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Lymphatic vessels have been traditionally considered as passive transporters of fluid 
and lipids. However, it is apparent from recent literature that the function of lymphatic 
vessels is not only restricted to fluid balance homeostasis but also extends to regulation 
of immune cell trafficking, antigen presentation, tolerance, and immunity, all which 
may impact the progression of inflammatory responses and diseases such as cancer. 
The lymphatic system and the immune system are intimately connected, and there is 
emergent evidence for a crosstalk between T cell and lymphatic endothelial cell (LEC). 
This review describes how LECs in lymph nodes can affect multiple functional properties 
of T  cells and the impact of these LEC-driven effects on adaptive immunity and, 
conversely, how T cells can modulate LEC growth. The significance of such crosstalk 
between T cells and LECs in cancer will also be discussed.
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LYMPH NODe (LN) ARCHiTeCTURe

Lymph nodes are strategically positioned and highly organized organs that serve as “rendez-
vous” points for dendritic cells (DCs), T cells, and B cells. The maintenance of LN structure 
and compartmentalization are essential for the elicitation and development of effective immune 
response. LN can be subdivided into three main regions, namely, the cortex, the paracortex, 
and the medulla. Encapsulated LNs receive lymph from peripheral tissue and organs through 
the afferent lymphatic. Molecules, antigens, microorganisms, and cells such as lymphocytes and 
antigen-presenting cells (APCs) within the lymph are emptied into to the subcapsular sinus (SCS) 
of the LN. Subcapsular and medullary sinuses are directly interconnected, and hence, lymph-borne 
cells, fluid, and soluble molecules can pass through LN without percolating through the cortex 
(1). Within the SCS resides CD169-expressing macrophage and DC; these cells capture large 
molecules, particles, and microorganisms; and then display antigens to the lymphocytes (2–4). 
Densely packed B cells and follicular dendritic cells (FDCs) are organized into discrete B cell 
follicles in the cortex. FDCs cluster in the center of the follicles and form a dense network in 
which B cells contact with the antigens. Lymphocytes mainly enter LNs from the blood via high 
endothelial venules (HEVs) (5). T cell zones of the paracortex contain CD4+ and CD8+ T cells 
and subsets of DCs in close contact with a network of conduits formed by fibroblastic reticular 
cells (FRCs). The medulla is composed of a three-dimensional labyrinthine structure of sinus 
channels starting as cortical sinusoids and expands to become wider medullary sinuses that finally 
drain collectively into the efferent lymphatic vessel (6).
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Lymph nodes consist of not only hematopoietic cells (CD45+) 
but also heterogeneous populations of non-hematopoietic cells 
(CD45−). Currently, there are five major stromal cell subsets 
that have been characterized, namely, the marginal reticular 
cells (MRCs), FRCs, lymphatic endothelial cells (LECs), blood 
endothelial cells (BECs), and FDCs. They can be identified by 
their anatomical location within the LN and by the expression 
of CD31, podoplanin (also known as Gp38), CD35 (complement 
receptor 1), and mucosal addressin cell adhesion molecule-1 
(MadCAM-1). MRCs and FRCs express Gp38 but not CD35 
and CD31. MRCs can be delineated from FRCs not only by their 
expression of MadCAM-1 but also by their localization in the 
outer follicular region immediately underneath the SCS (7). LECs 
express both CD31 and Gp38, whereas BECs express only CD31. 
FDCs are centrally located within B cell follicles and are often 
classified based on the expression of CD21/CD35 (8), FDC-M1 
(9), and FDC-M2 (complement C4) (10). Conventionally, stro-
mal cells have long been perceived to provide structural support 
to the LNs during homeostasis and inflammation. Emerging 
evidence also indicates that stromal compartments of LNs play 
active roles in the immune response through their interactions 
with hematopoietic cells. We will briefly discuss here the role of 
FRCs as it has been covered recently in excellent reviews (11–13), 
and this review focuses on LECs.

FiBROBLASTiC ReTiCULAR CeLLS

Fibroblastic reticular cells are resident mesenchymal cells, 
primarily residing in the T cells zone and capable of secreting 
and forming an elaborate reticular network within the LN. 
Single layer of FRCs enwrap extracellular matrix (ECM) that 
consists of a central core formed by 20–200 parallel bundles of 
fibrillar collagens (I and III) and intervening matrix of fibrils 
(14–16). These collagen bundles are surrounded by a layer of 
fibrillin-constituted microfibrils that are further ensheathed by a 
unique basement membrane-type structure (15, 16). In addition, 
stabilizing and cross-linking molecules such as fibromodulin, 
decorin, and lumican are also associated with the collagen fibers 
(17). FRCs also express other ECM component including ER-TR7 
and common basement membrane component such as laminin 
and fibronectin (13). Integrin subunits and adhesion ligands 
such as intercellular adhesion molecule 1 (ICAM-I) and vascular 
cell adhesion molecule 1 are also found in FRCs (13). The three-
dimensional tubular conduit system formed by FRCs extend the 
SCS throughout the T cell zone and form a contiguous lumen 
with fluid channels around the HEVs (18). Small lymph-borne 
molecules including chemokines and antigens from upstream 
periphery are transported within the core of FRC conduits from 
the SCS toward the HEVs. Molecules of high molecular mass 
(>70 kDa) cannot gain access to the conduit lumen and hence 
circumvent the lymphoid compartment and drained along the 
sinuses into the efferent lymphatic vessels (1, 4). Large particles 
including whole virus particles can also be captured by SCS mac-
rophages and presented to migrating B cells in the underlying 
follicles (2, 4, 19).

In addition to acting as a key structural component in 
the LNs, FRCs are actively engaged in functional interactions 

with hematopoietic cells by forming conduits for antigens 
and inflammatory stimuli (1, 18), maintaining T cell survival 
(20), providing “tracks” and chemokines cue to guide cellular 
movement (21, 22), and supporting DC–T–B cell interactions 
during immune response (23) and peripheral tolerance (24–26). 
Disruption of FRC integrity and organization in the LNs during 
viral infection leads to profound loss of immunocompetence 
(27) strongly underscoring the roles of FRCs in maintaining 
proper immune response.

LYMPHATiC eNDOTHeLiAL CeLLS

Lymphatic vessels are present in most tissues and are important 
for maintenance of fluid homeostasis, immune cells trafficking, 
and movement of soluble antigens (28). Lymph from upstream 
peripheral tissues first passes through the SCS, a space under-
neath the collagen-rich fibrous capsule that covers the LN. 
The floor of SCS is lined by LECs expressing lymphatic vessel 
endothelial hyaluronan receptor 1 (LYVE-1) and is interspersed 
with CD169+ macrophages and DCs. From there, lymph per-
colates through the highly branched medullary sinuses and 
blind-ended cortical sinuses before leaving the LNs via the 
efferent lymphatic vessel (6). Cortical LECs form the vessels and 
branch into the T cell zone and have been indicated to facilitate 
B and T cell egress (29–31). Medullary sinuses lined by LYVE-1+ 
endothelium are found at LN exit within the medulla. Recently, 
the markers to delineate the LECs located in the SCS, cortex, 
and medulla have been reported and include programmed death 
ligand 1 (PD-L1), ICAM-1, MadCAM-1, and lymphotoxin β 
receptor (32).

Research on LN LECs in the past decades has demonstrated 
that lymphatic vessels are not “inert conduits” but rather plastic 
structures that actively sense and respond to changes in the 
peripheral tissue environment. For example, inflammation 
induced by bacterial pathogen, immunization in the presence 
of complete Freund’s adjuvant, and contact sensitization have 
been shown to promote the growth of lymphatic vessels from 
preexisting ones, a process named lymphangiogenesis, in LNs 
(33–37). Furthermore, it becomes apparent that such lymphatic 
remodeling in LN can have important biological consequences 
including modulation of inflammation and adaptive immune 
responses (38–41). Indeed, a growing body of evidence is now 
demonstrating that LECs themselves can help shape adaptive 
immune responses through their interactions with key immune 
cells including DCs, macrophages, and lymphocytes. Owing to 
their migration through and within lymphatic vessels and their 
anatomical distribution in LNs, T cells frequently encounter 
LECs. This review focuses on the crosstalk between T cells and 
LECs in LNs and its immunological consequences.

LN LeCs CONTROL T CeLL POOL

LeCs Regulate T Cell Migration to, within, 
and out of LN
We will briefly discuss in this section how LECs attract and 
facilitate the trafficking of T cells from the periphery to LN 
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and within the LN since this topic has been covered in depth 
in excellent reviews (42, 43). Although LECs have been shown 
to express a large number of chemokines that attract T cells 
(38), the role of CCL21 is the most established in the homing 
of naïve, memory, and T regulatory (Treg) T cells to LNs. The 
signaling induced by CCL21 binding to its receptor, CCR7, on 
the surface of migratory T cells is critical for T cell trafficking 
from the periphery to the LN as shown in mice deficient for 
CCR7 ligands (44). Then, LECs in the cortical sinuses regulate 
intranodal lymphocyte trafficking by collecting lymphocytes for 
further transit to medullary sinuses (45). Moreover, lymphocytes 
can frequently move from the lymphatic sinuses back to the LN 
parenchyma (45). In line with these findings, it was reported 
that lymph-borne lymphocytes are passively transported into 
the peripheral medullary sinuses. Subsequently, they enter the 
LN parenchyma independently of CCR7 signals by migrating 
into adjacent peripheral medullary cords (46).

Medullary sinuses are directly connected to the efferent 
lymphatic vessel and have been proposed in addition to cortical 
sinuses as exit routes for the egress of lymphocytes from LNs 
(29, 30, 45). The molecular mechanisms of lymphocyte egress 
mediated by LECs remain elusive, and further investigations 
will be needed to explain how medullary sinuses can serve as 
both entry and egress structures for T cells. Most work on T cell 
egress has focused on mechanisms that lymphocytes uses to 
reach efferent lymphatic vessels and has identified sphingosine-
1-phosphate (S1P)/S1P1 as a critical signal axis in promoting 
T cell egress (47). S1P levels are low in LN parenchyma but 
high in lymph fluid, thus creating a gradient. This S1P gradi-
ent guides T cells exhibiting decreased CCR7-retention signals 
from LN parenchyma into medullary and cortical sinuses and 
ultimately facilitates T cell egress (48). Notably, S1P in cortical 
sinuses and efferent lymph has been shown to be produced by 
LYVE-1+ LECs. Mice lacking specifically S1P kinase, the enzyme 
responsible for S1P synthesis, in LECs show compromised T cell 
egress (49). It is well established that local immune responses 
and inflammation are accompanied by alterations in the traffick-
ing of lymphocytes through LNs. Specifically, the entry of lym-
phocytes into LNs increased, whereas their egress into efferent 
lymph is temporarily inhibited for few hours to days, depending 
on the nature of the stimulus (50–52). Few years ago, we reported 
that inflammation in LN, as it evolves from early to late phases, 
can induce a biphasic remodeling of lymphatic network, with 
the SCSs being expanded first, followed by the cortical and 
medullary sinuses. We showed that the early expansion of SCSs 
enhances the migration of DCs from the periphery, whereas the 
preferential expansion of cortical and medullary sinuses at later 
stages of inflammation supports the restoration of lymphocyte 
egress to steady-state levels (53).

LN LeCs Support the Survival of T Cells
Several emerging evidence indicates that LECs may not only 
regulate the homeostasis of T cells in LNs through the modula-
tion of their migration but also their survival. Interleukin (IL)-7 
binds to IL-7Rα chain in combination with the common-γ 
chain and is essential for T lymphocyte homeostasis within 
the secondary lymphoid organs. IL-7 expression in vivo, which 

appears to limit the size of the lymphocyte pool, was thought to 
be regulated by IL-7 receptor α (IL-7Rα)-mediated consump-
tion rather than the rate of IL-7 expression (54, 55). However, 
this concept has been recently challenged by a study showing 
that IL-7 expression can be induced in the liver in response 
to Toll-like receptor signaling and can directly control T cell 
responses (56). In line with this latter study, an earlier report 
by the same group demonstrated that excessive IL-6 expression 
increases IL-7 expression, which in turn was associated with 
the development of autoimmune reaction (57). These studies 
underscore that production of IL-7 by non-hematopoietic cells 
is tightly and dynamically regulated. In LNs, IL-7 provides 
antiapoptotic and proliferative signals to naïve and memory 
T cells (58–61). Although FRCs have been shown to be a major 
producer of IL-7 in LNs (20), it appears now evident that LECs 
are also an important source of IL-7 in murine and human 
LNs (62, 63). Interestingly, during inflammation-induced LN 
remodeling that influences intranodal lymphocyte dynamics, 
IL-7-expressing cortical sinus LECs have been shown to be 
essential for LN remodeling (63). In line with the role of IL-7 in 
maintaining memory T cells, a recent study revealed that LECs 
in lungs from mouse and humans can support the survival of 
memory T-helper cells through the production of IL-7 and 
IL-33 during allergic airway inflammation (64). IL-33 is a pro-
inflammatory cytokine that initiates chronic inflammation in 
the lung, and its receptor is highly expressed on memory Th2 
cells. IL-33 has been shown to directly induce memory Th2 
cells to produce IL-5 and induces eosinophilic inflammation. 
Although this study focuses on lung LECs, it raises the pos-
sibility that LECs through the production of diverse cytokines 
may control the survival of pathogenic T cells during chronic 
inflammation, which in turn may have serious pathological 
consequences. Furthermore, the fact that IL-7 has been shown 
to mediate the transition from effector into memory T cells 
(65, 66) may also suggest the potential implication of LECs in 
shaping T cell differentiation in LNs during immune response.

LN LeCs ReGULATe T CeLL ACTivATiON

LN LeCs Function as APCs for Peripheral 
T Cell Tolerance
Peripheral immune tolerance is generally ascribed to quiescent 
tissue-resident DCs cross-presentation of tissue-associated anti-
gens to self-reactive T cells that have escaped thymic negative 
selection (67). More recently, accumulating evidence demon-
strates that direct presentation of self-antigens by LN stromal 
cell subsets including FRCs and LECs can also mediate periph-
eral tolerance (25, 26, 68). Among LN stromal cell populations, 
LECs are likely the first cells that are in direct contact with the 
antigens, danger signals, and immune cells that carry peripheral 
blueprint to the draining LN. LECs express MHC class I (68–70) 
and MHC class II (41, 71, 72) and are capable of inducing T cell 
tolerance directly and suppressing DC-mediated T cell activa-
tion. In addition, T cell activation is also affected by the cytokine 
environment and relative balance between costimulatory and 
inhibitory signals from the APCs (41, 71, 73–75).
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There are several potential pathways by which LECs can 
induce T cell tolerance. For instance, LN LECs express multiple 
peripheral tissue antigens (PTAs) (25, 69). In steady state, LECs 
lack costimulatory molecules such as CD80, CD86, or 4-1BBL 
that normally drive immunogenic T cell response. Instead, high 
expression of PD-L1 on LECs and engagement with its receptor 
on T cells predispose them to promote peripheral T cell toler-
ance (41). In a model of LEC-induced tolerance of melanocytes 
differentiation protein tyrosinase-specific CD8+ T cells, lack of 
stimulation through 4-1BB led to rapid and increased expression 
level of PD-1. Signaling through PD-1 inhibits upregulation of 
IL-2R on CD8+ T cells, culminating in apoptotic death associ-
ated with the loss of IL-2 prosurvival signaling (41). On the other 
hand, rescue of tyrosinase-specific CD8+ T cells by interfering 
PD-1 signaling or providing costimulatory signals gain effector 
function and induce autoimmune vitiligo, demonstrating that 
LECs are important and specialized APCs for peripheral T cell 
tolerance (41). This latter finding is in line with the observation in 
severe enteric autoimmunity that loss of PD-1/PD L1 inhibitory 
pathway blocks CD8+ T cell tolerance to intestinal self-antigens 
(76). It is worth to note that tyrosinase and PD-L1 are expressed 
at higher levels in LN LECs as opposed to LECs in periphery 
(diaphragm or colon), indicating that the LN microenvironment 
endows LN LECs with tolerogenic properties not found in tissue 
LECs (32). Given that LECs express various PTAs, dysregulation 
of LEC-associated tolerance is likely expected to contribute to 
the development of several autoimmune disorders.

In addition to transcriptionally expressed PTAs, LN LECs 
have also been shown to scavenge and cross-present exogenous 
antigen to naïve CD8+ T cells in the model of B16 F10 melanoma 
expressing the foreign antigen ovalbumin (OVA) and overex-
pressing vascular endothelial growth factor (VEGF)-C (70). 
VEGF-C-induced LN lymphangiogenesis suppresses anti-tumor 
immunity by local deletion of OVA-specific CD8+ T cells, which 
in turn drives disease progression and metastatic outgrowth. 
Similar observation was also reported under homeostatic con-
ditions whereby intradermal injection of fluorescently labeled 
OVA protein was engulfed by LN LECs, processed, and presented 
on MHC class I to cognate CD8+ T cells in a TAP1-dependent 
manner (77). Such T cell/LEC interaction was shown to lead 
to decreased cytokine production and increased expression of 
Annexin V and exhaustion markers (PD-1, CD80, and CTLA-4) 
in vitro (77). These experimental findings suggest that regardless 
of the source of antigen (exogenous or endogenous), constitu-
tive expression of inhibitory molecules and lack of costimula-
tory molecules on LECs will predominantly induce peripheral 
tolerance.

Furthermore, LECs express intermediate levels of MHC class 
II molecules suggesting that they might also tolerize CD4+ T cells 
(41, 71). MHC class II on LECs has shown to be either acquired 
from the DCs or endogenously expressed (24, 72). Rouhani et al. 
employed transgenic systems where antigens β-galactosidase 
(β-gal) and hemagglutinin (HA) were conditionally expressed 
in LECs under the control of Prox-1 and LYVE-1 promoters 
(72). Both CD8+ and CD4+ T cell receptors are available in these 
models and hence allowing comparative evaluation of the ability 
of LECs to drive tolerance to epitopes from the same protein 

presented by either MHC class I or MHC class II molecules. 
The authors demonstrated that PTA β-gal and HA epitopes on 
MHC class I were directly presented to CD8+ T cells, whereas 
these epitopes on MHC class II molecules were not presented 
to CD4+ T cells both in vivo and in vitro. Instead, these antigens 
were transferred to DC and then presented to CD4+ T cell to 
induce anergy. Therefore, LECs serve as a reservoir and reper-
toire of PTAs in the LN that may be acquired by DCs to induce 
tolerogenic CD4+ T cells. Similarly, Dubrot et  al. showed that 
LECs acquire peptide: MHC class II complexes from DCs (24). 
However, in contrast to Rouhani et al., these complexes were not 
observed to be transferred back to LECs in sufficient quantities to 
induce CD4+ T cells recognition and subsequent antigen-specific 
T cells apoptosis.

LN LeCs Modulate DC Functions
LECs may also regulate T cell activation indirectly by modulat-
ing antigen-presenting functions of DCs. Under steady state, 
immature DCs typically capture autoantigens from apoptotic 
cells, migrate to LNs, and promote T cell tolerance (78–80). 
Exposure of DCs to danger signals during inflammation or 
infection increases the expression of MHC class II molecules, 
costimulatory molecules, and cytokine that ultimately can trig-
ger immunity and prevent tolerance. LECs have been shown to 
attenuate T cell response by suppressing DC maturation (73, 74, 
81). Direct contact of immature DCs with an inflamed, TNF-α-
stimulated LECs decreases expression of CD86 on DCs, damp-
ening their ability to stimulate T cell proliferation (81). This 
interaction was mediated by the binding of ICAM-1 on LECs to 
Mac-1 on DCs and was observed in the absence of PAMPs (81). 
LECs also restrain T cell proliferation through upregulation of 
nitric oxide synthase-2 and production of NO in response to 
interferon (IFN)-γ and TNF-α released from activated T cells 
(73). Furthermore, IFN- γ-stimulated cultured human LN LEC 
produces inhibitory indoleamine 2,3 dioxygenase that in turn 
impairs CD4+ T cell proliferation (74). Interestingly, in different 
contexts such as viral challenge and subunit vaccination, viral 
antigens are captured and archived in LECs and subsequently 
transferred to DCs for the maintenance of memory T cells and 
enhancement of protective immunity (82). Therefore, crosstalk 
between LECs and DCs within the LN can either drive tolero-
genic or immunogenic responses depending on the antigenic 
stimuli, immune cells encountered, and the type of inflamma-
tory challenges.

LN LeCs Archive Antigens
Several studies have reported that persistence of virally associ-
ated antigens after acute infection and subsequent viral clear-
ance or so-called the reservoir of antigens was localized within 
the LNs draining the site of initial infection (82–86). A recent 
report demonstrated that LN LECs retain persisting antigens 
for weeks after vaccination (82). This antigen archiving was 
dependent on the induction of LN lymphatic proliferation. 
However, LECs did not present directly the archived antigen to 
T cells but instead required hematopoietic APCs. The number 
and percentage of CD8+ T cell-producing IFN-γ and IL-2 were 
significantly increased when antigen was retained in LECs. 
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Notably, we previously reported that LN lymphangiogenesis 
persists during prolonged inflammation (53). Thus, it is plausible 
that the persistence of an expanded LN lymphatic network after 
viral infection or vaccination may allow the long-term storage 
of viral antigens. As a consequence, ongoing antigen presenta-
tion and recognition by memory T cells may lead to selective 
enrichment of virus-specific memory T cells in the draining LN 
even after the clearance of the infectious agent. This enriched 
population of antigen-specific T cells may provide more rapid 
effector responses in the periphery and better control of second-
ary infections.

T CeLLS CONTROL LeC GROwTH UPON 
iNFLAMMATiON

Because lymphangiogenesis in LN has been shown to have 
diverse functional consequences on inflammation and immune 
responses depending on the context and timeframe of its 
occurrence (39, 40), this process is expected to be highly 
regulated. Indeed, a large number of studies have identified 
cellular and molecular mechanisms promoting the growth 
of lymphatic vessels. In contrast, little knowledge is currently 
available on pathways counter-regulating lymphangiogenesis. 
Both non-immune and immune cells have been described to 
orchestrate the expansion of lymphatic vessel network within 
LN. Interestingly, among immune cells, B and T cells have been 
shown to have opposite effects, namely, B cells support inflam-
matory lymphangiogenesis in LNs, whereas T cells have anti-
lymphangiogenic effects. The first evidence supporting a role for 
T cells as negative regulators of LEC growth arises from a mouse 
study in which T cells were ablated using athymic mice (37). This 
antilymphangiogenic effect of T cells in the athymic mice was 
restored by the adoptive transfer of CD4+ or CD8+ T cells. This 
study suggests that both CD4+ and CD8+ T cells may harbor an 
antilymphangiogenic property. Other studies in different mouse 
models of inflammatory lymphangiogenesis have further con-
firmed the regulatory function of CD4+ T cells on LEC growth 
(34, 87). In the model of LN lymphangiogenesis induced by 
bacterial lipopolysaccharide, the authors demonstrated that the 
secretion of IFN-γ by T cells accounts for the inhibitory effect 
of T cells on LN lymphangiogenesis (37). Moreover, in line with 
an earlier study (88), they showed using in vitro cultured LECs 
that IFN-γ can act directly on LECs and affect their proliferation 
and survival (see Table 1) (37, 88).

These two latter studies provided the first evidence for a role 
of cytokines in controlling the expansion of lymphatic vessels. 
Since then, this notion has been further validated by several 
recent studies reporting the effect of other cytokines including 
IL-10, IL-17, TGF-β, and IL-4/IL-13 on LEC growth in vitro and/
or in diverse models of inflammatory or de novo lymphangi-
ogenesis induced in LN or other tissues (Table 1). From these 
studies, it becomes apparent that (i) cytokines are not always 
antilymphangiogenic; (ii) one given cytokine may have prolym-
phangiogenic or antilymphangiogenic properties depending on 
the context in which lymphatic growth occurs; and (iii) modu-
lation of lymphatic proliferation, survival, and migration by 

cytokines can be mediated by a direct effect on LECs or indi-
rectly by controlling the expression of lymphangiogenic factors 
such as VEGF-A, -C, and -D. Interestingly, all these cytokines 
can be secreted by different CD4+ T subsets including Th1, Th2, 
Th17, and Treg cells raising the possibility that different T cell 
subsets recruited to LN may affect LEC growth. Although this 
notion is indirectly supported by the studies cited in Table 1 and 
a recent study reporting the effect of Treg on lymphatic transport 
in a mouse model of lymphedema (100), direct evidence for a 
role of these T cell subsets and their cytokines in controlling LN 
lymphangiogenesis is lacking.

iMPLiCATiONS OF LeC 
iMMUNOMODULATORY PROPeRTieS 
iN CANCeR PROGReSSiON

The ever-growing research on tumor biology, immunology, and 
lymphatic biology has recently highlighted the multifaceted roles 
of lymphatic vessels in shaping tumor immunity and in cancer 
progression. One of the cardinal functions of lymphatic vessel is 
to transport components of the local tissue containing intersti-
tial solutes, cytokines, growth factors, and immune cells to the 
downstream LN for the maintenance of tissue fluid homeostasis 
and peripheral immune tolerance. Tumor cells can “hijack” the 
lymphatic and induce the expansion of lymphatic vessels for their 
dissemination, colonization, and the formation of metastasis in 
the tumor-draining LNs (101, 102) (Figure 1). Via the lymphatic 
route, tumor cells can also modify the microenvironment of 
the metastatic organs from the distal sites before their arrival—
referred to premetastatic niche. LN lymphangiogenesis preceding 
metastasis is an important mechanism and is associated with 
cancer progression (103–106).

Moreover, LN LECs express several chemokines that can 
attract cancer cells expressing the cognate chemokine receptors. 
For instance, constitutive CCL21 expression by LEC can serve as 
a guide for CCR7-expressing breast cancer and melanoma cells 
invading the LNs (107). Overexpression of CCR7 in melanoma 
has been shown to promote LN metastasis in mice (108), and 
CCR7 expression in human cancer samples correlates positively 
with LN metastasis (109–111). Upregulation of CXCL12 expres-
sion has been reported to enhance LN metastasis of CXCR4+ 
tumor cells (112). CCL1 is another chemokine produced by the 
SCS LEC, which has been shown to control CCR8+ tumor cell 
entry and subsequent migration and colonization in the LN cor-
tex (113). Blocking of CCL1-CCR8 signaling results in the arrest 
of tumor cells at the junction of the afferent lymphatic vessels 
and the LN.

As discussed earlier, LN LECs can profoundly affect T 
cell survival, fate, and activation that can be of significant 
importance in tumor immune responses (Figure  1). The 
primary tumor is connected to the downstream afferent 
lymphatic vessel and draining LNs, and this connection may 
allow the entry of tumor-derived factors to the draining LNs 
and consequently may alter regional immune responses. Such 
alterations were reported to occur even before LN metastasis 
(114). Moreover, owing to the lack of costimulatory molecules 
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TABLe 1 | Cytokines regulating lymphatic endothelial cell (LeC) growth.

Cytokine Mechanism Model system Reference

Interferon (IFN)-γ Inhibits proliferation and migration Cultured pig thoracic duct LEC (88)

Increases apoptosis

Inhibits lymph node (LN) lymphangiogenesis LPS-induced LN lymphangiogenesis in mouse; Lewis 
Lung carcinoma cell implantation in mouse

(37)

Inhibits proliferation and tube formation; downregulates Prox-1 LYVE-1and 
podoplanin expression

Cultured murine thoracic duct LEC

Interleukin  
(IL)-4/IL-13

Inhibits LN lymphangiogenesis CFA/ovalbumin-induced LN lymphangiogenesis (34)

Inhibits corneal lymphangiogenesis Mouse model of suture-induced corneal 
neovascularization

(89)

Inhibits proliferation, tube formation and migration; increases apoptosis Cultured human dermal LEC

Inhibits lung and trachea lymphangiogenesis Mouse model of allergen-induced asthma (90)

Inhibits proliferation, tube formation and downregulates Prox-1 and LYVE-1 
expression

Cultured murine LN LEC and human dermal LECs

Increases skin lymphangiogenesis and promotes recruitment of macrophages 
and vascular endothelial growth factor (VEGF)-C expression

K14-IL-4 transgenic mouse (91)

IL-17 Increases corneal lymphangiogenesis via VEGFR-3/VEGF-C/-D pathway Mouse model of cornea micropocket and Th17-
dominant autoimmune dry eye disease

(92)

Increases proliferation and tube formation via VEGFR-3-dependent pathway Cultured human dermal LECs

IL-10 Increases lymphangiogenesis and promotes VEGF-C production by 
macrophages

Mouse model of suture-induced corneal 
neovascularization

(93)

No direct effect on LEC Cultured human dermal LECs

TGF-β Inhibits lymphangiogenesis Mouse model of chronic peritonitis (94)

Inhibits proliferation, tube formation, and migration; downregulates Prox-1 and 
LYVE-1 expression

Cultured human dermal LEC

Inhibits proliferation and tube formation Cultured human dermal LEC (95)

Independent of VEGF-C/-D

Inhibits lymphangiogenesis Mouse lymphedema model (96)

Promotes lymphangiogenesis and upregulates VEGF-C expression Rat model of unilateral ureteral obstruction (97)

Promotes lymphangiogenesis and upregulates VEGF-C expression Rat model of peritoneal fibrosis (98)

Enhances branching and sprouting of lymphatic network in embryonic skin E13.5–15.5 mouse embryos (99)

Attenuates LEC proliferation Cultured human dermal microvascular LECs
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expression and high levels of inhibitory ligand PD-L1 on LN 
LECs, lymphatic antigen presentation via MHC-I can induce 
deletional tolerance, a mechanism by which tumor cells may 
evade host immunity (41, 69, 70). VEGF-C-induced LN 
lymphangiogenesis can further promote immune tolerance in 
B16 melanoma-implanted mouse model (70). However, these 
studies suggest that manipulating LEC-associated tolerance 
or cancer dissemination may create opportunities for a new 
generation of antitumor immunotherapy. Importantly, cancer 
immunotherapies targeting the immune checkpoints, PD-1 
and PD-L1, are revolutionizing current cancer treatments 
(115, 116). In humans, anti-PD-1 antibodies that target tumor-
specific T cells (117–119) and anti-PD-L1 antibodies that bind 

to ligand expressed by the tumor and intratumor immune cells 
(120, 121) show promising clinical benefits. One can speculate 
that targeting this PD-1/PD-L1 immune checkpoint via sys-
temic administration may also interrupt the tolerogenic signal-
ing pathway between LN LECs and CD8+ T cells. Perhaps, a 
more LN-specific delivery of these blocking antibodies or other 
anticancer vaccine may lead to a greater impact on antitumor 
immune responses (122).

Although LN LECs may contribute to immune suppressive 
environment within the tumor-draining LNs (whether by direct 
interaction with CD8+ T cells or by draining the immunosuppres-
sive cytokines from the upstream tumors), their roles in tumor 
immune surveillance cannot be neglected (Figure 1). Indeed, 
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FiGURe 1 | Schematic diagram depicting the involvement of tumor-associated lymphatic endothelial cell (LeC) in cancer. (1) Tumor-associated 
upregulation of chemokine expression in lymph node (LN) LECs mediates metastasis of tumor cells expressing the cognate chemokine receptors. (2) Tumor-
associated factors, cytokines, and exosome draining from the upstream tumors and afferent lymphatic induce LN lymphangiogenesis, leading to increased lymph 
flow, transport of tumor-derived factors, and enhanced tumor cell dissemination. (3) Tumor-associated LECs can suppress immunity and promote tolerance. 
Interaction between LN LECs and dendritic cells (DCs) via intercellular adhesion molecule 1 and Mac-1 inhibits DC maturation and hence limiting effective T cell 
activation. Tumor antigen presentation to naïve CD8+ T cells by LN LECs induces dysfunctional T cell activation and tolerance due to expression of inhibitory 
receptor programmed death ligand 1 and lack of costimulatory molecules on LEC surface. LECs activated by T cell-derived pro-inflammatory cytokines produce 
factors such as NO and indoleamine 2,3 dioxygenase that inhibit T cell proliferation. (4) Robust CD8+ T cells priming occurs in tumor-draining LN. Although 
tolerogenic LN microenvironment may dominate and sustain immune suppression, immune checkpoint blockades can reverse T cell exhaustion and increase 
effector T cell activities that may lead to tumor regression.
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circulating tumor-specific T cells in metastatic melanoma 
patients are functional although those isolated from tumor-
draining LNs exhibit exhausted characteristics (decreased 
IFN-γ and increased CTLA-4 and LAG-3 expression) (123). 
Interestingly, co-administration of anti-CTLA-4 and PD-1 
antibodies reverses T cell exhaustion by increasing effector T 
cell activity and cytokine production and hence augmenting 
tumor inhibition (124). Tumor immunity was examined in the 
context of impaired lymphatic function using a kCYC trans-
genic mouse model expressing Kaposi’s sarcoma-associated 
herpes virus latent-cycle gene, k-cyclin, and under the control 
of VEGFR-3 promoter (101). In this model, antigen-presenting 
ability of DCs and cytotoxicity of CD8+ T cells isolated from 
the draining LNs of kCYC mice were attenuated. Furthermore, 
adoptive transfer of CD8+ T cells derived from kCYC mice 
to naïve WT mice show impaired antitumor function (101). 
In another model of dermal lymphatic insufficiency (K14-
VEGFR3-Ig mice), implanted melanoma grew robustly and 

exhibited marked reduction in leukocyte infiltration compared 
with those implanted in control mice, suggesting that lymphatic 
vessels are essential for the generation of tumor immune 
responses (125). In addition, we showed in a spontaneous 
mouse model of uveal melanoma that early resection of TDLNs 
promotes primary tumor growth, cancer cell dissemination, 
and metastasis (102). Even though we did not examine the role 
of immune responses in the absence of tumor-draining LNs, it 
is plausible that uncontrollable growth of primary tumor may 
be due to the lack of antitumor immunity since the depletion 
of CD8+ T cells accelerates tumor growth and dissemination 
in the same model (126). These reports strongly indicate that 
functional lymphatic and presence of tumor-draining LNs are 
required for cancer immune surveillance. To further support 
this, current cancer immunotherapies targeting the immune 
checkpoints have demonstrated and supported the evidence 
that antitumor immunity exists even in the most advanced 
stages of cancer (116, 127–129).
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CONCLUDiNG ReMARKS

The ever-growing research on lymphatic biology has clearly 
identified LECs as key players in regulating adaptive immu-
nity particularly by affecting T cell functions. However, the 
dynamics of T cells/LECs interactions and their immunological 
consequences in the context of cancer need to be further 
delineated. LN LECs are intricately affected by peripheral 
tumor, tumor-associated factors, and immune cells that in 
turn enhance tumor cell dissemination and drive the bal-
ance between host immunity and tolerance. Hence, LN LECs 
may represent a potential therapeutic target in addition to 
immunotherapy strategies for cancer progression and metas-
tasis. Although tumor-associated LN lymphangiogenesis can 
contribute to tumor dissemination and increased immune 
tolerance, LN LECs are also important for the communication 

between tumors and immune cells to mount antitumor immune 
responses. For these reasons, combined research on immu-
nology, lymphatic, and tumor biology is essential to further 
elucidate the immunological roles of LN LECs in cancer and 
their impact on disease progression.
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