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Recent years have seen the development of computational tools to assist researchers
in performing CRISPR-Cas9 experiment optimally. More specifically, these tools aim to
maximize on-target activity (guide efficiency) while also minimizing potential off-target
effects (guide specificity) by analyzing the features of the target site. Nonetheless,
currently available tools cannot robustly predict experimental success as prediction
accuracy depends on the approximations of the underlying model and how closely
the experimental setup matches the data the model was trained on. Here, we present
an overview of the available computational tools, their current limitations and future
considerations. We discuss new trends around personalized health by taking genomic
variants into account when predicting target sites as well as discussing other governing
factors that can improve prediction accuracy.
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INTRODUCTION

The CRISPR-Cas9 system allows for targeted editing of DNA in vitro. The system is targeted to
the DNA via association with a guide RNA (gRNA) molecule, which binds to the targeted DNA
through base complementarity and enables precise DNA cleavage (Jinek et al., 2013). This cleavage
is then repaired via various pathways, which can be exploited for different outcomes (Kim and
Kim, 2014). Knockouts can be achieved through error prone repair via the Non-homologous End
Joining pathway, which can introduce mutations and disrupt gene function. Targeted integration
of a sequence (called a knock-in) can be achieved via the Homology Directed Repair pathway,
which uses a provided DNA template to repair the cleavage. Activation or repression of a gene can
be achieved by targeting catalytically inert Cas9 fused to a transcription activator or repressor to
the promoter (La Russa and Qi, 2015). All of these approaches require the accurate and efficient
targeting of the CRISPR-Cas9 system to the desired location. The success of an experiment using
the CRISPR-Cas9 system therefore hinges on the correct identification of the optimal target-site
and subsequent design of the complimentary gRNA (Mali et al., 2013; Chari et al., 2015). While
databases of validated gRNAs exist for various genomes [e.g., Cas-Database (Park et al., 2016) for
knockout applications and (Horlbeck et al., 2016a) for gene activation/repression], these libraries
are generic and may not be well-suited for specific research purposes. The design of custom gRNAs
is hence frequently required.

A successful gRNA must maximize on-target activity (guide efficiency) while also minimizing
potential off-target effects (guide specificity). Balancing these two requirements can be a
combinatorial challenging task and as a result, significant effort in the recent years has been focused
on developing computational tools to assist in the design of gRNAs. These tools are designed
to assist researchers in the selection of best target sites by helping them exclude undesirable
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targets based on predicted low efficiency or a high potential
for off-target effects. Here, we present an overview of the
development of tools for the design of CRISPR-Cas9 gRNAs, their
current limitations and future considerations.

PREDICTING ON-TARGET ACTIVITY

Initially, CRISPR-Cas9 was thought to be able to target any 20
base-pair sequence that was flanked by a protospacer adjacent
motif (PAM). Different Cas and related enzymes target different
PAMs, and there is ongoing researching into designing enzymes
with specific PAM recognition ability (Cebrian-Serrano and
Davies, 2017). However, the most commonly used SpCas9, and
the focus of this review, targets an NGG motif. As such, early tools
for target site selection were simple pattern recognition programs
that identified instances of this motif (Upadhyay and Sharma,
2014; Xie et al., 2014; Zhu et al., 2014). In some cases, information
about where in a gene the target site fell (e.g., within an intron or
exon) was also incorporated, allowing researchers to draw some
conclusions on the likelihood of a functional effect. However,
subsequent studies showed that CRISPR-Cas9 displayed a wide
variety of activities across different target sites, leading to the
conclusion that some target sites are inherently more effective
(Jinek et al., 2012, 2013; Cong et al., 2013; Fu et al., 2013, 2014;
Mali et al., 2013; Yang et al., 2013; Doench et al., 2014; Koike-
Yusa et al., 2014; Shalem et al., 2014; Wang et al., 2014; Chari
et al., 2015; Moreno-Mateos et al., 2015).

This discovery led to a series of large-scale screens of CRISPR-
Cas9 activity across a variety of target sites and organisms, aimed
at identifying what features contributed to targeting efficiency
(Hsu et al., 2013; Doench et al., 2014, 2016; Chari et al., 2015;
Moreno-Mateos et al., 2015; Horlbeck et al., 2016b). These studies
helped identify some key rules for optimizing gRNA design.
This include avoiding poly-T sequences, limiting the GC content
and a G immediately upstream of the PAM (i.e., an GNGG
motif) (Ren et al., 2014; Shalem et al., 2014; Wong et al., 2015).
Building on this research, computational methods were created
for predicting on-target activity. The initial studies focused on
the contribution of the target site sequence, by measuring the
activity of 1000s of target sites. These studies differed in how
they defined the target sites, with some considering only the
20 bp target sequence (Chari et al., 2015) while others included
the PAM and flanking sequence (Doench et al., 2014; Moreno-
Mateos et al., 2015; Wong et al., 2015). They also differed in
how they represented the target site to the mathematical model,
i.e., the feature space. The studies used different combinations of
position specific nucleotides and dinucleotides, global nucleotide
counts, GC content, etc. More recent studies have also begun
to include non-sequence information, such as thermodynamic
stability of the gRNA and position of the cut site relative to the
transcription start site (TSS) (Doench et al., 2014; Wong et al.,
2015; Horlbeck et al., 2016b).

The differences in experimental design means that each study
produced a unique predictive model, with different rules for
CRISPR-Cas9 activity. Supplementary Table 1 presents a selection
of tools that demonstrate the variety of data types, features,

and model implementations used. Despite the differences in
the model, however, certain key features were repeatedly found
to be important. These include position-specific nucleotides,
such as a G preceding the PAM being a strong indicator of
CRISPR-Cas9 activity, or global variables such as GC content and
gRNA melting temperature were consistently reported as being
important (Wong et al., 2015). Comparing the distribution of
important features along the target site, the majority are found
within the ∼10–12 bp adjacent to the PAM, a region that has
become known as the seed region (Liu et al., 2016). This region
is typically thought to be critical for CRISPR-Cas9 activity, as
this region binds the DNA first following recognition of the PAM
(Farasat and Salis, 2016; Shibata et al., 2017).

The models also differed in what machine learning technique
was used in their construction. While predicting activity
using linear regression showed some success (Moreno-Mateos
et al., 2015), the more successful models used more complex
approaches such as Random Forest (Wilson et al., 2018) and
Support Vector Machines (Chari et al., 2015; Wong et al., 2015;
Doench et al., 2016), which consider interactions between the
individual features (McKinney et al., 2006). The success of these
more complex models suggests that there is no single feature that
governs activity, but rather a combination of interactions.

Despite the extensive training of the models, the accuracy of
their predictions varies widely. A recent review of different on-
target efficiency models found that no model was consistently
accurate across a number of independent dataset, recording
high accuracy only when tested on the original training dataset
(Haeussler et al., 2016). This discrepancy is likely due to
the differences in how the various studies conducted their
experiments. Consistent with this, a recent review found that
predictive models performed best when the CRISPR-Cas9
expression system matched the one used in the training dataset
(Haeussler et al., 2016). This would suggest that experimental
conditions do affect the final model.

This same study also found that the method used to
transcribe the gRNAs may also influence activity prediction.
Typically, gRNAs are transcribed in cells from a U6 promoter
or in vitro from a T7 promoter (Zhang et al., 2017). These
promoters have differing transcription requirements, such as
different polymerases and a G (for the U6 promoter) or GG
(for the T7 promoter) at the TSS. These differences appear to
influence any predictive model, with models performing better
when applied to datasets that use the same promoter as what
was used in the model’s training set (Haeussler et al., 2016).
Currently, no one predictive model is able to account for gRNA
transcription method. Some pipelines (such as CRISPOR), use
multiple predictive models allowing researchers to select the most
appropriate score (Haeussler et al., 2016).

It is also highly likely that the manner in which CRISPR-
Cas9 activity is measured impacts the final model. There is
currently no consensus in the literature in how CRISPR-Cas9
activity should be measured. Some studies measure activity by
the rate at which mutations are introduced through sequencing
the target site (Chari et al., 2015; Moreno-Mateos et al., 2015),
while others measure activity by the size of the phenotypic
change (such as drug resistance, cell viability, or protein
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expression) (Doench et al., 2014, 2016; Horlbeck et al., 2016b).
While measuring activity via sequencing may prove a more
direct measurement, it is also a costlier approach and does not
provide information about whether the induced mutations are
functional. Conversely, while phenotypic screens are easier to
perform at scale they rely on the CRISPR-Cas9 introducing
functional mutations, which may in turn lead to increase in
false-negatives (i.e., mutations that do not cause a functional
effect). These differences in experimental design likely translate
to differences in the model.

Doench et al. (2016) reported that two of the most important
variables for predicting CRISPR-Cas9 activity are the position
of the target site relative to the TSS and position within the
protein. However, this study was performed using a dataset
that reported CRISPR-Cas9 activity based on a combination of
changes in drug resistance and expression of cell-surface proteins.
Given mutations near the TSS of a gene are more likely to
induce a functional change, it is highly likely that the importance
of target position is inflated in a phenotypic screen. In fact,
a recent study comparing the impact of different training sets
found that training a predictive model using sequencing-based
measurements of CRISPR-Cas9 activity yields more generalizable
predictions (Wilson et al., 2018). Phenotypic-trained models are
governed by features such as position of the target site relative to
TSS and do not generalize to other datasets.

Because the training dataset has such a strong influence on the
final predictive model, it is therefore critical to know on what a
model was trained before use. As a rule of thumb, phenotypic-
trained models will be better suited to identifying target sites that
induce functional changes but are limited to experiments with the
same condition as the training set. In contrast, sequencing-based
models are more universally applicable, but are only capable of
predicting genotype changes not their functional result.

PREDICTING OFF-TARGET ACTIVITY

Identifying potential off-target sites is typically done by
repurposing computational tools used for high-throughput
sequencing read alignment. Here, the target site is treated as a
read and realigned back to the reference genome in order to
identify similar locations that may be inadvertently targeted by
the CRISPR-Cas9. Alignment of the short target sequences is
typically achieved using tools such as Bowtie and BWA, which
are better suited for handling short sequences compared to other
traditional tools such as BLAST.

These repurposed tools, however, are not the optimal solution
for this problem. Searching for potential off-target sites requires
the identification of small sequence motifs (20 bp + PAM) with
often many mismatches. Traditional alignment tools are not
equipped to identify such small, divergent sequences. Typically,
Bowtie alignments allow only up to three mismatches while BWA
allows up to 5, resulting in more divergent off-targets being
missed. In fact comparison of off-target identification pipelines
with experimentally validated CRISPR-Cas9 off-targets shows
that these traditional alignment methods not only miss the high-
mismatch off-target but even some with only one mismatch

(Tsai et al., 2015; Doench et al., 2016), suggesting these tools are
generally poorly suited for this problem.

Implementation of new alignment methods, such as bi-
directional alignments (Canzar and Salzberg, 2017), will be
required to accurately identify all potential off-targets. Typically,
aligners work by first matching a small portion of the query
sequence (known as the seed) and then extending the seed out in
a direction and testing the match. Bi-directional aligners work by
extending the initial seed region in both directions. Using these
more powerful alignment tools will be important for correctly
identifying all potential off-targets.

Further complicating the matter is that not every putative
off-target is actually functional (i.e., off-targets that are actually
cleaved by CRISPR-Cas9). As such, naive alignment methods
hence return a large number of false-positives, potentially leading
to the erroneous disqualification of the optimal target site.

A recent study comparing experimentally validated off-
targets and those predicted by alignment tools, showed that
the prediction tools over-estimate the number of potential off-
targets by up to 10-fold (Cameron et al., 2017). In order
to reduce the number of false-positive predictions, off-target
predictors often limit potential off-targets to a maximum number
of mismatches and only very specific PAMs (Bae et al., 2014b).
However, experimental studies, have shown that off-targets can
differ significantly from the original target site, meaning this
approach often results in false-negatives (Tsai et al., 2015, 2017;
Cameron et al., 2017). Predictive programs therefore need to
balance the false-positives and false-negatives. To compensate for
this, several studies have developed scoring algorithms, which
attempt to predict the activity of a potential off-target so that
false-positives can be filtered out.

The two most popular scoring methods are the MIT-
Broad score (Hsu et al., 2013) and the CFD score (Doench
et al., 2016). Both of these scoring algorithms are based on
“synthetic” datasets, whereby a series of gRNAs targeting a
specific dataset were mutated such that every one, two, and
three base mismatch combination was represented. The ability
of the gRNAs to cleave the target site were then measured,
and the results used to construct a Linear Regression algorithm
to score the off-target sites. Despite the theory behind both
methods being similar, they differ in how the final model is
constructed. While the MIT-Broad algorithm considers only
the 20 bp target sequence (i.e., does not included the PAM),
the CFD score takes the PAM sequence into account, scoring
target sites as less active if they possess non-canonical PAMs.
A recent comparison of the method tested their ability to
accurately predict the off-target activity of different experimental
datasets and concluded that the CFD score performed the best
(Haeussler et al., 2016). These methods however, are limited
in the features they consider, focusing predominantly on the
number and position of mismatches. Two recently developed off-
target methods Elevation (Listgarten et al., 2018) and CRISTA
(Abadi et al., 2017) expand the feature set, including features
such as gRNA secondary structure, genomic location and overlap
with other features of interest such as DNase 1 Hypersensitive
sites. These models are also capable of distinguishing between
mismatches that occur through wobble pairing, and those caused
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FIGURE 1 | Overview of an optimal prediction pipeline: (A) potential target sites are identified. (B) On-target activity is predicted using a combination of target
sequence, chromatin features and gRNA transcription method. (C) Off-target activity is predicted using a combination of sequence and chromatin features while also
taking sequence variations into account. (D) The results are combined and then a ranked list of optimal targets can be provided. (E) The predictions can be validated
experimentally and then used to improve accuracy of the models, improving future predictions.

by DNA/RNA bulges which may have structural implications.
Inclusion of these additional features allows the models to better
predict off-target activity and they outperform the CFD and
MIT-Broad methods on independent datasets (Abadi et al., 2017;
Listgarten et al., 2018). Supplementary Table 2 catalogs some
of the more common off-target detection tools and summarizes
their key differences.

FUTURE PERSPECTIVE

A key goal of future research will be to improve the accuracy of
predictive models by incorporating additional features. Current
methods for predicting target efficiency and specificity are
based solely on the sequence of the target site. However, it
is now accepted that chromatin environment (Chari et al.,
2015; Knight et al., 2015; Horlbeck et al., 2016b; Isaac et al.,
2016; Chen et al., 2017) can influence CRISPR-Cas9 activity.
Early studies mapping the genome wide binding of inert
Cas9 enzymes using ChIP-seq showed a preference for DNAse
sensitive regions (Kuscu et al., 2014; Wu et al., 2014; O’Geen
et al., 2015), which are typically more accessible environments.
This was supported by later studies which showed that high-
activity target sites were often enriched for histone modifications
associated with open-chromatin environments (Chari et al.,
2015).

A direct link between chromatin and CRISPR-Cas9 activity
was shown in 2016, where a pair of studies demonstrated that
the presence of nucleosomes at the target site physically blocked
CRISRP-Cas9’s access and reduced overall activity (Horlbeck
et al., 2016b; Isaac et al., 2016). The differences in chromatin
environment likely explain why the same CRISPR-Cas9 target
site can display different activities across cell-lines (Chari et al.,
2015). There is also evidence that off-target activity is influenced

by chromatin accessibility, with the CROP-IT pipeline including
this information into their off-target model (Singh et al., 2015).
Incorporating environmental information in future predictive
models will help improve accuracy and will be critical if the
technology is to be applied in the clinic. Such modeling may also
allow for the selective targeting of individual tissues by leveraging
the differences in chromatin environments.

Incorporation of chromatin environments would likely
also improve off-target predictions, which is thought to be
more susceptible to chromatin accessibility. Besides chromatin
information, future off-target pipelines should also focus on
including variant information. A recent study demonstrated that
the variance between individuals has a dramatic effect on the off-
target landscape, with point mutations creating and destroying
potential off-target sites (Lessard et al., 2017). Such information
is critical for the application of CRISPR technology in almost all
fields, as not taking an individual’s unique genome into account
could have deleterious side-effects (Canver et al., 2017, 2018;
Scott and Zhang, 2017).

Future models may also not only be able to predict the success
of CRISPR-Cas9 editing, but also the outcome. By targeting
sites with microhomology and exploiting the microhomology-
mediated repair pathway, researchers may be able to delete
specific DNA segments and thereby control the outcome of
CRISPR-Cas9 editing (Bae et al., 2014a; Yao et al., 2017).
Additionally, a recent study found that the mutations induced
by repair of CRISPR-Cas9 cleavage were non-random and
determined by the target sequence (van Overbeek et al., 2016).
Such a finding suggests that it would be possible to predict
the mutational outcome of CRISPR-Cas9 editing, allowing for
researchers to make precise edits without the need of using
knock-ins.

The optimal future pipeline will incorporate all of these factors
into both on- and off-target activity predictions (Figure 1). Such
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a pipeline could also provide a method by which experimentally
validated predictions could be reintegrated into the training data
for the models, to continue to improve accuracy. Future models
may also predict success of other CRISPR-Cas9 applications such
as knock-ins (Merkle et al., 2015), which involve the repair of the
double strand break using a supplied template, and base-editing,
where a Cas9 fusion protein converts one base into another
without cleavage (Gaudelli et al., 2017).

CONCLUSION

Computational tools for the prediction of CRISPR-Cas9 activity
are necessary for the efficient design of experiments. However,
current tools are hampered by a range of issues, such as disparate
training data sources, which results in models not generalizing,
as well as limitations in our current understand of factors that
drive CRISPR-Cas9 activity. As our understanding improves, we
will be able to incorporate new features into predictive models to
increase their accuracy. This will be vital for applying CRISPR-
Cas9 in clinical applications, where an individual’s genomic
variations may alter activity patters of CRISPR-Cas9. Until then,
it is important that the data used to train a predictive model is

understood before it is used, to ensure models are only applied in
appropriate circumstances.
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