
Modeling High Energy Molecules and Screening to Find Novel High
Energy Candidates
Mazal Rachamim,* Abraham J. Domb, and Amiram Goldblum*

Cite This: ACS Omega 2024, 9, 42709−42720 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: High energy materials (HEMs) play pivotal roles in diverse military
and civil-commercial sectors, leveraging their substantial energy generation.
Integrating machine learning (ML) into HEM research can expedite the discovery
of high-energy compounds, complementing or replacing traditional experimental
approaches. This manuscript presents an application of our in-house Iterative
Stochastic Elimination (ISE) algorithm to identify HEMs. ISE is a generic algorithm
that produces reasonable solutions for highly complex combinatorial problems. In
molecular discovery, ISE focuses on physicochemical properties to distinguish
between different classes of molecules. Due to its long track record in discovering
novel, highly active biomolecules, we decided to apply ISE to another type of
molecular discovery: High-energy materials. Two distinct ISE models, Model A (92
HEMs) and Model B (169 HEMs), integrated non-HEMs for comprehensive analysis.
The results showcase significant achievements for both Models A and B. Model A
identified 69% of active molecules in Model B, of which 62% had the highest score. Model B identified 80% of active molecules in
Model A, with 61% having the highest score among those 80%. Subsequently, Model C was developed, merging all active molecules
(261) from Models A and B. Statistical data indicate that Model C is a high-quality model. It was used to screen and score nearly 2
million molecules from the Enamine database. We find 66 molecules with the highest score of 0.89, plus 8 with that score which are
active molecules included in the learning set of Model C. From the 66 molecules, 21 (32%) contain at least one nitro group. In
conclusion, this study positions the ISE algorithm as a potential tool for discovering novel HEM candidates, offering a promising
pathway for efficient and sustainable advancements in high-energy materials research.

1. INTRODUCTION
High Energy Materials (HEMs) are a category of chemical
compounds or mixtures known for their ability to rapidly
release large amounts of energy under specific conditions.
These conditions typically involve exposure to external stimuli
such as heat, shock, friction, or ignition. When triggered,
HEMs undergo a rapid decomposition process, often
accompanied by an exothermic reaction, meaning heat is
released during the reaction. This decomposition generates
expanding gases and releases substantial energy, primarily as
heat. The abrupt release of energy creates a shock wave and
further accelerates the gas expansion., which collectively
contribute to the destructive force of an explosion. HEMs
hold significant importance across military and civil-commer-
cial sectors due to their ability to release substantial energy
upon activation. In military applications, HEMs are extensively
employed in weaponry such as missiles, rockets, and artillery
while simultaneously playing roles in the civilian realm, notably
in the aviation industry and mining operations.1−7

The methods used in synthesizing, identifying, and
characterizing HEMs, specifically through traditional chemical
approaches, demand substantial investment in resources, pose
risks to researcher’s safety, and raise environmental concerns
due to their unsustainable nature. Additionally, the inefficien-

cies of trial and error methods in discovering new HEMs have
resulted in a limited success rate through traditional chemical
means in recent years, highlighting the need for predictive
tools in this field.8,9

Recognizing the necessity of improving the efficiency of
material discovery has led to integrating theory, computation,
and experimentation in a holistic approach, expediting material
innovation. Over the past decade, data-driven methods like
machine learning have become pivotal in the materials research
toolkit.8−11 .
Traditional approaches, such as those relying on chemical

theory and calculations like density functional theory (DFT),
often encounter obstacles like high computational costs and
lengthy estimation cycles.12 Machine learning (ML) has
emerged as a promising alternative, particularly in predicting
properties such as density, explosion velocity, and sensitivity.
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Notable methods include Quantitative Structure−Activity
Relationship (QSAR) and techniques like neural networks
and random forests. However, utilizing these methods presents
several challenges, including the complexity and diversity of
HEM properties necessitating robust algorithms, interpret-
ability and transparency issues with complex models, and
significant computational resources required for training
complex models and, consequently, time.12−14 In materials
science there is a strong emphasis on the interpretability and
simplicity of ML models. Simple, interpretable models mitigate
the risk of overfitting and can be computationally less
expensive, which is crucial in applications like ML for industrial
and applied purposes.15

The introduction of the ″Iterative Stochastic Elimination″
(ISE) algorithm, an award-winning algorithm developed in our
laboratory,16,17 marks a promising advancement in high-energy
materials research. This algorithm was purposefully designed
to find optimal solutions for complex combinatorial prob-
lems.18,19 Over recent years, we have successfully adapted this
algorithm to identify potential drug candidates.20−26

In this study, we aim to assess the applicability of the ISE
algorithm in identifying new high-energy material candidates.
Our findings highlight the ISE algorithm’s potential as a
valuable tool for identifying novel candidates in the high-
energy materials domain.

2. METHODS
2.1. Iterative Stochastic Elimination (ISE). Iterative

Stochastic Elimination (ISE) has a long track record in
providing solutions to problems in biomolecules and, in
particular, molecular discovery.18 ISE constructs classification
models that identify differences in properties between a group
of known active molecules and inactive (or less active) ones.
Such models are subsequently used to screen and score many
molecules to identify candidates for the desired activity.

2.1.1. Data Curation. This initial stage involves gathering a
data set comprising no fewer than several dozen known active
molecules, ideally showcasing diverse characteristics. These
active molecules are sourced from specific Web sites, scientific
literature, and patents. Initially, mixtures and ionic compounds
are removed from the data set, focusing solely on molecular
compounds. Subsequently, the molecular data undergoes
transformation into the Simplified Molecular Input Line
Entry System (SMILES) format. Attention is dedicated to
rectifying any discrepancies, errors, or extraneous elements
present within the data set. The overarching objective of this
curation process is laying a foundation for subsequent
computational analyses.27,28

2.1.2. Tanimoto Index. To mitigate the potential for bias
arising from molecular similarity, we utilize the Tanimoto
Index (TI), also known as the Tanimoto coefficient or Jaccard
similarity coefficient. It is defined by equation 1, where ″a″ and
″b″ represent the counts of binary features set to 1 in the
fingerprints of compounds A and B, respectively, and ″c″
signifies the count of shared features present in both
fingerprints.

TI(A, B)
A B
A B

c
a b c

= | |
| |

=
+ (1)

This index’s value ranges from 0 to 1, indicating the degree
of resemblance between molecules, with 0 signifying no shared
features and one denoting complete identity.29,30

One of the tools enabling the calculation of the Tanimoto
Index is the Chemistry Development Kit (CDK) nodes31

integrated within the KNIME (version 2.10) platform.32

2.1.3. 2D MOE Descriptors. Molecular activity is a result of
molecular properties (“descriptors”). However, thousands of
molecular descriptors have been reported in the literature,
having been computed using various methods.33 Among these,
we focused on 206 2D descriptors calculated using the MOE
software. These descriptors quantitatively represent the
physicochemical features of molecules, such as charge
distribution, volume, molecular graphs, surface area, and
more.34 The descriptors are calculated for each molecule in
the learning set (actives and decoys).

2.1.4. Applicability Domain and Picking Decoys. The
random molecules (“decoys”) are chosen from a large
“molecular space” which is ideally used for later screening.
To prevent “comparing apples with oranges” we use AD to
ensure that decoys and active compounds share a few similar
properties, thereby confining the selection of random
molecules for the learning set. We calculate the average value
and standard deviation among the actives for each property
used to limit the choice of randoms. We then randomly select
molecules whose properties fall within the range of the
standard deviation of the actives. This approach increases the
complexity of searching for differences in properties between
the two classes, assuming the selected molecules are inactive.
Consequently, this process adds a layer of complexity to the
classification task.35,36

Determining the optimal ratio between decoys (random
molecules) and active molecules involves considering several
key factors, mainly determined by balancing the need for a
robust model (suggesting picking more decoys) and
computation time (more decoys means longer computations).
When the primary objective is to identify active molecules
from a large pool of candidates, it is often beneficial to use a
high ratio of decoys to active compounds. Conversely, in
situations where resources are limited and a more focused
approach is needed, a low ratio of decoys to active compounds
may be preferred. In such cases, the number of decoys may be
similar to the number of active molecules. This approach
prioritizes cost-effectiveness and efficient resource allocation.
Another factor that may necessitate a lower ratio of decoys
compounds to active is the selection of decoys based on the
model’s Applicability Domain (AD). When more AD
descriptors are considered, it often results in a smaller pool
of potential decoys, naturally leading to a reduced ratio
between the number of decoys and active molecules.37−39

In our lab, that focuses mainly on discovering new drug
candidates, it is common practice to select a ratio of 100
decoys for each active molecule. This approach closely reflects
real-world scenarios, addressing the probability of ’encounter-
ing’ active molecules within extensive chemical databases.21,40

We also found that an AD of four properties (logP, Molecular
Weight, H-bond donors and H-bond acceptors) is sufficient for
discovering novel and highly efficient candidates.

2.1.5. Learning Set Construction. This process is
performed using KNIME (version 2.10).32 The n active
molecules are combined with the decoys to create the learning
set, comprising 101n molecules, each characterized by 206 2D
descriptors. Descriptors with low variance across the set or
highly correlated with other descriptors (having a Pearson
correlation coefficient greater than 0.9) are excluded. Figure 1
illustrates the various steps for obtaining the learning set.
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2.1.6. Selecting and Evaluating Filters. After removing
descriptors with low variance or high correlation, approx-
imately 150−200 properties remain. The data set is divided
into 5 “folds,” each containing about 20% of actives and
decoys. Four folds produce a model, while the model screens
and scores the fifth. This process is repeated five times to
screen and score the entire learning set.
To create a model, we randomly select five properties to

form a “filter” through which we screen the data set. The total
number of possible combinations is given by C = N!/[5!(N-
5)!], so that if N = 200, the total number of possibilities would
be ∼ 2.5 billion. However, we avoid computing that complete
set and focus only on the effect of properties on the ability of
filters to distinguish between the actives and decoys. We
randomly select the 5-property filters, each with a score that
reflects its classification ability. Filters are picked multiple
times, ensuring each property is represented for analyzing its
effects on classification ability. All the learning set molecules
(for which we know the activity) are screened by each filter to
determine its Matthews correlation coefficient (MCC,
Equation 2)
Figure 2 illustrates the process of screening molecules

through a single filter constructed from five distinct ranges of
physio-chemical descriptors. Compound A successfully passes
through all five ranges, yielding a positive index value.
Depending on its actual status, this molecule can be classified
as a TP if it is an active compound or an FP if it is a decoy. In
contrast, compound B falls short of satisfying the criteria
defined by all five ranges, resulting in a negative index value for

that specific molecule. In terms of classification, compound B
could be considered a TN if it is a decoy or an FN if it is an
active compound:
Properties consistently associated with the poorest MCC

values are systematically removed, resulting in subsequent
iterations with a smaller set of properties. As iterations
progress, the number of combinations decreases until the total
number of possible combinations falls below one million,
enabling an exhaustive search of all remaining combinations
within a reasonable computational time frame.
All filters are produced and ranked based on their MCC

scores, from the top MCCs to the lowest. Filters generated
through the five folds are merged, and similar filters are
eliminated to prevent bias in the final model.18,41

2.1.7. Screening Databases. In the information age,
researchers use vast databases to link molecular structures
with properties and forecast attributes of unseen molecules.42

Following model validation, the ISE model may screen any
molecular database to score molecules for which physicochem-
ical properties have been assigned. We usually screen huge
libraries with millions of molecules to score them by the model
and pick the top-scored ones for experimental validation.
2.2. Statistical Measurement. Throughout model con-

struction, several criteria allowed us to evaluate the model.
This section presents each of these criteria used for assessing
the qualities of our models.

2.2.1. MCC. The MCC (Matthews Correlation Coefficient)
serves as a metric to assess the efficacy of classification
processes, measuring their ability to distinguish between
different groups. Each filter is evaluated based on its ability
to differentiate between the active entities and the decoys
based on Equation 2:

MCC
(TP TN) (FP FN)

(TP FP) (TP FN) (TN FP) (TN FN)

=
× ×

+ × + × + × +
(2)

TP corresponds to an active molecule that successfully
satisfies all of the filter’s criteria, TN represents a decoy
molecule that fails to meet at least one of the filter’s criteria, FP
refers to a decoy molecule that successfully satisfies all of the
filter’s criteria, and FN indicates an active molecule that fails to
meet at least one of the filter’s criteria.

Figure 1. Stages leading to the formation of the learning set

Figure 2. Screening molecules through a single filter, composed of
ranges of five different physicochemical properties (“descriptors”,
horizontal lines)
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Every filter is assigned an MCC score within the range
between the worst (−1) and the best (+1): a value of (0)
indicates that the prediction’s accuracy is comparable to a
random choice.43,44

The MCC measure of success in classification is helpful for
unbalanced sets, such as the learning set produced in this
research, with a 100:1 ratio of decoys to actives.45,46

2.2.2. Precision, Accuracy and Recall. In classification
models, Precision, Accuracy, and Recall are key metrics
collectively assessing the model’s accuracy in identifying
positive instances, overall correctness, and proficiency in
capturing all true positives, respectively.
Precision measures the model’s ability to accurately identify

positives in the data set (Equation 3):

Precision
TP
P

TP
(TP FP)

= =
+ (3)

Precision values range from 0 to 1, with 1 signifying all
positive identifications are correct and 0 indicating all are
incorrect.47,48

Accuracy measures the proportion of correctly predicted
instances out of the total cases (Equation 4), but its utility is
limited in highly unbalanced learning scenarios.49

Accuracy
TP TN

TP FN TN FP
= +

+ + + (4)

Recall (also known as TPR, True Positive Rate) evaluates
the model’s proficiency in identifying active molecules,
calculated as the ratio of true positives to the sum of true
positives and false negatives (FN) (Equation 5).

Recall TPR
TP

TP FN
= =

+ (5)

Recall values range from 0 to 1, with 1 indicating the
identification of all true positives and 0 denoting the failure to
identify any true positives.47,48

2.2.3. Enrichment Factor (EF). The EF is employed to
evaluate the benefits of virtual screening over random
selection. It measures the fraction of correctly assigned true
positives relative to the chance of finding true positives, which
is the number of active molecules A divided by the total
number N of molecules screened. The EF value is determined
by the Equation 6a:

EF
TP/(TP FP)

(TP FN)/(TP TN FP FN)
TP/(TP FP)

A/N

= +
+ + + +

= +
(6a)

In our ISE models, with a typical selection of decoys of
100:1, equation 6a may be presented as 6b:

EF
TP/(TP FP)

(TP FN)/(TP TN FP FN)
Precision

1/101

101 Precision

= +
+ + + +

=

= × (6b)

The resulting EF values from this equation range between 1
and > 100, where a value of 1 denotes randomness, while
higher values suggest increased ″enrichment″.50,51

2.2.4. ROC Curve and AUC-ROC. The ROC curve is a
fundamental evaluation tool for machine learning models,

illustrating the relationship between TPR and False Positive
Rate (FPR) across various classification thresholds. Each point
on the curve corresponds to a specific classification threshold,
representing a pair of TPR and FPR values. TPR, derived from
Equation 5, represents the accurately identified true positive
molecules, portraying the active fraction.

FPR
FP

FP TN
FP

N(decoys)
=

+
=

(7)

Conversely, FPR, calculated using Equation 7, indicates the
true negatives erroneously labeled as positive, representing the
decoy fraction.
Figure 3 represents the ROC curve, where achieving a TPR

of 100% and an FPR of 0% (at coordinates (1,1) and (0,0),

respectively) indicates an instance of perfect classification. The
Area Under the ROC Curve (AUC-ROC) quantifies model
performance, ranging from 0 (indicating an inverted classifier)
to 1 (representing a perfect classifier), with values around 0.5
suggesting randomness.52−54

2.2.5. Permutation Test (Y-Randomizations). The Permu-
tation Test is a statistical method used to validate the stability
of a model’s statistical parameters to eliminate chance success.
This test evaluates whether the model’s classification ability
surpasses random outcomes by comparing the model’s
performance on both original and shuffled data. It considers
the model’s predictive strength against random expectations by
generating a distribution of performance metrics through
multiple recalculations of model parameters like AUC-ROC
values on permuted data. The resulting p-value is then
computed as the proportion of iterations in which the model’s
performance on shuffled data exceeds that of the correspond-
ing observed data. A low p-value indicates that the model’s
performance significantly surpasses what would be expected by
random chance.55,56

To assess the statistical significance of our models, we
conducted a Permutation Test using a Python script developed
by ChatGPT for both Model A and Model B. In Model A, the
initial data set comprised 92 instances labeled as ’1’ (actives)
and 9200 instances labeled as ’0’ (decoys), while in Model B,
there were 169 instances labeled as ’1’ and 16900 instances
labeled as ’0’. Each test involved 1000 iterations, wherein the

Figure 3. ROC curve.
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data set was shuffled while preserving the respective counts of
’1’ and ’0’ instances. The script calculated essential parameters
for the Confusion Matrix (TP, FN, TN, and FP) throughout
each iteration based on the permuted data. These values were
the foundation for computing various performance metrics,
encompassing TPR, FPR, AUC, Precision, Accuracy, and EF.
The EF involves identifying the top-performing instances.
2.3. Molecular Index. The Molecular Index (MI) is

employed to evaluate the predicted molecular activity of a
molecule by scoring it based on filters. Each filter differentiates
between positive (active) and negative (inactive or decoy)
molecules. Filter effectiveness is quantified by values of true
and false positives and negatives. MI calculation includes four
metrics: TP, FP, TN, and FN. As shown in Equation 8, when
computing the MI, two variables come into play: δpositive and
δnegative. A δpositive equals 1 if a molecule passes filter ″i″ as
positive; otherwise, it is 0. Similarly, a δnegative equals 1 if a
molecule passes filter ″i″ as negative; otherwise, it is 0.

n
MI

i
n P

P
N
N1 positive negativei if f=

=

(8)

where P/Pf represents the ratio of true positives to false
positives, and N/Nf represents the ratio of true negatives to
false negatives for a given filter. P is true positives, Pf is false
positives, N is true negatives, and Nf is false negatives. n is the
total number of filters.
The resulting MI ranges from −1 to +1. A positive MI

suggests activity, whereas a negative MI suggests inactivity. A
higher MI implies an increased chance of experimental
discovery as being active.57

All along the article, we use the terms ″index″ and ″score″ as
being identical when discussing the values of MI.

3. RESULTS
From the outset of the study, our focus was solely on pure,
uncharged HEMs. Therefore, in the quest for HEMs, we
excluded mixtures and ionic compounds. Two separate models
were constructed based on distinct data sources to assess
whether the ISE algorithm is suitable for detecting potential
HEMs.
3.1. Constructing the Data Sets. Model A incorporated

HEMs obtained from various sources: an article on predicting
the power of energetic materials,58 the Explosives Database,59

and the AIST Database.60 For Model B, the active molecules
were extracted from an article that included 222 HEMs.61

In each model, we implemented data curation as described
in Methods. Also, to avoid potential bias due to molecular
similarity, we computed the Tanimoto Index (TI). In each
model, out of a pair of HEMs with a TI exceeding 0.9 we
retained the one with a lower total TI in comparison to all
other molecules. Additionally, we excluded molecules that
appear in both Model A and Model B, retaining only one
instance of each unique molecule. Finally, Model A comprised
92 HEMs, while Model B retained 169 HEMs, constituting a
distinct set from the 92 molecules present in Model A.
A total of 206 physicochemical properties (2D descriptors)

were computed for each active molecule (HEM) using
MOE2018. Subsequently, the Applicability Domain (AD)
was independently determined for Model A and Model B
based on their respective values of the 206 2D descriptors. The
selection of the 16 descriptors that define the AD was guided
by their alignment within the range of plus or minus one

standard deviation from the mean and their established
relevance to high-energy materials.54,58 The literature address-
ing energetic material properties emphasizes the influence of
atomic composition and molecular weight within a com-
pound’s formula. Additionally, we extended our criteria to
encompass various types of bonds. Model A and Model B have
an identical number of 16 descriptors for applicability domain,
each displaying distinctive value ranges within its respective
model (Table 1). For instance, in Model A, the ’b_heavy’

descriptor, signifying the number of bonds between heavy
atoms (atoms with z > 1), ranged from 8 to 20, while in Model
B, this range extended from 5 to 23. Similarly, the ’b_rotN’
descriptor, indicating the number of rotatable bonds, exhibited
ranges from 0 to 8 in Model A and 1 to 6 in Model B.
Table S1 specifies the code, description, and range of each of

the 16 descriptors for the ADs of Model A and Model B..
Table S2 includes the Complete list of 2D descriptors
calculated by MOE2018.
3.2. Creating and Evaluating the Models. Two ISE

models were created using active molecules identified during
preliminary stages and decoy molecules from the Enamine
Database, which includes approximately 2 million com-
pounds.62 Similar to our approach with the HEMs, we
conducted structure standardization and computed 206 2D
descriptors for all molecules in the database.
For each model, the selection of decoy molecules from the

Enamine database was limited to those within the relevant AD
specific to that model. The ratio between active molecules and
decoys was maintained at 1:100 in both models. As a result, the
learning set of Model A consisted of 92 active molecules and
9200 decoys (Table S3), while the learning set of Model B
comprised 169 active molecules and 16900 decoys (Table S4).
Table 2 presents the MCC minima, maxima, and mean

values and the AUC-ROC scores for the five folds in each
model.
In Figure 4, scatter plots are presented for Models A and B,

illustrating the scoring outcome of each molecule using the
complete set of model filters. In both cases, the red dots
represent the decoy molecules (random), while the blue
diamonds represent the HEMs.
Table S5 presents the values of the Confusion Matrix (CM)

at various cutoff indexes for Model A and Model B,
respectively. These tables also include the computed results
of TPR (using Equation 5), FPR (using Equation 7), and EF
(using Equation 6b) based on those values.
Table 3 presents additional parameters derived from the CM

values, offering valuable insights into model performance.
These parameters include the calculation of MCC (using

Table 1. Applicability Domain Descriptors for All Models

Atomic composition Bond composition Molecular weight

a_count b_1rotN MW
a_heavy b_1rotR
a_nC b_ar
a_nH b_count
a_nN b_double
a_nO b_heavy

b_rotN
b_rotR
b_1rotN
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Equation 2), as well as EF (equation 6a,6b) and the TP/FP
ratio (see discussion) above each index (score).
The ROC curves for Models A and B (Figure 5) were

constructed using each index’s TPR and FPR values.
Subsequently, the AUC-ROC value was calculated for each
model based on the generated curves.
Cross-Validation of the Models. Models A and B,

including 92 and 169 HEMs, respectively, were employed for
mutual screening. In this process, the 169 active molecules of

model B were screened and scored using the Model A filters,
and vice versa. There is no overlap in active molecules between
Models A and B. Random molecules were selected from a pool
of nearly two million, ensuring a meager chance of random
similarity. The screening results of both models are presented
in Table 4.

4. DISCUSSION
Our in-house algorithm (ISE) has been successfully utilized for
over a decade for detecting novel candidate drugs. However,
molecules can be directed to different purposes, and HEM is
just another challenge for molecular discovery, given their

Table 2. Statistical Data for Models A and B across Five Folds

Model A Model B

MCC MCC

min max mean AUC-ROC min max mean AUC-ROC

Fold 1 0.86 0.87 0.86 0.97 0.81 0.86 0.82 0.97
Fold 2 0.83 0.86 0.84 0.90 0.81 0.85 0.82 0.99
Fold 3 0.82 0.84 0.82 0.99 0.81 0.85 0.82 0.99
Fold 4 0.80 0.84 0.81 0.98 0.80 0.85 0.81 1.0
Fold 5 0.86 0.86 0.86 0.99 0.82 0.85 0.83 0.99

Figure 4. Scatter Plots of Models A and B HEMs in blue diamonds and decoys in red dots.

Table 3. Evaluation Metrics for Models A and B

Model A Model B

MCC EF TP/FP MCC EF TP/FP

Index 0 0.35 15 0.18 0.53 34 0.51
Index 0.1 0.41 20 0.25 0.55 39 0.62
Index 0.2 0.41 21 0.26 0.57 43 0.74
Index 0.3 0.41 22 0.27 0.61 49 0.96
Index 0.4 0.43 25 0.32 0.63 57 1.30
Index 0.5 0.44 26 0.35 0.65 62 1.59
Index 0.6 0.45 27 0.36 0.65 67 1.96
Index 0.7 0.46 29 0.40 0.62 71 2.32
Index 0.8 0.48 32 0.46 0.58 73 2.67
Index 0.9 0.48 34 0.50 0.24 71 2.33

Figure 5. ROC Curves for Models A and B.
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primary shared basis with drugs, which is physicochemical
properties. In both types of activities, we need previous data to
produce new data, and the significant difference is that drugs
are aimed at biological targets while HEMS are not.
To evaluate the ISE model’s capability in identifying new

candidates for high-energy materials, we constructed two
separate ISE models for HEMs, explored their ability through
cross-screening between them and found it to be of very good
quality. These models consist of filters designed to distinguish
between known actives (HEMs) and randomly picked
molecules (non-HEMs), as explained in the Methods section.
This process closely resembles the application of ISE for drug
discovery, involving the construction of learning sets heavily
“diluted” with inactive molecules.
4.1. Validation of the Models. Table 2 outlines the

statistical metrics for Model A and Model B across five
separate folds. The results suggest that both Model A and
Model B exhibit strong predictive abilities. Model A’s MCC
values range from 0.80 to 0.87, with a mean of 0.84 across the
five folds. This model consistently demonstrated strong
discrimination ability, with AUC-ROC scores ranging from
0.90 to 0.99. Model B also exhibits similar MCC values
between 0.80 and 0.86 (mean = 0.82), and Its AUC-ROC
ranges from 0.97 to 1.0. Notably, both models achieved high
AUC-ROC scores, indicating their ability to differentiate
between active and inactive molecules effectively. The results
from both Model A and Model B emphasize the efficiency of
ISE in detecting the differences between the two classes. The
consistently high MCC and AUC-ROC scores affirm the
suitability of these models for predictive screening purposes.
4.2. Major Descriptor Families and Their Prevalence.

Model A consists of 442 filters, each comprising five
physicochemical properties. In contrast, Model B included

2887 filters. Due to the large number of filters, we limit the
number to the top 20% of filters (577 filters) for the cross-
screening (see section 3).
We analyzed the appearance of each descriptor in both

models and subsequently organized them into distinct types
(categories) based on the MOE assignments. Among these
categories, we focused on those containing at least 10% of the
total descriptors in a given model. We found that some types of
descriptors are identical in both Model A and Model B. These
shared categories include ’Atom Counts and Bond Counts’,
’Pharmacophore Features’, and ’Physical Properties’. Notably,
these three descriptor types constitute the majority of
descriptors in both models, contributing to 80% of the
descriptor distribution in Model A and a more significant 95%
in Model B. A graphical representation of the distribution of
each type in both models is presented in Figure 6.
Regarding descriptor prevalence, the ’Atom Counts and

Bond Counts’ type exhibits the highest frequency in both
Model A and Model B, comprising 53% and 36% of the
descriptors, respectively. On the other hand, descriptors from
the ’Physical Properties’ type contribute only 11% and 27% in
Model A and Model B, respectively. Detailed descriptors for
both models are provided in Table S6.
4.3. Scatter Plots. It is evident from both scatter plots

(Figures 4A and 4B) that the models effectively distinguish
between HEMs and decoy molecules. Approximately 75% of
the active molecules passed through the filters with a score of
≥ 0.7, while ∼ 85% of the randoms (assumed to be inactive
molecules) failed to pass the filters (Index ≤ −0.8).
4.4. Evaluating the Models. The performance of the ISE

models in distinguishing active from inactive molecules is
shown in Table 3. Metrics such as MCC, EF, and TP/FP were
evaluated across index thresholds for Models A and B. Model
A maintains a relatively stable MCC range of 0.35 to 0.48,
reflecting consistent discrimination ability. EF for Model A
ranges from 15 to 34, while TP/FP varies from 0.18 to 0.50. In
contrast, Model B exhibits larger fluctuations in MCC (0.24 to
0.65) and associated EF (34 to 73), with varying TP/FP (0.51
to 2.67).
Model A shows consistent performance in MCC across the

index thresholds, indicating reliability in predictions across
different parameters. While Model B demonstrates higher EF

Table 4. Cross Screening Results

Model Aa Model Bb

No. of molecules screened 169 92
No. of hitsc 117 74
No. of hits with the highest index (>0.9) 73 45

aModel B HEMs by Model A filters (2nd column). bModel A HEMs
by Model B filters (3rd column). cAny molecule with a cutoff of > 00
is defined as a “hit”.

Figure 6. Major descriptor types for Models A and B.
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values, its MCC values show greater variability, suggesting
potential inconsistency in predictive accuracy. Model B’s TP/
FP ratios imply improved discrimination between true and
false positives.
4.5. ROC Curves. The ROC curve analysis for Models A

and B (Figure 5) yields a similar Area Under the Curve (AUC)
of 0.96 (Model A) and 0.98 (Model B). These high AUC
values underscore both models’ consistent and robust
discriminatory capacity in effectively distinguishing between
positive and negative classes.
4.6. Y Randomization Test. Conducting 1000 iterations

in this test allows us to evaluate the model’s performance
against a randomized baseline. For Model A, the computed
mean AUC value is entirely random, 0.50. Similar indications
are given by the TPR and FPR (∼0.01 in both). Further details
and visual representations of the distributions for the
performance metrics of Model A, including TPR, FPR,
accuracy, precision, and AUC, can be found in the
Supplemental section (Figure S1).
The Y-Randomization results in Model B closely mirrored

those obtained for Model A. Both models exhibited close
alignment in outcomes, with results matching up to two
decimal places. This consistency between Models A and B
reinforces the reliability and robustness of our methodology
across diverse models.
4.7. Cross Testing. The filters of each model were used to

screen the active molecules (known HEMs) in the other model
and received a score depending on whether they passed
through the filter or failed. A molecule receiving a positive
index indicates that the model has recognized it as HEM.
As evident from Table 4, Model A successfully identifies

69% of Model B’s active molecules, with 62% of those
receiving the highest index value of 0.91. In parallel, Model B
identifies 80% of the active molecules of Model A, and 61% of
those pass Model B’s filters with a maximum score of 0.91.
These outcomes underscore the model’s competence in
discerning active molecules from the respective data sets.
The high percentage of accurately identified HEMs and hits,
combined with the consistently elevated index values,
reinforces the predictive power of both models. The findings
further highlight the effectiveness of the applied screening
approach in identifying high-energy molecules.
The graphical representation of the screening results in

Figure 7 complements the quantitative data, providing a visual

summary of the models’ discriminative performance. Together,
the tabulated results and visual depiction offer a comprehen-
sive understanding of the model’s capabilities in molecular
screening and contribute to discussing their potential
application in practical scenarios.
The effectiveness of Models A and B in molecular

discrimination is visually depicted through histograms (Figure
8). The histograms provide a snapshot of each model’s True
Positive Rate (%TPR) across varying decision cutoffs. Model
A’s histogram showcases a progressive decline in %TPR as the
cutoff values increase. The highest %TPR, 69%, is observed at
the lowest cutoff of 0. In contrast, Model B’s histogram
demonstrates consistent %TPR values, ranging from 76% to
60%, for cutoffs between 0.3 and 0.7. Notably, at cutoffs of 0.5
and 0.6, Model B’s %TPR drops to 60%.
Analyzing these histograms provides valuable insights into

the behavior of the models at varying levels of stringency.
Model A demonstrates higher %TPR values for lower cutoffs,
indicating its ability to identify active molecules even when
using more permissive thresholds. In contrast, Model B
maintains relatively stable %TPR values across intermediate
cutoffs, suggesting consistent performance in that range.
The results obtained from this research confirm the ability of

ISE models to identify diverse, high-energy candidates.
4.8. Nitro Groups and AD. While it is true that Enamine

was not originally designed to include explosives rich in nitro
groups, we would like to provide additional data regarding the
presence of molecules with nitro groups in our data set. Among
the 1938610 molecules in the Enamine database, 43,425
molecules (2.24%) contain nitro groups. Due to random
picking of decoys, we expect to pick 206 (2.24%) molecules
with nitro groups out of the 9,200 decoys for Model A. For
Model B, we expect to pick 379 molecules with nitro groups
out of the 16,900 decoys. However, we find many more due to
our applicability domain: 449 (4.88%) decoys with nitro
groups for model A and 684 (4.05%) decoys with nitro groups
in model B. This result supports our decision for the properties
used for AD, nitro group not being among them.
4.9. Constructing a larger model. Given that the results

from cross-screening Model A and Model B confirmed the
ability of ISE models to identify high-energy candidates, we
proceeded to construct a third model, Model C. We combined
the HEMs from Models A and B in order to have more HEMS
in a single model and to examine whether that model could
have better performance that the two smaller data sets. Model
C, thus comprises 261 active molecules from Models A and B.
The construction steps of Model C, including the AD and the
picking of decoys for the learning set, are identical to those of
Models A and B, as detailed in the Methods section.
According to Table 5, the results across all folds consistently

demonstrate high
MCC values, indicating robust performance in binary

classification tasks. Additionally, the AUC-ROC scores
consistently near 0.99 signify excellent discriminatory ability
of Model C. This suggests that Model C is effective in
accurately classifying instances and that it may be used for
screening external data sets.
The confusion matrix (CM, Table 6) illustrates a tradeoff

between true positive (TP) and false positive (FP) rates with
increasing index thresholds. In the higher thresholds the FP
instances are reduced with respect to TP. All three criteria −
MCC, EF and TP/FP increase with increasing index threshold.
The top molecules in the model obtain a maximal index ofFigure 7. Models A and B screening results.
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0.89. For practical decisions (external screening) we pick the
best index threshold with the largest TP/FP, reducing the total
number of molecules to be tested.
4.10. Screening by Model C. Consequently, we screened

1938610 molecules from the Enamine Database by the filters
of Model C. We find 3,156 molecules with a positive index
(above 0.0). More than 800 (∼25% of the positives) of those
contain at least one nitro group. Subsequently, upon applying
the acceptable cutoff for further testing (0.7), we obtained 331
molecules, out of which 115 (∼35%) have at least one nitro
group. The maximum index achieved in Model C is 0.89, with
74 molecules reaching this index, of which 8 are part of the
active compounds within the learning set. Notably, among the
remaining 66 molecules, 21 (32%) contain at least one nitro
group. It is thus clear that with increasing scores we find a
larger proportion of nitro-containing HEM candidates.
4.11. The Importance of TP/FP Values. TP/FP ratios

are results of the model, and have different values depending
on the index cutoff, as seen in Tables 3 and 6. Screening by the
model produces a plethora of indexes for the huge number of
molecules. We aim at picking the screened molecules with the

largest indexes for testing by real experiments. That number
should be limited by several factors: 1) the number of
molecules that can be tested (50 molecules/week or 5 per
week ?) and 2) the indexes of the top scoring molecules and
their number. Assuming that by screening ∼ 2 million
molecules by model C (Table 6) we find 20 molecules with
index > 0.75. The TP/FP of the cutoff 0.7 (∼2) means that out
each 3 molecules (TP/FP = 2/1) sent for testing, 2 may be
found to be active based on the results of the model. However,
sending only 3 molecules is risky and so we can decide to send
6 (with a chance of discovering 4 actives) or even send 18
(with the chance to discover 12 actives). As all our screened
molecules are commercially available and without attached
patents, we are only limited by prices and by the limits of the
experimental throughput.

5. CONCLUSIONS
Before this study, the ISE algorithm had been successfully
utilized to identify new drug candidates that were subsequently
tested in laboratory settings. The primary aim of this current
research was to investigate whether the ISE could be adapted
to develop models capable of identifying potential energetic
materials (HEMs). To achieve this objective, we constructed
two ISE models, Models A and B. Through comprehensive
evaluations utilizing statistical metrics such as MCC and AUC-
ROC, both models demonstrated robust discriminatory
abilities. In the later analyses involving cross-screening, scatter
plots, ROC curves, and histograms, the model’s effectiveness in
distinguishing HEMs from decoys was confirmed.
In the subsequent phase, both models screened each other’s

active molecules, yielding impressive results. Model A

Figure 8. Histograms depicting the effectiveness of Models A and B in molecular discrimination.

Table 5. Statistical Data for Model C across Five Folds

MCC

min max mean AUC-ROC

Fold 1 0.79 0.81 0.80 0.97
Fold 2 0.80 0.81 0.80 0.99
Fold 3 0.79 0.82 0.80 0.99
Fold 4 0.79 0.82 0.80 0.99
Fold 5 0.77 0.82 0.78 0.99

Table 6. Confusion Matrix Values of Model C

TP FP FN TN MCC EF TP/FP

Index 0 209 585 52 25515 0.45 27 0.36
Index 0.1 198 364 63 25736 0.51 36 0.54
Index 0.2 189 268 72 25832 0.54 42 0.71
Index 0.3 187 226 74 25874 0.56 46 0.83
Index 0.4 180 173 81 25927 0.59 52 1.04
Index 0.5 172 100 89 26000 0.64 64 1.72
Index 0.6 162 83 99 26017 0.64 67 1.95
Index 0.7 155 77 106 26023 0.63 67 2.01
Index 0.8 153 58 108 26043 0.65 73 2.64
Index 0.9 0 0 261 26100 NaN NaN NaN
Index 1 0 0 261 26100 NaN NaN NaN

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c01070
ACS Omega 2024, 9, 42709−42720

42717

https://pubs.acs.org/doi/10.1021/acsomega.4c01070?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c01070?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c01070?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c01070?fig=fig8&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c01070?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


identified 89 out of 169 of Model B’s active molecules as
HEMs, with 82% achieving the highest index score (0.91).
Similarly, Model B identified 54 out of 92 active molecules
from Model A as HEMs, with 83% scoring the highest index of
0.91.
Based on the promising outcomes of Models A and B, a

third model, Model C, was developed, which includes all 261
active molecules from Models A and B. Thanks to its robust
performance in effectively distinguishing between active
compounds and decoys, Model C was utilized to screen and
score the Enamine database (∼2 million molecules). Out of
approximately 2 million molecules screened using Model C, 74
achieved the highest score of 0.89. Further analysis revealed
that 8 of these top-scoring molecules were part of the 261
active molecules in Model C’s learning set. For the remaining
66 molecules, we will determine which ones are not patented,
and acquire them for calorimetric analysis, such as Differential
Scanning Calorimetry (DSC).
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