescriptions for one of the 717 medications for 
the first time during the study period. The median number of 
new users in each medication cohort was 6120 (interquartile 
range [IQR]: 1469-38 839).

Selection of Nonusers for the Medication Cohorts

We selected a distinct group of nonusers for each medication 
cohort as follows. For each cohort, we first selected all 
patients in the source population who were not part of the 
cohort’s new-user group. We then randomly assigned cohort 
entry dates to the nonusers based on the distribution of pre-
scription start dates for the cohort’s new users. The data 
cleaning steps and eGFR calculations were performed as 
described for new users, and the full set of exclusions is 
shown in Supplemental eFigure 6. For example, the baclofen 
cohort contained 120 606 new users, and we randomly 
assigned cohort entry dates to the remaining patients in the 
source population (based on the distribution of prescription 
start dates for the new users of baclofen). After applying the 
exclusion criteria described in Supplemental eFigure 7, the 
nonuser group in the baclofen cohort contained 1 326 036 
patients. Overall, the median number of nonusers in each 
medication cohort was 1 088 301 (IQR: 751 697-1 267 009).

In each cohort, the new-user and nonuser groups will be 
statistically balanced on 400+ baseline characteristics as 
described below: Analyses to Balance New-user and Nonuser 
Groups in Each Cohort.

Outcome Selection

We used a prespecified analytic approach to select 74 clini-
cally relevant outcomes (56 individual and 18 composite 
outcomes, where 4 of the individual outcomes and 1 of the 
composite outcomes were prespecified, as shown in Table 1). 
As described below, we first performed an outcome fre-
quency analysis and identified 89 clinically relevant out-
comes that were prevalent in the sample of 2 754 744 new 
users in the 30-day period after the index date. From this set 
of 89, we created 17 clinically relevant composite outcomes 
informed by the results of 3 independent analyses. The 
remaining 52 outcomes were retained as individual out-
comes, and we also prespecified the following 5 outcomes: 
all-cause mortality, ≥1 hospital admission for any reason, 
≥1 emergency department visit for any reason, ≥1 emer-
gency department visit or hospital admission for any reason, 
and ≥1 physician visit for any reason. We chose a 30-day 
follow-up period to focus on acute events and to avoid 
changes in the use of newly prescribed long-term medica-
tions that can occur with longer periods of follow-up.

Outcome frequency analysis. This analysis was done in a sam-
ple of 2 754 744 new users. For each of the 717 study medica-
tions, we examined the frequency of 4 types of administrative 
health care codes recorded in new users within 30 days after 
the drug dispense date (International Classification of Dis-
eases–10th Revision [ICD-10] codes, Canadian Classifica-
tion of Health Interventions [CCI] codes, Ontario Health 
Insurance Plan (OHIP) diagnosis codes, and OHIP fee codes 
[described in Table 2]). For each medication, we computed 
the number of unique codes recorded in new users and the 
number of new users in whom each code was recorded. Then 
in the sample of all new users, we computed the total number 
of unique codes recorded and the total number of new users 
in whom each code was recorded.

The 25 most frequently recorded codes for the OHIP fee 
code database are shown in Supplemental eTable 5. Using 
bisoprolol fumarate as an example (a beta-blocker used to 
treat high blood pressure), the 25 most frequently recorded 
ICD-10 codes (most-responsible diagnosis for hospital 
admission) in the 30 days after the drug dispense date are 
shown in Supplemental eTable 6; these codes were obtained 
from the Canadian Institute for Health Information Discharge 
Abstract Database. We found 370+ unique ICD-10 codes 
(the most-responsible diagnosis) recorded for 180 464 new 
users of this drug. The number of new users in whom a code 
was recorded ranged from <6 to 7263 (median 13 users).

As another example, for new users of nitrofurantoin (an 
antibiotic used to treat urinary tract infections), the 25 most 
frequently recorded ICD-10 codes (most significant com-
plaint) within 30 days after the drug dispense date are shown 
in Supplemental eTable 7; we obtained these codes from the 
National Ambulatory Care Reporting System which includes 
information from emergency department visits. We found 
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Table 1. Final Set of 74 Clinically Relevant Outcomes (Ordered Alphabetically).

Individual outcomes (56) Composite outcomes (18)

• Abdominal aortic aneurysm repair/aortic bypass
• Achilles tendon rupture
• All-cause mortality (prespecified)
• Arthroscopy
• Asthma
•  Atrial fibrillation/flutter or other arrhythmia (pacemaker insertion, 

palpitations, tachycardia unspecified, atrioventricular block, 
supraventricular tachycardia, or other conduction disorders)

• Bowel obstruction
• Bradycardia
• Bronchoscopy
• Carotid endarterectomy
• Carotid ultrasound
• Cataract, unspecified
• Chest X-ray
• Cholecystitis, unspecified
• Clostridium difficile colitis
• Colposcopy
• Computed tomography: abdomen
• Computed tomography: head
• Computed tomography: thorax
• Cutaneous drug reaction
• Cystoscopy
• Depression
• Disorders of calcium metabolism
• Emergency department visit for any reason (prespecified)
• Gout
• Guillain-Barré syndrome
• Head trauma
• Hearing loss
• Hospital admission for any reason (prespecified)
• Hyperkalemia
• Hypoglycemia
• Hypokalemia
• Hyponatremia
• Intensive care unit admission
• Kidney stones
• Laparoscopy
• Liver disease toxicity
• Lower limb amputation
• Major abdominal surgery
• Major cardiovascular surgery
• Osteoarthritis
• Pancreatitis
• Parkinson’s disease
• Physician visit for any reason (prespecified)
• Pneumonia
• Renal biopsy
• Retinal detachment
• Rhabdomyolysis
• Rheumatoid arthritis
• Self-harm
• Sepsis
•  Surgery (for any reason other than major abdominal surgery, major 

cardiovascular surgery, lower limb amputation and fracture, and major 
ortho procedure)

• Severe respiratory depression
• Urinary incontinence
• Urinary retention
• Venous thromboembolism

• Acute dialysis or acute kidney injury
•  Aplastic anemia (unspecified), neutropenia, or other 

agranulocytosis, or thrombocytopenia (unspecified)
• Cardiac arrest or ventricular arrhythmia
• Cardiac catheterization or coronary revascularization
• Colonoscopy or esophagogastroduodenoscopy
•  Diabetic ketoacidosis, hyperglycemia, or hyperosmolar 

nonketotic coma
• Delirium or other encephalopathy
• Delirium, fall, or other encephalopathy
• Echocardiography or holter monitoring
• Electroencephalography or seizures
•  Emergency department visit or hospital admission for any 

reason (prespecified)
• Fall, fracture or major orthopedic procedure, or fracture
• Fall or hypotension
• Fall or syncope
•  Heart failure or myocardial infarction (most-responsible 

diagnosis), or ischemic stroke (most-responsible 
diagnosis)

•  Hemarthrosis or hemorrhage (not elsewhere classified), 
intracerebral hemorrhage (unspecified), lower 
gastrointestinal bleed, other nontraumatic intracranial 
hemorrhage, subarachnoid hemorrhage (unspecified), or 
upper gastrointestinal bleeding

• Hypotension or syncope
• Urinary tract infection or urine culture
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Table 2. Types of Administrative Health Care Codes Used to Define Outcomes in this Study.16-19

Code type Description Database

ICD-10 Classifies diseases, injuries, symptoms, poisoning, complaints, and causes of death during  
hospital visits (most-responsible diagnosis),a emergency department visits, and other health 
care encounters

CIHI-DAD, NACRS,

CCI Classifies therapeutic and diagnostic interventions and other health care interventions in 
ambulatory care (outpatient clinics, emergency room visits, and hospital-based surgery).

CIHI-DAD, NACRS

OHIP diagnosis Diagnosis codes used in reimbursement claims for services provided by physicians and 
community-based labs. The codes are used to classify diseases, injuries, symptoms,  
poisonings, and other reasons for patient encounters.

OHIP

OHIP fee code Fee codes used in reimbursement claims for services provided by physicians and community-
based labs. Each record represents a single service, identified by the fee code, although that 
service may be performed several times. For example, if a child has a myringotomy and an 
adenoidectomy during the surgery, this will generate 2 records, 1 for the myringotomy and 1 
for the adenoidectomy.

OHIP

Note. ICD-10 = International Classification of Diseases–10th Revision; CIHI = Canadian Institute of Health Information; DAD = Discharge Abstract 
Database; NACRS = National Ambulatory Care Reporting System; CCI = Canadian Classification of Health Interventions; OHIP = Ontario Health 
Insurance Plan.
aIn patients with multiple diagnoses, the “most-responsible diagnosis” is the one considered to cause the greatest length of hospital stay or greatest use 
of resources (e.g., operating room time, investigative technology) as coded in the hospital discharge abstract; the most-responsible diagnosis is not always 
the same as the admitting diagnosis.19

790+ unique ICD-10 codes (the most significant complaint) 
recorded for 493 143 new users of this drug. The number of 
new users in whom a code was recorded ranged from <6 to 
7798 (median 15 users).

Outcome selection and definition. A clinician and an epidemi-
ologist (AXG and FTM) reviewed the results of the outcome 
frequency analysis and selected and defined 89 individual 
outcomes composed of 1 or more combinations of the 4 types 
of codes shown in Table 2. They investigated frequently 
recorded codes and used them to define outcomes based on 
their experience conducting drug-safety studies.4-8,20 For 
example, a hospital visit with a fracture was defined using 
evidence of any of the specified ICD-10 codes, CCI codes, 
and OHIP fee codes, as shown in Table 3.21 The coding defi-
nitions of the initial 89 outcomes are shown in Supplemental 
eTable 8. In Supplemental eTable 9, we show the frequency 
of 5 randomly chosen 30-day outcomes for the first 25 most 
frequently prescribed drugs.

Composite outcome creation. We ran 3 independent analyses 
in the sample of 2 754 744 new users to inform the creation of 
clinically relevant composite outcomes from the selected set 
of 89 individual outcomes. The process of selecting and 
defining the composite outcomes is visualized in Supple-
mental eFigure 2. Acknowledging the limitations of compos-
ite outcomes, the purpose of creating them was to reduce the 
total number of statistical tests performed in the main analy-
sis and to increase the statistical power for detecting rare 
outcomes.22

To ensure that the components of each composite out-
come reflected the same pathology and/or sequelae, we 

conducted the following 3 analyses: we conducted Poisson 
regression analyses to identify pairs of outcome events that 
were strongly associated with each other; we conducted fre-
quent itemset mining analyses to identify groups of outcomes 
that frequently occurred together; and as a confirmatory step, 
we conducted a multiple correspondence analysis (MCA).

Before running these analyses, we randomly assigned 
new prescription start dates to each of the new users. We then 
computed the incidence of each of the 89 outcomes in the 
30-day period after the randomly assigned prescription start 
date. We repeated this process 100 times to generate 100 
samples with different sets of prescription start dates. We 
then ran the Poisson regression analyses, frequent itemset 
mining, and multiple correspondence analyses in each of the 
100 samples. Groups of outcomes that met the prespecified 
criteria defined below (i.e., received a pass versus fail in the 
first 2 analyses and were confirmed in the third) were consid-
ered to be good candidates for a composite outcome and 
were reviewed further for suitability as a composite by the 
clinician-epidemiologist team (AXG and FTM).

Poisson regression analyses. We ran separate modified Pois-
son regression models in each of the 100 samples, where for 
each multivariable model, the dependent variable was 1 of 
the 89 outcomes, and the independent variables were the rest 
of the outcomes. For instance, first, we created a multivari-
able model with fracture as the dependent variable and the 
other 88 outcomes as independent variables; we then mod-
eled fall as the dependent variable and the other 88 outcomes 
as independent variables in the second multivariable model, 
and so on. We then computed the median of the risk ratios 
for the outcome pairs that were significant (P < .05) among 
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Table 3. Operating Characteristics of Hospital Diagnosis Codes Used to Define a Hospital Encounter With Major Fracture.21

Outcome
Outcome 

component Codes used in the validation study
Sensitivity 
(range)a

Positive predictive 
value (range)a

Hospital encounter 
with major fracture

Hip ICD-10: S720, S721; S722.
CCI: 1VA73, 1VC73, 1VA74, 1VA53, 1VC74, 1VA80

0.92-0.96 0.82-0.92

Pelvis ICD-10: S321, S322, S324, S323, S325, S327, S328 0.92-0.96 0.82-0.92
Humerus ICD-10: S422 0.79-0.93 0.81-0.89
Femur ICD-10: S723

CCI: 1VC7,1VC74,1VC03, 1VC80
OHIP fee code: F095, F096, F097, Z211

0.92-0.96 0.82-0.92

Radius ICD-10: S52
CCI: 1TV73, 1TV74, 1TV03
OHIP fee code: F014, F022, F023, F025, F026, F028, 

F030, F032, F033, F046, F024, F027, F031, Z203

0.90-0.95 0.90-0.94

Note. ICD-10 = International Classification of Diseases–10th Revision; CCI = Canadian Classification of Health Interventions; OHIP = Ontario Health 
Insurance Plan.
aReference standard: Identifying a fracture in a review of a patient’s medical chart.

all 100 samples. For example, in the regression model with 
fracture as the dependent variable, we calculated the median 
coefficients for each of the independent variables that were 
P < .05.

The pass criteria for outcome pairs were (1) P < .05 for 
the risk ratio (RR) in >90% of the cohorts and (2) the median 
RR had to be <0.5 or >1.5. For example, when we modeled 
fall with the other 88 outcomes, we found that fracture, com-
puted tomography (CT) head, head trauma, and chest X-ray 
outcomes were each significantly associated with fall (P < 
.05) in 95% of the cohorts, and the median RRs were >1.5. 
This analysis helped us to identify outcomes that were sig-
nificantly associated with each other. We then used this 
information to group outcomes (such as fall and fracture) 
that are interdependent. Pass/fail results are summarized in 
Supplemental eTable 10.

Frequent itemset mining analyses. We applied the Eclat23 
algorithm to the 100 generated samples to conduct frequent 
itemset mining analysis. A frequent itemset is a set of items 
that frequently occur together in a dataset. Each of the 89 
outcomes was considered an item in this analysis. The fre-
quency of an itemset was measured by the number of patients 
in the dataset who developed all the outcomes (i.e., items) 
in a particular itemset. An itemset was considered to be fre-
quent if it occurred more frequently than a predefined thresh-
old value—termed the minimum support. We predefined the 
minimum support to ensure each itemset had at least 125 
patients. For the 100 generated samples, we computed the 
frequencies of all the outcomes in each itemset (i.e., indi-
vidual item frequency) and the intersection and union of 
each itemset. The intersection of 2 or more items in each 
itemset was the number of patients who developed all the 
outcomes included in that itemset. In contrast, the union of 
items in each itemset was the number of patients who devel-
oped at least one outcome in that itemset. We generated a list 

of individual frequencies (of outcomes), intersections, and 
unions, which were computed separately in the 100 gener-
ated samples. For all 100 samples, we computed the average 
frequency of each individual outcome and the average inter-
section and union of each itemset. Then, for each itemset, we 
identified the outcome that had the minimum average fre-
quency among all outcomes present in the itemset. Finally, 
we computed the ratio of the minimum average frequency 
and the average intersection for all itemsets. The higher the 
value of the resulting ratio of an itemset, the more likely that 
all outcomes in that itemset frequently occurred together in 
the new users.

The pass criteria for an itemset were as follows: (1) the 
ratio (minimum frequency to intersection) had to be >.35 
and (2) the itemset had to meet the minimum support of 
7.5E−05 in all the 100 samples. For example, the itemset 
containing CT abdomen, CT thorax, and venous thromboem-
bolism is one of the frequent itemsets with an average (per 
sample) support of .005, an intersection of 6684, a minimum 
frequency of 14 024, a union of 33 742, and a ratio (minimum 
frequency to intersection) of 0.48. We can conclude that 
these 3 outcomes occurred together more often than other 
itemsets with a lower minimum frequency to intersection 
ratio. In these analyses, 228 itemsets met the pass criteria 
with a median of 2 outcomes per itemset. Pass/fail results are 
summarized in Supplemental eTable 10.

Multiple correspondence analysis. Multiple correspondence 
analysis24 is an expansion of correspondence analysis and 
is used to analyze the pattern of relationships of multiple 
categorical dependent variables. Multiple correspondence 
analysis allows for the study of similarities and relation-
ships between variables and observations. Examination of 
the lower-dimensional principal components set allowed us 
to spot underlying patterns and trends that can be difficult 
to identify in a large dataset.25 We applied the MCA algo-
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rithm to 1 of the 100 generated samples (randomly selected) 
to study relationships among different outcomes by placing 
each outcome as a point in a low-dimensional space using 
geometrical methods. We investigated the optimal number 
of components that captured the highest amount of vari-
ance. For this purpose, we found that the first 15 principal 
components preserved 55% variance of the dataset. We then 
analyzed each principal component to identify correlations 
among the set of outcomes. The results of this analysis con-
firmed the findings of the Poisson and frequent itemset anal-
yses, and no new outcome groupings were identified.

Composite outcome definition. We identified 30 groups of 
outcomes that met the prespecified criteria for composite 
outcome creation (pass/fail results are summarized in Sup-
plemental eTable 10). These 30 candidates were then evalu-
ated by the clinician-epidemiologist team (AXG and FTM), 
and 17 candidates were considered to have clinical rele-
vance as a composite. For example, the outcomes fall, frac-
ture, and a fracture-associated major orthopedic procedure 
met the pass criteria in each analysis and were considered 
to represent a clinically relevant composite outcome. The 
30-day aggregate event rates among new users for 5 ran-
domly chosen composite outcomes of the 25 most fre-
quently prescribed study drugs are shown in Supplemental 
eTable 11.

Analyses to Balance New-User and Nonuser 
Groups in Each Cohort

In each cohort, for every medication-outcome combination, 
we will conduct the following analysis to balance the new-
user and nonuser groups on baseline characteristics within 3 
strata of baseline eGFR (≥60, 45 to <60, and <45 mL/min 
per 1.73 m2).

Before starting these analyses, we will exclude medica-
tion cohorts that have <200 patients within each of the new-
user and nonuser groups in any of the 3 eGFR strata. We 
chose this minimum sample size to exclude cohorts with lim-
ited statistical power to detect meaningful results. 

We will apply additional exclusion criteria at the patient 
level and the cohort level after some of the analytic steps as 
described below.

Baseline characteristics. In each cohort, we will assess 
400+ baseline characteristics (the complete list of charac-
teristics and their coding definitions is provided in Sup-
plemental eTable 1). Demographic variables include age, 
sex, neighborhood income quintile, urban versus rural 
residence, Local Health Integration Network,26 and resi-
dence in a long-term care home. The lookback period for 
different types of baseline characteristics is visualized in 
Supplemental eFigure 8. Comorbidities will be assessed 
in the 5-year period before cohort entry (e.g., asthma, the 

Charlson Comorbidity Index, chronic lung disease, coro-
nary artery disease [excluding angina], diabetes, hyper-
tension, peripheral vascular disease, and rheumatoid 
arthritis). Health care use will be assessed in the 1-year 
period before cohort entry (e.g., hospitalizations, emer-
gency room visits, nephrologist visits, cardiologist visits, 
endocrinologist visits, internist visits, and geriatrician vis-
its). Use of other prescription drugs will be assessed in the 
120-day period before cohort entry (specifically, we will 
assess the 100 most frequently prescribed medications 
and the 100 most frequently prescribed classes of medica-
tions); a 120-day lookback period will be used because the 
ODB program allows a maximum prescription duration of 
100 days; however, some patients may not promptly refill 
their prescription, so we will use a 120-day lookback 
period to ensure these patients are not missed.

Propensity scores. For each cohort, we will run multivariable 
logistic regression analyses within each eGFR stratum and 
calculate propensity scores based on all baseline characteris-
tics—the propensity scores estimate each patient’s probabil-
ity of being in the new-user group versus the nonuser group, 
given their set of baseline characteristics.

Patient-level exclusion criteria. Within each eGFR stratum, 
we will exclude (1) nonusers whose propensity scores are 
lower than the lowest 1% of scores of the new users and (2) 
new users whose propensity scores are higher than the high-
est 99% of scores of the nonusers.27

Inverse probability of treatment weighting. For each cohort, 
we will use the inverse probability of treatment weighting 
with average treatment-effect-in-the-treated (ATT) weights 
to balance the baseline characteristics between new-user 
and nonuser groups in each eGFR stratum. Nonusers will 
be weighted using the ATT weights, defined as their odds of 
being in the new-user group (propensity score/[1 − propen-
sity score]). New users will receive weights of 1. This 
method will produce a weighted pseudo-sample of patients 
in the referent group (nonusers) with a similar distribution 
of measured characteristics as the new-user group.28,29 We 
will then examine between-group differences in baseline 
characteristics in the weighted samples using standardized 
differences.30

Medication cohort-level exclusion criterion. Medication 
cohorts will be excluded from further analysis if <95% of 
the baseline characteristics within each of all 3 eGFR strata 
are balanced between the new-user and nonuser groups (i.e., 
the standardized differences must be <10% for ≥95% of 
characteristics in each of all 3 eGFR strata for the medication 
cohort to be considered for further analysis; if no cohort is 
excluded for this reason there will be 745 medication cohorts 
considered in the analysis).
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Statistical Analysis Plan for the Main Analyses

All analyses will be programmed and automated using 
Python, SAS, JavaScript library D3, and R, and conducted 
using the Health Artificial Intelligence Data Analytic 
Platform, a high-performance computing environment where 
the ICES data can be analyzed.

Regression analyses. A visual summary of the regression and 
additional exploratory analyses is provided in Supplemental 
eFigure 4. In each medication cohort, outcomes will be eli-
gible for analysis if there are 6 or more outcome events in the 
new-user group within each of the three eGFR strata (for rea-
sons of privacy in our research environment, we are not per-
mitted to report exact numbers when the number of events is 
1 to 5, as doing so could result in potential patient re-identi-
fication; in addition, fewer than 6 outcome events can result 
in substantial imprecision in the estimates). For each eligible 
medication cohort, we will use a modified Poisson regres-
sion model31 to estimate the weighted RR and 95% CI of 
each eligible outcome in new users versus nonusers (if all 74 
outcomes for a particular medication cohort prove eligible 
there will be 74 regression models for the cohort stratified by 
baseline eGFR stratum). We will use a binomial regression 
model with an identity link function to estimate the weighted 
risk difference (RD) and 95% CI (which will also have a 
maximum of 74 regression models per medication cohort 
stratified by baseline eGFR stratum). The nonuser group is 
the reference group.

For each outcome in each medication cohort we will test 
for additive and multiplicative interaction by baseline eGFR 
(≥60, 45 to <60, <45) in new users versus nonusers. To do 
this, we will use the eGFR stratum-specific weights to aggre-
gate patients in the eGFR strata into one weighted cohort.32-34 
Each regression model will have an interaction term: (new-
user vs nonuser) × eGFR (3-level variable). Multiplicative 
interaction and additive interaction will be assessed by 
examining the eGFR-stratum-specific RRs and RDs, respec-
tively. Drug-outcome associations that meet each of the cri-
teria below will be identified signals and will be further 
examined in additional analyses (described in the next 
section).

1. The P values for both the additive and multiplica-
tive interaction terms (when calculated separately 
using the method below) must be statistically sig-
nificant after running the Benjamini-Hochberg cor-
rection (a correction which accounts for the multiple 
statistical comparisons being done across all out-
comes examined across all medication cohorts; for 
this correction, the false discovery rate will be set at 
5% across all comparisons, and after ranking the  
P values for all the interaction terms in ascending 
order, the highest P value below the Benjamini-
Hochberg critical value will be considered statisti-
cally significant, as will all interactions above it 

with lower P values). There will be a maximum of 
55 130 potential interaction terms (calculated as 745 
potential medication cohorts multiplied by 74 out-
comes); however, the final number of interaction 
terms will be less as some medication cohorts will 
prove ineligible for analysis and some outcomes for 
an eligible cohort will prove ineligible for analysis. 
Nonetheless, there will be a large total number of 
eligible comparisons that requires a statistical 
method to reduce the risk of false signal discoveries 
(type I errors).

2. The RRs and RDs must increase in a graded manner 
across declining eGFR strata:
-  For the RRs: (RR for eGFR<45) > (RR for eGFR 

45 to < 60) > (RR for eGFR ≥60).
-  For the RDs: (RD for eGFR<45) > (RD for 

eGFR 45 to < 60) > (RD for eGFR ≥60).
3. In the stratum for eGFR <45, the lower-bound of the 

95% CI for the RR must be ≥1.33 and the lower-
bound of the 95% CI for the RD must be ≥0.1%. Our 
analysis is only focused on identifying the potential 
harm of prescriptive medications (not on identifying 
potentially protective benefits).

Cohorts with no signals will not be analyzed further.

Additional analyses and other procedures to guard against spuri-
ous discoveries. Signals (drug-outcome associations) identi-
fied in the regression analyses will undergo the following 
additional analyses. These analyses will be run within the 3 
baseline eGFR strata (≥60, 45 to <60, <45). We will have 
greater confidence in the credibility of an observed signal if 
it is supported by additional analyses.

Survival analysis. To determine whether the initial signal 
persists when analyzed in a time-to-event outcome analysis 
(i.e., is robust with respect to modeling technique), we will 
run a Cox proportional hazards regression with a 30-day 
follow-up, censoring on death. The proportional hazards 
assumption will be tested (new-user vs nonuser × follow-up 
time).

Negative-control-exposure analyses. A negative-control 
exposure is a variable that (1) is subject to the same potential 
sources of bias as the exposure (i.e., starting the prescription 
drug of interest) and (2) cannot plausibly cause the outcome 
of interest. A positive association between a negative-control-
exposure variable and the outcome of interest would suggest 
the initial signal may be the result of confounding by unob-
served patient characteristics or biased outcome ascertain-
ment—in other words, by an unknown variable associated 
with starting the prescription drug of interest and the out-
come of interest. To test for this type of bias, we will re-run 
the regression analyses for the initial signals and examine the 
RRs and RDs for 30-day outcomes starting 90 days before 
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cohort entry (i.e., 90 days before the prescription drug start 
date).35 To allow for a greater buffer between their initial ill-
ness/reason for prescription and this new cohort entry date, 
a 90-day lookback period will be used for negative-control 
exposure analysis. This decision is also aligned with our plan 
to investigate the 90-day outcome as part of an exploratory 
analysis (discussed in the next section). We acknowledge the 
outcome of all-cause mortality cannot be examined in this 
way (as through our selection processes, all patients lived to 
their cohort entry date, so there will be no events of mortality 
in this specified negative-control exposure analysis). A posi-
tive association (i.e., RRs and RDs away from the null and P 
values <.05) would suggest the presence of confounding by 
unobserved patient characteristics or biased outcome ascer-
tainment. The absence of an association would increase the 
credibility of the initial signal.

E-value analysis. We will conduct E-value analyses to 
quantify the minimum strength of association that an unmea-
sured confounder would have to have with the prescription 
drug and outcome of interest (while accounting for control of 
the measured covariates) to negate the initial signal.36 Larger 
E-values would indicate that considerable unmeasured con-
founding would be needed to explain away the initial signal; 
smaller E-values would suggest that little unmeasured con-
founding would be needed. For an initial signal to be con-
sidered robust, the E-value must be >2 in the stratum eGFR 
<45. We are focusing on this specific stratum (eGFR <45) 
because this stratum contains patients with the lowest level 
of kidney function in our study.

Propensity score matching. In these analyses, we will use 
1:1 propensity score matching to balance the new-user and 
nonuser groups on baseline health indicators.37 This method 
will estimate the average treatment-effect-in-the treated but 
is not sensitive to the influence of extreme weights compared 
to the inverse probability of the treatment weighting method. 
For an initial signal to be considered robust, the results of 
this analysis must be consistent with the initial findings 
across eGFR strata.

Bootstrap. We will use a multiplier bootstrap procedure 
to compute RRs and RDs in 200 distinct random samples of 
identical sizes and calculate the average standard errors for 
each initial signal. This method approximately corrects esti-
mates of standard errors and CIs with the correct coverage 
rates.31,38 To be robust, at least 90% of the resampled (i.e., 
bootstrapped) data must be consistent with the initial result 
(P values should be <.05 and the CIs for the RRs and RDs 
should be in the same direction).

Dose-response relationships. To explore the presence of 
a dose-response relationship, when the user group is suf-
ficiently large and the daily dose is sufficiently varied, we 
will divide the medication cohort into 2 groups based on 

medication dosage (high-dose and low-dose groups, respec-
tively). By comparing signals observed in these groups, we 
can explore whether the association changes depending on 
the dosage. While a dose-response relationship is not always 
a definitive requirement to confirm a signal, its presence 
would provide further supporting evidence. Dose-response 
relationships will be assessed by re-running the regression 
analyses, comparing the following within each of the 3 
eGFR strata: (1) the higher-dose group to nonusers, (2) the 
lower-dose group to nonusers, and (3) the higher-dose group 
to the lower-dose group.

Additional analysis in patients with an eGFR <45 mL/min 
per 1. 73 m2. To examine whether the signal becomes more 
pronounced at lower levels of eGFR, when the groups are 
sufficiently large to do so, we will re-run the regression 
analyses in patients with an eGFR <45 mL/min per 1.73 m2 
and examine RRs and RDs in 2 strata: eGFR 30 to <45 mL/
min per 1.73 m2 and <30 mL/min per 1.73 m2. Owing to the 
possibility of low patient numbers, we will exclusively per-
form this supplementary analysis for medications that meet 
specific criteria. These criteria include having a minimum of 
200 new users and 200 nonusers each with an eGFR less than 
30 mL/min per 1.73 m², along with a requirement of at least 
6 events within the new-user group.

Expressing and visualizing signals in alternate ways. We also 
have the opportunity to express and visualize signals identi-
fied in the regression analyses (drug-outcome associations) 
in the following alternate ways.

Extending the follow-up period. To gain further insight 
into the effect of extended medication exposure (beyond 30 
days), we will re-run the regression analyses and examine 
the RRs and RDs for outcomes occurring within 60 days and 
90 days after the index date. Similarly, we can do the same 
for shorter follow-up periods, examining outcomes which 
occur within 7 days and 14 days.

Number needed to harm (NNH). In addition to expressing 
the risk as a weighted RD, the absolute risk will be further 
quantified as the “number needed to harm” (1/RD), a mea-
sure that indicates how many patients would need to start the 
study drug to cause harm to 1 patient who otherwise would 
not have been harmed if they had not started the study drug, 
with respect to a particular outcome (a lower number indicat-
ing greater harm).39

The population attributable fraction (PAF). The PAF will be 
calculated as Pe (RR − 1)/1 + Pe (RR − 1), where Pe is the 
exposed proportion of the source population (i.e., the propor-
tion of the source population newly prescribed the drug of 
interest), and the RR is the relative risk obtained from the 
analysis of the medication cohort.40 Values of PAF close to 
1 indicate that both the relative risk is high and the exposure 
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is common. In such cases, eliminating the exposure (i.e., not 
prescribing the drug of interest) would greatly reduce the 
number of outcome events in the population of patients in 
this study. Values of PAF close to 0 indicate that the relative 
risk is low, the exposure is uncommon, or both. In the latter 
case, reducing the exposure in the population will have little 
effect at the population level. The PAF is considered use-
ful for informing public health policy. Separate PAFs will be 
generated for each eGFR stratum. All outcome signals for a 
given medication cohort will be combined as a composite 
outcome before calculating the PAF for that cohort.

Class effect and heterogeneity. We will consider conduct-
ing an analysis in the drug class to observe whether the 
results are consistent with the primary analysis of individ-
ual medications. We can consider whether a potential class 
effect exists for medications in the same pharmacological 
class. For example, there will be a class effect if the sig-
nal observed in the macrolides class is similar to individ-
ual macrolides such as clarithromycin, erythromycin, or 
azithromycin.

Exploring the data using interactive visualization. We will 
develop an interactive visualization tool to explore the out-
puts from the described analyses graphically. Interactive 
visualization gives users an overview of the data, enabling 
them to access, restructure, and modify the amount and 
form of displayed information.41,42 It allows exploration 
of the visualized data to answer user-initiated queries. We 
will design and develop multiple interactive visualizations 
to allow manual exploration of the data and enable users to 
apply filters and sort the results on risk ratios or other met-
rics. The interactive interface will allow users to filter the 
associations that meet 1 or more specific criteria in addi-
tional analyses.

In addition, as part of the visualization of the study results, 
we will use forest plots to display the results across different 
subgroups, including age, sex, and kidney function. For the 
age subgroup, we will categorize adults into 2 groups: those 
aged ≥75 and those aged <75. We will conduct separate 
analyses for males and females (based on how sex is recorded 
in our data sources). Additionally, we will present results for 
each eGFR stratum, namely eGFR ≤60 mL/min/1.73 m2, 
eGFR between 45 and <60 mL/min/1.73 m2, and eGFR <45 
mL/min/1.73 m2 to visually see the influence of kidney 
function.

Summary of Preliminary Results

From January 1, 2008, to March 1, 2020, we identified 3.2 
million older adults in Ontario who filled 1.1 billion pre-
scriptions for 745 distinct oral medications through the ODB 
program. A total of 28 of the 745 medication cohorts proved 
ineligible, and the 717 eligible medication cohorts each con-
tained mutually exclusive new-user and nonuser groups. The 

cohorts had a median of 6120 new users (IQR: 1469-38 839) 
and 1 088 301 nonusers (IQR: 751 697-1 267 009).

The 25 most frequently prescribed medications are shown 
in Supplemental eTable 12 with the number of new users, the 
median daily dose, and the median eGFR of the new users. 
The medications with the largest number of new users were 
amoxicillin trihydrate (n = 1 000 032), cephalexin (n = 
571 566), prescription acetaminophen (n = 571 563), and 
ciprofloxacin (n = 504 374); 19% to 29% of new users in 
these cohorts had an eGFR <60 mL/min per 1.73 m2.

In addition, an overview of the baseline characteristics of 
the new users of the 25 most frequently prescribed study 
medications is shown in Supplemental eTables 13 to 16, 
where Supplemental eTable 13 shows a summary of demo-
graphic characteristics (e.g., age groups, sex, long-term care, 
residency status), Supplemental eTable 14 shows a summary 
of the year of drug initiation, Supplemental eTable 15 shows 
the prevalence of 5 randomly chosen baseline comorbidities 
in the 5-year lookback period before the index date, and 
Supplemental eTable 16 shows the average number of health 
care visits that were assessed in the 1-year period before the 
index date.

Discussion

This protocol describes a new approach that may accelerate 
the process of conducting population-based, drug-safety 
studies using automation and high-throughput computing of 
routinely collected health data. Using 12 years of data from 
Ontario’s administrative health care databases, we expect to 
simultaneously conduct 700+ new-user, population-based 
cohort studies to examine the effects of 700+ drugs on 74 
outcomes in older adults according to their baseline level of 
kidney function. Our analyses will account for patient 
comorbidities and other risk factors that can influence the 
relationship between drug usage and outcomes. The objec-
tive of this study is to identify potential drug-safety signals 
and formulate hypotheses that will be further investigated 
individually and verified in future studies. We will run exten-
sive sensitivity and bias analyses to guard against spurious 
associations.

Ultimately, we hope our approach can be used to identify 
credible drug-safety signals more efficiently. Since the 
1990s, drug-safety signals have largely been detected from 
the systematic review of case reports and data mining of 
drug-safety report databases, including the U.S. Food and 
Drug Administration’s Adverse Event Reporting System, the 
European Medicines Agency’s EudraVigilance, the Canadian 
Adverse Drug Reaction Monitoring Program, and the World 
Health Organization’s VigiBase.43,44 Millions of reports are 
submitted annually by health care professionals, patients, 
pharmaceutical companies, and others.45,46 Given the increas-
ing volume of data available for analysis, data mining of sur-
veillance databases has become a dominant method of 
pharmacovigilance. While data mining has assisted in 
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identifying many important drug-safety signals,45,47 this 
approach has several recognized limitations. It is susceptible 
to bias from both underreporting (<10% of adverse drug 
events are estimated to be included in these databases)48 and 
overreporting (reporting rates can be influenced by media 
publicity, litigation, or the product being newly marketed), 
and results are limited by the absence of valid control groups 
and the lack of population denominators to calculate inci-
dence rates.43,49 Results can be influenced by factors that 
change over time, such as reporting requirements, names and 
coding definitions for products and events, data entry and 
coding processes, and database structure and architecture.47 
This approach also relies on patients and health professionals 
recognizing that a potential adverse event may be linked to a 
particular drug and reporting it. Common events, such as 
myocardial infarctions, may be under-recognized as adverse 
events, as was the case with rofecoxib (Vioxx) before epide-
miological studies were conducted.47,50

In the last decade, data mining for drug-safety signals has 
increasingly been applied to electronic health records and 
administrative health care databases, including drug claims 
and health insurance databases—data sources often described 
as real-world data.51 Methods for signal detection include 
sequence symmetry analyses, self-controlled case series, 
propensity score cohort-based TreeScan signal detection, 
self-controlled cohort analysis with the use of temporal pat-
tern discovery, and Bayesian approaches.52-56 With respect to 
effective signal detection, no method has emerged as supe-
rior across a range of exposures, outcomes, and covariates; 
however, these methods are evolving—as are the criteria 
used to evaluate, quantify, and compare their performance, 
including acceptable rates of false-positive and false-nega-
tive signals.49,51,57-59

A major limitation in data mining for drug-safety signals 
is the massive amount of noninformative signals generated—
a situation that has been described as “data rich, information 
poor.”44,60 Given the complexity and heterogeneity of real-
world data sources, a generic one-size-fits-all approach to 
signal detection using real-world data is unlikely; rather, 
multiple, fit-for-purpose designs tailored to specific research 
objectives and specific data sources will be needed.43,45 Our 
protocol outlines one such design.

Our proposed approach has several strengths. It will inte-
grate methods from pharmaco-informatics (hypothesis-free 
data mining for signal detection) and recommended methods 
in pharmaco-epidemiology.61 The medication cohorts will be 
representative of older adults prescribed medications as out-
patients in routine care, as all Ontario residents have univer-
sal access to hospital care and physician services, and those 
aged 65+ also have universal outpatient prescription drug 
coverage. Each study will employ a new-user cohort design, 
and all outcomes will be prespecified.61,62 Patients will be 
followed for outcomes from the prescription start date to 
minimize the possibility of selection and survivor biases that 
affect prevalent-user designs.62 Pretreatment (baseline) 

health indicators will be characterized before the prescrip-
tion start date and can be included as covariates in the analy-
sis without concern of adjusting for variables affected by the 
treatment. This design will ensure appropriate temporal mea-
surement of confounders, treatment, and outcomes and will 
be better able to address confounding by indication, avoid 
erroneous adjustment for causal intermediates,61 and protect 
against finding associations based on reverse causation.63 In 
each study, new-user and nonuser comparison groups will be 
statistically balanced on 400+ baseline health characteristics 
within 3 strata of baseline eGFR using inverse probability of 
treatment weighting on propensity scores. This method will 
enable effective adjustment for large numbers of potential 
confounders measured before the cohort entry date.61 To 
ensure sufficient overlap in patient characteristics between 
comparison groups, we will exclude patients in the extreme 
ranges of the propensity score distribution (e.g., nonusers 
with propensity scores that are lower than the lowest 5% of 
scores in the new-user group would be unlikely to ever be 
prescribed the drug of interest).61,64 We also will exclude a 
medication cohort from analysis when less than 95% of the 
baseline characteristics within any of the 3 eGFR strata are 
balanced between the new-user and nonuser groups.

Our approach has some limitations. First, although the 
comparison groups will be statistically balanced on ~400+ 
baseline characteristics, residual confounding will remain a 
possibility, as with all observational studies. To address this, 
initial drug-safety signals will be further examined in addi-
tional exploratory analyses. Second, administrative health 
care data cannot provide information on whether patients 
took their pills as prescribed; however, our results will pro-
vide valid estimates of the effect of the real-world use of 
study medications. Third, misclassification of certain study 
outcomes may occur due to the insensitivity of certain codes. 
However, any misclassification is expected to be similar in 
both new users and nonusers (nondifferential) unless certain 
drugs have a known strong association with a particular out-
come such that it increases the frequency of outcome ascer-
tainment in the new-user group compared to the nonuser 
group. Additionally, for those events that are not adequately 
captured, the risk difference could be underestimated com-
pared to the reported value. Our reporting focuses on the 
most severe forms of adverse events, specifically those that 
necessitate hospital presentation. Consequently, this 
approach may not fully represent the morbidity associated 
with adverse drug reactions that did not result in hospital vis-
its. Fourth, the potential for false-positive signals is increased 
with the amount of multiple testing being done. To guard 
against spurious discoveries, we will use the Benjamini-
Hochberg method to control for the false discovery rate, and 
the bootstrap procedure, which approximately corrects esti-
mates of standard errors and CIs with the correct coverage 
rates.65 However, we acknowledge that careful control of the 
false discovery rate may increase the chance of false nega-
tives (type II error), and a lack of detected signal in the 
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primary analysis should not be interpreted as the absence of 
a signal. Fifth, we will only study adults aged 66 and older, 
so our findings may not generalize to younger adults. Sixth, 
the Ontario Drug Benefit program database does not contain 
information on over-the-counter medication use or medica-
tions dispensed in hospitals.

We acknowledge the importance of subsequent research 
and review to further establish the credibility of detected 
drug-safety signals in this project and to differentiate signals 
arising from adverse drug reactions versus inappropriate 
drug therapy or other causes. Prior literature will need review 
to determine if detected signals are consistent with published 
pharmacokinetic studies and other studies, and with informa-
tion in databases of adverse drug events. Potential signals 
will need to be verified individually in future studies.

Conclusions

This project aims to efficiently identify credible drug-safety 
signals in routine care for older adults with CKD, stratified 
by their baseline level of kidney function. The focus is on 
improving the detection of adverse drug events within this 
vulnerable population and ultimately improve medication 
safety.
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