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Abstract

Plant-growth promotion has been linked to the Pseudomonas genus since the beginning of

this research field. In this work, we mined the genome of an Argentinean isolate of the

recently described species P. donghuensis. Strain SVBP6, isolated from bulk soil of an agri-

cultural plot, showed a broad antifungal activity and several other plant-probiotic activities.

As this species has been recently described, and it seems like some plant-growth promoting

(PGP) traits do not belong to the classical pseudomonads toolbox, we decide to explore the

SVBP6 genome via an bioinformatic approach. Genome inspection confirmed our previous

in vitro results about genes involved in several probiotic activities. Other genetic traits possi-

bly involved in survival of SVBP6 in highly competitive environments, such as rhizospheres,

were found. Tn5 mutagenesis revealed that the antifungal activity against the soil pathogen

Macrophomina phaseolina was dependent on a functional gacS gene, from the regulatory

cascade Gac-Rsm, but it was not due to volatile compounds. Altogether, our genomic analy-

ses and in vitro tests allowed the phylogenetic assignment and provided the first insights

into probiotic properties of the first P. donghuensis isolate from the Americas.

Introduction

Among all soil bacterial genera having a representative described as a Plant-Growth Promot-

ing Microbe (PGPM), the genus Pseudomonas comprise a wide variety of probiotic species,

with distinct mechanisms of action that strengthen plant health, either directly or indirectly

[1,2]. Several pseudomonads have demonstrated production of different kinds of secondary

metabolites involved in antagonism to pathogens, phytostimulation or nutrient supply, and an

ability to degrade complex organic compounds, not only being able hence to contribute to

plant growth, but also to bioremediation of soils [2–6]. As members of the γ-Proteobacteria
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subphylum, which range from 1% to 34% of the abundance of total soil bacterial community

of different environments [7], Pseudomonas spp. are key members of the soil microbiome.

Considered as copiotrophs, because they are specially present in areas where resource avail-

ability is high and carbon sources are simple [8], their remarkable nutritional versatility allows

them to exploit diverse rhizosphere environments, where each plant exudates a variety of

organic compounds [9]. Their high rhizosphere competence is critical for the correct function-

ing of microbial inoculants and their effect on soil microbiome [10,11].

The physiological and genetic adaptability of Pseudomonas spp. facilitated the widespread

distribution of this genus in various ecosystems around the world [12–14]. Besides, those

genomic traits allow these bacteria to be continuously studied as sources of new metabolic

pathways and novel products, sometimes related with plant-probiotic activities [15–18], which

could be useful for the development of more efficient agricultural bio-inputs.

Genome sequencing has become a useful tool for different microbiology projects, not only

to understand the genetic basis of metabolic processes [19,20], but also to unravel some incon-

sistences in taxonomic affiliations that the classical approaches cannot define, for instance, by

comparing the average nucleotide identity (ANI) [21,22]. As Pseudomonas spp. genomes are

so adaptable, these techniques have recently allowed the description of several novel species

[23–26], and to better organize this genus, which is the largest within Gram-negative bacteria

[27]. An additional benefit of next generation sequencing is the possibility to access to an

increasing amount of genetic information. Thus, genome mining has become an essential tool

for processing such amount of data generated, in order to search for new catalysts, targets or

products, particularly in microorganisms with industrial applications, as PGPM [28].

There are several reports on the difficulties to reproduce the positive effects of PGPM that

had been seen at the laboratory on plant growth, in field assays, most probably due to the influ-

ence of several uncontrolled biotic and abiotic factors [29–33]. Therefore, the focus has been

recently put into the isolation of PGPM from the same agricultural plots or crop rhizospheres

where they would be applied later as inoculants. This strategy may help to overcome difficul-

ties in adapting non-native bacterial species in a new environment [6,34–37]. With this pur-

pose, we isolated and characterized a group of 19 pseudomonads from the humid Pampean

region of Argentina, which were selected by their in vitro antagonistic activity against different

fungal pathogens [6]. One of the isolates, named SVBP6, displayed a broad spectrum of fun-

gal-growth inhibition activity. Besides, SVBP6 could not be clearly assigned to any of the Pseu-
domonas species already described at that moment. Therefore, the aim of this work was to

obtain and explore the draft genome of strain SVBP6, in order to better define its taxonomic

assignment, to survey the genetic determinants of the broad antifungal activity shown in vitro,

and to discover putative plant-probiotic traits that may be instrumental for this strain as an

agricultural bio-input.

Materials and methods

Isolation of SVBP6, and physiological and biochemical characterization

Strain SVBP6 was isolated from the bulk top soil (0–10 cm) of an agricultural plot located in

Viale, Entre Rı́os province, Argentina (31˚ 52’ 59,6” S; 59˚ 40’ 07” W) using Gould’s S1 selec-

tive media [38]. At sampling time (February 2010), the plot was cultivated with soybean and

had a history of no-till management under good agricultural practices (crop rotation, nutrient

replacement, and minimized agrochemical use) for, at least, 13 years [39]. Isolate SVBP6 was

selected by its antagonistic potential against a diverse group of phytopathogenic fungi that

included members of Fusarium, Colletotrichum, Phomopsis, Macrophomina and Cercospora
genera [6].
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Colony morphology was observed under a magnifying glass (Olympus SZ61, 10×), after

sowing a 20 μl-drop of a bacterial suspension with DO600 = 1.0 on a nutrient agar (NA, Biokar)

plate and incubating for 48 h at 28˚C. Morphological characterization of its cellular structure

was performed using Transmission Electron Microscopy (JEM 1200EX II, Jeol) at the Central

Service of Electron Microscopy (SCME) from the Faculty of Veterinary of the National Uni-

versity of La Plata (Buenos Aires, Argentina). For this assay, SVBP6 was grown overnight on

nutrient yeast broth (NYB, Biokar) at 28˚C and 200 rpm.

Classical biochemical assays were performed to characterize SVBP6: Gram staining (Labora-

torios Britania); catalase direct test with a drop of 3% H2O2 on a colony and evaluation of bub-

bling (O2 production); oxidase test (BD BBL™ Taxo™, N-discs with 6% of p-aminodimethylaniline

monohydrochloride); gelatin liquefaction after 24 h of incubation of NYB with 12% of gelatin;

glucose fermentation in Hugh and Leifson’s OF basal medium (pH = 7.4); growth on NA plates

at different temperatures (4˚C, 25˚C, 28˚C, 35˚C, 37˚C and 45˚C); growth on Luria-Bertani (LB)

broth at several pH values (from 3.0 to 13.0) and NaCl concentrations (from 0% to 11%); reduc-

tion of nitrites and nitrates after 24 h of culture growth on NYB supplemented with KNO2 or

KNO3, respectively, by the evaluation of nitrite presence with n-(1-naphtyl)-ethylenediamine

dihydrochloride [40] and gas formation inside a Durham tube [41]. Depending on the test per-

formed, Escherichia coli K12 or Pseudomonas aeruginosa PA01 were employed as positive or neg-

ative controls. All incubations were done at 28˚C, unless otherwise specified.

To analyze the carbon sources that SVBP6 was able to metabolize, we assayed its growth in

Biolog EcoPlatesTM [42], after 108 h of static incubation at 30˚C. Antibiotic resistance was ana-

lyzed by growing SVBP6 in NYB medium supplemented with the corresponding antibiotic at

the concentrations commonly employed for the Pseudomonas spp. genus: chloramphenicol

(20 μg/ml), ampicillin (100 μg/ml), gentamicin (10 μg/ml), kanamycin (50 μg/ml) and tetracy-

cline (150 μg/ml).

Evaluation of PGP properties

We tested several plant-growth promoting (PGP) activities as previously described [6]: exopro-

tease, phospholipase and 1-aminocyclopropane carboxylic acid (ACC) deaminase activities;

hydrogen cyanide (HCN) production; siderophore and indole acetic acid (IAA) synthesis;

swimming and swarming motilities; inorganic phosphate solubilization ability; biofilm develop-

ment; secretion of acyl homoserine lactone-like (AHL) quorum sensing signals and the presence

of antifungal-related genes (phlD, phzF, pltB and prnD). Exoprotease (milk agar plates), phos-

pholipase (egg yolk agar plates) and siderophore (CAS agar plates) activities were relativized to

the colony diameter as follows: [halo diameter (in mm)—diameter of each bacterial spot (in

mm)] / diameter of each bacterial spot (in mm). Relative values were expressed as percentage.

Additionally, we tested the chitinase activity by a fluorometric assay with 4-methylumbelli-

ferone-N-acetyl-b-D-glucosaminide as substrate [43]. Briefly, we grew SVBP6 on synthetic

medium (SM) liquid medium supplemented with 10% v/v of LB broth and 0.2% w/v of colloi-

dal chitin [44] for 72 h at 200 rpm and 28˚C. Then, we collected 200 μl of supernatant by tripli-

cate and mixed it with 50 μl of substrate at 200 μM in MES buffer 0.1M (pH = 6.1), to measure

the fluorescence during 15 minutes. Control reactions and calculations of activity were done

as previously described [43]. Chitinase production was expressed as the enzyme activity

(nmol/min) relative to the OD600 value of the SM culture.

For detection of lipopeptide production, we carried out the drop-collapse test on Paraf-

ilm1 [19]. The presence of biosurfactants in a drop of cell-free supernatant (from a bacterial

culture grown on NYB for 16 h at 28˚C and 200 rpm) decreases the surface tension of the liq-

uid and, therefore, results in its collapse. Methylene blue was added to stain the drops for
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photographic purposes and had no influence on the results. Besides, a specific assay for rham-

nolipids detection was performed in Siegmund Wagner (SW) agar [45], evaluating the produc-

tion of halos around the colonies after plate incubation for 48 h at 28˚C. Rhamnolipids form

an insoluble complex with the CTAB present in the SW medium, and it interacts with the

methylene blue also present. Thus, rhamnolipids producers are detected by a dark blue halo

around the colony [46].

Antagonism by the production of volatile organic compounds (VOCs) was evaluated by co-

cultivation assays in partitioned Petri dishes [47]. Briefly, a heavy streak of SVBP6 was per-

formed in one side of the plate onto NA, and a 1 cm2 plug of a freshM. phaseolina culture was

deposited onto the other side of the plate containing potato dextrose agar (PDA). Plates were

sealed with Parafilm1 and incubated for 5 days at 28˚C in the darkness. The assay was per-

formed by triplicate and controls without bacteria or fungal inoculum were included.

Antibacterial activity was evaluated in two assays to analyze if it was due to a direct contact

of cells (co-culture) or to the secretion of a toxin molecule (overlaid layer). For the first assay,

NA plates were sown with 100 μl of a bacterial suspension of the prey with a OD600 = 1.0. Once

plates were dried, a 10 μl drop of a SVBP6 bacterial suspension with OD600 = 1.0 was spotted

on each one, and plates were incubated 24 h at 28˚C for the optimal SVBP6 growth. For the

second assay, a 10 μl drop of a similar SVBP6 bacterial suspension was spotted in the NA plates

and incubated overnight at 28˚C. Then, after 30 minutes of UV exposure to kill the SVBP6

cells, 4 ml of soft NA (0.8% agar) with 10% v/v of a saturated cultures of the confronted bacte-

rial strain were overlaid above the drops and plates were incubated for 24 h at the optimal tem-

perature of the bacterial prey. SVBP6 was confronted against Escherichia coli K12, a Bacillus
subtilis strain from the bacterial collection of the Microbiology Area of the Department of Sci-

ence and Technology (Universidad Nacional de Quilmes) and Pseudomonas fluorescens 1008

from Rizobacter Argentina S.A. NA plates with the overlaid layers of E. coli or B. subtilis strains

were incubated at 37˚C, or with P. fluorescens strain, at 28˚C.

Fatty acids and whole-cells protein profile analyses

Fatty acid analysis was performed by gas chromatography using the MIDI Sherlock1 Micro-

bial Identification System and the standard protocol [48]. The RTSBA6 method was employed

for comparison of the FAME profile with the available library (http://www.midi-inc.com/pdf/

RTSBA_6.21%20.(Environmental%20Aerobes).pdf, as available in August 2017).

Whole-cell protein profile of SVBP6 was obtained using the Ultraflex III UV-MALDI-TOF/

TOF mass spectrometer and MALDI Biotyper 3.1 software (Bruker Daltonics, Bremen, Ger-

many) at the CEQUIBIEM Institute (CONICET, Argentina) in association with the Institute

of Biotechnology and Molecular Biology (IBBM, CONICET, La Plata, Argentina). The prepa-

ration of the samples was performed according to manufacturers’ recommendation from a sin-

gle colony cultured on LB for 24 h at 28˚C [49]. Bacterial identification was performed with

MALDI Biotyper Offline classification software using score values proposed by the manufac-

turer as follows: a score value higher than 2.0 indicates species identification; a score value

between 1.7 and 1.9 indicates genus identification; and a score value lower than 1.7 indicates

no taxonomic matching [50]. The Pseudomonas spp. database in the MALDI Biotyper software

included 168 representative species (S1 Table).

Genomic DNA preparation and sequencing

For DNA isolation, we collected 20 mg fresh weight of SVBP6 cells from an overnight culture

on NA. After processing with the ZR Soil Microbe DNA MicroPrep™ kit (Zymo Research),

we obtained ca. 9 μg of DNA with an OD260/280 of 1.9 and a good integrity as judged by
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electrophoresis in a 0.8% agarose gel. Purified DNA (approx. 300 ng) was sent to INDEAR

(Rosario, Argentina) to prepare the corresponding libraries and to obtain a draft genome via

the Illumina HiSeq 1500 sequencing system.

Genome assembly and gene prediction

Genome assembly was performed with the A5 pipeline [51]. Gene prediction and genome

analysis of PGP-related traits in the draft genome of SVBP6 strain were performed with the

Rapid Annotation with Subsystems Technology (RAST) server database 2.0 [52], Basic Local

Alignment Search Tool (BLAST1, [53]), Pseudomonas genome database (www.pseudomonas.

com, [54]), Antibiotics & Secondary Metabolite Analysis Shell (antiSMASH) v. 3.0.5 [55] and

the IslandViewer 3 software [56]. Synteny analyses were performed with the SimpleSynteny

platform (https://www.dveltri.com/simplesynteny/index.html, [57]).

Selection of genomes, identification of putative orthologous genes,

alignments, and phylogenetic analysis

All draft and complete assemblies, and protein coding sequences of the genus Pseudomonas
were downloaded via ftp from ftp.ncbi.nlm.nih.gov/genomes (April 19th, 2017). This first

dataset comprised 3545 assemblies. Forty-four highly conserved ribosomal protein-coding

genes were used for genetic comparison and sampling genomes (S2 Table). All 44 conserved

genes were identified in 3162 genomes and these genomes were used for further analysis

(S3 Table). The 44 groups of putative orthologous genes were independently aligned using

Muscle [58] with the fastest algorithm (options: -maxiters 1 -diags1). Poorly aligned positions

were eliminated using Gblock software with default parameters [59], and subsequently

concatenated for sequence distance estimation. Genomes displaying a 99% or more similarity

in these conserved genes were clustered. One genome for each cluster was randomly selected

for subsequent phylogenetic analysis with preference for those with an assigned species, if

available. This resulting second dataset comprise 140 selected genomes plus the one from Pseu-
domonas sp. SVBP6 reported here (Sampled Genomes in S3 Table). Sixty-seven putative ortho-

logous genes were identified among these 141 genomes. The OrthoMCL method [60] was

implemented in the Get_homologous software and used for homologous identification [61].

Blast searches were performed with a minimal identity value of 30% and minimal query cover-

age of 75%. Orthologous protein sequences were aligned using ClustalO v1.2.0 [62]. Again,

poorly aligned positions were eliminated using Gblock with default parameters [59] and then

concatenated for phylogenetic analysis. A phylogenetic tree was inferred using an approxi-

mately maximum likelihood method with an amino acid LG+G model using in FastTree 2.1

[63]. The Shimodaira-Hasegawa (SH-like) test was used to evaluate branch support. The phy-

logenetic position of SVBP6 was established and all genomes from the most inclusive and

robust monophyletic group were selected. Genomes from this monophyletic group were used

to track back all the closely related genomes to SVBP6 strain available in the original first data-

set. As a result, 122 closely related genomes from the first dataset were retrieved and used for a

further phylogenetic analysis (Closely related genomes in S3 Table). As previously described,

putative orthologous genes among the 122 genomes plus SVBP6 strain were identified using

Get_homologues package. Six hundred and seventy-six clusters of orthologous genes were

found and subsequently aligned and trimmed using ClustalO v1.2.0 and Gblock, respectively.

Blocks were finally concatenated, and a phylogenetic tree was built by means of FastTree 2.1,

as aforementioned. The whole approach is described as a workflow in S1 Fig. A Venn diagram

was constructed with R software v. 3.4.0 [64], employing the VennDiagram package and all the

ORFs (PEGs) found in every P. donghuensis genome as database.
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Average nucleotide identity score (ANI)

Pairwise Two-way ANI score was computed among all closely related genomes of SVBP6

using the ani.rb script developed by Luis M. Rodriguez-R and available at enveomics.blogspot.

com. ANI score is a result from a whole genome comparison. ANI index is used to delineate

species from genomes sequence data [65]. Therefore, if two genomes display an ANI value of

95% or higher, both strains are believed to belong to the same species. Phylogenetic analysis

was used to support ANI results.

Tn5 mutagenesis and screening of mutant clones with reduced antifungal

activity

To obtain a clone library of random Tn5mutants of SVBP6, we performed a triparental conju-

gation with SVBP6 as the acceptor strain, Escherichia coli CC118 λpir with the pBAMD1-4

plasmid as the donor strain and E. coli HB101 with the pRK600 plasmid as the helper strain, as

previously described [66]. Briefly, from 5ml of NYB overnight cultures that were incubated at

37˚C (for E. coli strains) and 35˚C for SVBP6 strain (to improve the Pseudomonas ability to

accept heterologous DNA, [67]), we combined equal volumes of the three bacterial cultures,

centrifuged to obtain cellular pellets, and mixed them in a single 1.5 ml tube. We resuspended

them with 50 μl of fresh NYB medium and we plated it on the border of a NA plate. The incu-

bation was performed at 37˚C for 5 h. Cells were collected with 1 ml of fresh NYB and appro-

priate dilutions were plated onto M9 minimal medium agar plates [49] with 0.2% of citrate as

the sole carbon source, supplemented with 100 μg/ml of streptomycin [47]. We obtained

approximately 2500 clones that were conserved in 384-well plates at -80˚C in 20% glycerol.

For selection of putative clones that had lost their antagonistic potential, we performed co-cul-

tivation assays by streaking individual clones onto agar plates previously overlaid with a sus-

pension ofM. phaseolina 131.2010 conidia. After incubation for 48 h at 28˚C, we searched for

clones that did not produce a halo of fungal growth inhibition. To identify the Tn5 insertion

site in each selected clone, we carried out an arbitrary nested PCR amplification with the meth-

odology previously described [66], followed by partial sequencing of the corresponding ampli-

cons at Macrogen Inc. (Seoul, Korea).

RNA extraction and purification, and Northern blot analysis

RNA preparation from SVBP6 cells was carried out essentially as described previously for P.

protegens CHA0 [68], with minor modifications. Briefly, 200–500 μl of cell culture was centri-

fuged, and cells were resuspended in 500 μl of TKM buffer (10 mM Tris-HCl, 10 mM KCl, 5

mM MgCl2, pH 7.5). Washed cells were mixed with 75 μl of lysis solution (320 mM sodium

acetate at pH 4.6, 8% SDS, 16 mM EDTA). Lysed cells were mixed for 5 min with 575 μl of

water-saturated phenol at 65˚C. After centrifugation, the supernatant was extracted once with

phenol-chloroform and precipitated with 3 volumes of ethanol. The resulting RNA pellet was

dissolved in diethylpyrocarbonate-treated H2O and kept at -80˚C. RNA concentration was

determined at 260 nm. Purity and integrity of RNA preparations were assessed by denaturing

agarose electrophoresis and ethidium bromide staining. Northern blot analyses were per-

formed as reported elsewhere [69]. Three micrograms of total RNA from each sample was ini-

tially electrophoresed for 45 min at a constant current (15 mA) in polyacrylamide gels (8.3 M

urea, 8% [wt/vol] acrylamide, 0.2% [wt/vol] bisacrylamide in 1× Tris-borate-EDTA [TBE]

buffer), with the low-range RNA ladder (Thermo Scientific, USA) serving as a molecular

weight marker. The marker lane was cut and stained separately with ethidium bromide and

the image registered with a UV transilluminator. The remaining gel was electroblotted at 150
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mA for 30 min onto a Hybond-N membrane in 1× TBE buffer. After washing the membrane

twice with 2× SSC solution (30 mM sodium citrate, 0.3 M NaCl), the RNA was cross-linked to

the membrane by exposure to UV light for 5 min. The membranes were then blocked with

prehybridization buffer (50% [wt/vol] formamide, 5× SSC, 50 mM phosphate buffer [pH 7.0],

2% [wt/vol] blocking reagent, 0.1% [wt/vol] N-laurylsarcosine, 7% [wt/vol] sodium dodecyl

sulfate [SDS]) for 1 h at 50˚C in a hybridization oven and then incubated overnight at 50˚C

with the hybridization buffer containing the specific anti-rsmY digoxigenin-labeled double-

stranded DNA (dsDNA) probe (previously generated by amplification of the rsmY genomic

locus of P. protegens CHA0) [69]. The hybridized membranes were washed under standard

stringent conditions, incubated with an alkaline phosphatase-coupled anti-digoxigenin anti-

body solution, washed with the same buffer, and covered with the Lumiphos chemilumines-

cent reagent (Lumigen, USA) in the dark at room temperature for 5 min. The membranes

were exposed for 60 min to photographic films and then further developed.

Results and discussion

Biochemical and morphological features support the assignation of SVBP6

to the Pseudomonas genus

SVBP6 is a Gram-negative, rod-shaped (between 1.3–3.2 μm in length and 0.5–0.9 μm in

width) and polar-flagellated bacterium (Fig 1A) of the order Pseudomonadales, belonging to

the Gammaproteobacteria class. It is oxidase, catalase and gelatinase positive, and nonsporulat-

ing. SVBP6 can grow between 4˚C and 35˚C in rich media, like NA, even though the optimal

growth temperature is 28˚C, and it belongs to the r-strategist (copiotrophs) group of microor-

ganisms [8]. After 48 h on nutrient agar (NA) plates, SVBP6 colonies are white opaque, rough

(non-mucoid) and have irregular borders (Fig 1B). Besides, this strain can grow in a pH range

from 6.0 to 10.0 and in a salinity range from 0% to 5% NaCl in NYB medium. SVBP6 can

reduce nitrate but not nitrite, so it could not participate in the soil denitrification process. Its

respiration is strictly aerobic and it does not produce any fluorescent pigment, neither pyocya-

nin or pyoverdine, in King’s A or B or Gould’s S1 media [70]. Finally, SVBP6 strain is naturally

resistant to chloramphenicol (Cm, 20 μg/ml), ampicillin (Amp, 100 μg/ml) and gentamicin

(Gm, 10 μg/ml) in both liquid NYB and solid NA media. Five copies of beta-lactamase pro-

teins, a unique copy of an aminoglycoside 6’-N-acetyltransferase, which could be responsible

for the Gm resistance [71], and the efflux operon TtgABC, which give Cm resistance in P.

putida KT2440 [72], were found in the SVBP6 genome. Nevertheless, these genes were not

associated to mobile genetic elements and usually found in environmental isolates [73–75].

Fig 1. Morphological features of SVBP6 strain. SVBP6 was isolated from a bulk soil sample (0–10 cm depth) of an

agricultural plot located in Viale, Entre Rios province, Argentine (31˚ 52’ 59,6” S; 59˚ 40’ 07” W). Morphological

features, i.e. bacillar structure and polar flagella, of P. donghuensis SVBP6 seen with TEM (A). Colony morphology on a

NA plate after 48 h of growth at 28˚C (B).

https://doi.org/10.1371/journal.pone.0194088.g001
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Besides, knowledge about natural antibiotics’ resistance allowed us to correctly select the muta-

genesis tools for the molecular biology studies on the SVBP6 metabolism, as we confirmed we

could employ plasmids marked with tetracycline and kanamycin resistance genes in the Tn5

approach.

With regards to carbon source utilization, SVBP6 was able to respire the following sub-

strates: pyruvic acid methyl ester, Tween 40, Tween 80, glycogen, D-xylose, D-mannitol, N-

acetyl-D-glucosamine, D-galactonic acid γ-lactone, 4-hydroxy benzoic acid, itaconic acid, D-

malic acid, L-arginine, L-asparagine, L-serine, L-threonine, glycyl-L-glutamic acid and putres-

cine. Growth on L-threonine and D-mannitol can differentiate P. donghuesis species from the

recently describe P. wadenswilerensis sp. nov. [24,26]. Unlike HYS strain, SVBP6 can respire

itaconic acid after 108h of incubation [24]. The group of compounds that SVBP6 can respire

contains representatives from all tested guilds: polymers, carbohydrates, carboxylic or acetic

acids, amines and amino acids. Therefore, this strain seems to have the potential to inhabit the

rhizosphere of multiple plants, as those types of compounds are generally exuded by roots

from different species [76–79].

MIDI and MALDI-TOF analyses did not allow identifying SVBP6 at the

Pseudomonas species level

In our previous studies, phylogenetic analyses placed isolate SVBP6 within the P. putida
complex. Partial sequencing of 16S rDNA, oprF and rpoB genes positioned SVBP6 close to

isolates P. vranovensis T-16 and P. alkylphenolica KL28, but with similarity percentages lower

than 96% [6]. Maldi-TOF Biotyper analysis gave ID score values ranging 1.75–1.84 (n = 4)

with the closest match being P. graminis DSM 11363T (a member of the P. lutea group) [80];

however, such i.d. scores only correspond to identification at the level of genus. Besides,

MIDI analysis did not find any match between the fatty acid profile of SVBP6 and those

from the Sherlock libraries. Therefore, we compared the SVBP6 profile with those reported

for P. donghuensis HYS, P. putida ATCC 12633, P. vranovensis DSM 16006 [24] and P. alkyl-
phenolica KL28 [25], and we found the typical fatty acids associated with the Pseudomonas
genus like C10:0 3-OH, C12:0 and C12:0 2-OH [13], as well as several unique fatty acid species

for each strain (S4 Table). Particularly, SVBP6 strain contains a unique fatty acid, C13:1 Δ12,

that was not previously described for pseudomonads, but only for Vibrionaceae and Clostrid-
ium species [81,82].

Genome sequencing information and gene annotation

In parallel with the biochemical characterization, we decided to sequence the genome of

SVBP6 strain with the aims of: 1) getting additional support for the taxonomic positioning of

this isolate at the species level; 2) deciphering the molecular determinants of the strong and

broad spectrum antifungal trait of this bacterium. With the protocol previously described, we

sequenced 93% of the genome based on the data from the type strain P. donghuensis HYS [24].

The average GC content was 62.4% matching values described for pseudomonads (58%-69%,

[13]). A total of 7,136,473 reads were assembled de novo into 40 scaffolds, with a mean scaffold

size of 142534 bases (N50 scaffold length of 288994 bases). Minimum Information about the

Genome Sequence [83] of strain SVBP6 is summarized in Table 1. We confirmed that SVBP6

does not contain any plasmid.

RAST analysis predicted 5253 genes in total: 5179 protein encoding genes (PEGs) and 74

RNAs, of which 65 are tRNAs. 54.0% of PEGs (2757) were arranged into 527 subsystems, and

a total of 1125 (21.72%) were assigned as hypothetical proteins. RAST analysis estimated a

number of 90 missing genes, i.e. undercalled PEGs in the remaining gaps between features.

Genome mining of P. donghuensis SVBP6
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Genome properties and statistics are summarized in Table 2. Genes with signal peptides were

detected with the SignalP 4.1 Server [85], and the CRISPR repeats, with the CRISPR reconig-

tion tool v1.0 [86]. Details of clusters of orthologs groups are shown in S5 Table.

Table 1. Classification and minimum information about the genome sequence of P. donghuensis strain SVBP6.

MIGS ID Property Term Evidence code1 [84]

General features
Classification Domain: Bacteria TAS

Phylum: Proteobacteria TAS

Class: Gammaproteobacteria TAS

Order: Pseudomonadales TAS

Family: Pseudomonadaceae TAS

Genus: Pseudomonas IDA

Species: Pseudomonas donghuensis IDA

strain: SVBP6 TAS

Gram stain negative IDA

Cell shape Rod IDA

Motility Motile IDA

Sporulation None IDA

Temperature range Mesophilic (4–35˚C) IDA

Optimum temperature 28˚C IDA

pH range 6–10 IDA

Carbon source Heterotrophic IDA

MIGS-22 Oxygen requirement Aerobic IDA

MIGS-14 Pathogenicity Unknown NAS

MIGS-6 Habitat Soil TAS

MIGS-5 Sample collection February 2010 TAS

MIGS-15 Biotic relationship free-living/rhizospheric NAS

MIGS-4 Geographic location Viale, Entre Rı́os province TAS

MIGS-4.1 Latitude S 31˚ 52’ IDA

MIGS-4.2 Longitude W 59˚ 41’ IDA

MIGS-4.3 Depth 0–10cm layer TAS

MIGS-4.4 Altitude 80m above sea level TAS

MIGS-23.1 Isolation Bulk soil from an agricultural plot TAS

Project information
MIGS-31 Finishing quality High-quality draft

MIGS-31.2 Fold coverage 125 ×
MIGS-28 Libraries used Illumina paired-end library (Nextera1 XT)

MIGS-29 Sequencing platforms Sanger / Illumina 1.9 (Illumina 1500 HiSeq)

MIGS-30 Assemblers A5 pipeline (Phred)

MIGS-32 Gene calling method RAST v. 2.0

BioProject ID PRJNA407750

GenBank accession number NWCB00000000

GenBank Date of Release December 1st, 2017

Project relevance Biocontrol, Plant growth promotion

MIGS-13 Source material identifier SVBP6

1Evidence codes—IDA Inferred from Direct Assay, TAS Traceable Author Statement (i.e., a direct report exists in the literature), NAS Non-traceable Author Statement

(i.e., not directly observed for the living, isolated sample but based on a generally accepted property for the species or anecdotal evidence). These evidence codes are

from the Gene Ontology project.

https://doi.org/10.1371/journal.pone.0194088.t001
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Phylogenetic identification with ANI analysis showed that strain SVBP6

belongs to the recently described species Pseudomonas donghuensis
One hundred and forty genomes were selected from a first dataset as representatives of the

genetic diversity of the genus Pseudomonas (see Methods). The phylogenetic position of

SVBP6 was established among these genomes (S2 Fig). Despite minor differences, the obtained

phylogenetic tree was in good agreement with previous ones reported for the genus [27]. Pseu-
domonas sp. SVBP6 was clearly positioned within the P. putida complex. One hundred and

twenty-two closely related genomes of SVBP6 were selected and included in a second phyloge-

netic analysis. SVBP6 belongs to a basal lineage within the P. putida complex (Fig 2A), which

includes at least 12 different species, according to the estimated ANI score (S6 Table). SVBP6

was closely related to Pseudomonas sp. 482 and P. donghuensis HYS (Fig 2A and S6 Table). The

siderophore producing isolate HYS, which served to define the type species P. donghuensis,
was isolated from the water of East Lake of Wuhan, China [24], whereas the bactericidal strain

Pseudomonas sp. P482 was isolated from the rhizosphere of a garden-cultivated tomato in

Gdynia, Poland [87]. ANI score supports the phylogenetic result and suggests that these three

strains belong to the same species, as SVBP6 showed similarity values of 99.60% ± 0.70 and

99.52% ± 0.99 with Pseudomonas sp. P482 and P. donghuensis HYS, respectively [24,88]. This

result was supported by a Multi-Locus Phylogenetic Analysis (MLPA) performed with

concatenated 16s rDNA, gyrB, rpoB and rpoD sequences obtained from different genome

sequencing projects of reference strains [21,27]. When we compared ORFs from the three P.

donghuensis representative’s genomes by a homologous cluster analysis (minimum 50% iden-

tity, 75% coverage), we found that SVBP6 shares a higher number of ORFs with strain P482

than with strain HYS (Fig 2B). From the 284 ORFs found only in P. donghuensis SVBP6 (5.6%

of the total), we could detect several mobile genetic elements (9.9%), membrane components

(8.2%), putative secreted elements (3.4%), genes involved in regulation and/or metabolism

(23.7%) and an important number of hypothetical proteins (54.7%).

Table 2. Genome statistics.

Attribute Value Percentage

Genome size (bp) 5,701,342 100

DNA coding (bp) 5,005,841 87.8

DNA G+C (bp) 3,557,637 62.4

DNA scaffolds 40 -

Total genes 5253 100

Protein encoding genes (PEGs) 5179 98.6

RNA genes 74 1.4

Genes in internal clusters 118 2.2

Genes with function prediction 4054 78.3

Genes assigned to COGs 4865 92.6

Genes with Pfam domains a 4450 85.9

Genes with signal peptides 512 9.9

Genes with transmembrane helices b 1170 22.6

CRISPR repeats 0 0

a Detected with Pfam v.31.0 (http://pfam.xfam.org)
b Detected with TMHMM Server v. 2.0 (http://www.cbs.dtu.dk/services/TMHMM/)

https://doi.org/10.1371/journal.pone.0194088.t002
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Genome mining: Analysis of putative PGPM traits

Probiotic traits tested in vitro. When it was isolated, the SVBP6 strain was characterized

together with other 18 pseudomonads with fungal antagonistic activity. In co-cultivation experi-

ments of phytopathogenic fungi and pseudomonad isolates, SVBP6 inhibited the growth of 12

fungal pathogens including members of the Fusarium and Colletotrichum genera,Macropho-
mina phaseolina, Phomopsis sp. and Cercospora sojina isolates [6]. The inhibitory activity against

all these fungal isolates seems to be associated to a water-soluble diffusible compound that radi-

ates in the agarized media from the SVBP6 streaks, and not to a volatile compound because

SVBP6 was not able to inhibit the growth of fungi when the bacterial streaks and the fungal

inocula were physically separated in the same partitioned Petri dish. Additionally, we suggest

that growth inhibition potential is due to a diffusible compound because we could evaluate the

antagonism of several isolates in the same Petri dish without any interference (data not shown).

From our plant-probiotic pseudomonads collection, SVBP6 was the only isolate with a high

biocontrol potential index (BPI) that was not a member of the P. chlororaphis group [6]. In
vitro assays showed that SVBP6 produces extracellular hydrolytic enzymes like proteases (rela-

tive activity: 142.4 ± 5.3 halo/colony on milk agar), chitinase (relative activity: 0.196 ± 0.034

nmol/(min�OD600)) and phospholipases (relative activity: 70.6 ± 4.2 halo/colony on egg yolk

agar). Chitinase activity could be also referred to the ability of this strain to growth on N-ace-

tyl-D-glucosamine (see the biochemical characterization). Besides, SVBP6 synthetizes a low

quantity of hydrogen cyanide (HCN, 37.5 ± 19.6 μM/OD600) and a high quantity of sidero-

phores (relative production: 145.8 ± 7.2 halo/colony on CAS agar), when compared to the ref-

erence PGPM strain P. protegens CHA0 [6]. When screening for the presence of genes and

operons related to the in vitro antagonism of fungal pathogens (phlD for DAPG, phzF for

phenazines, pltB for pyoluteorin and prnD for pyrrolnitrin [92]), we failed to detect by PCR

any of the genes involved in the synthesis of broadly characterized antibiotics of biocontrol

pseudomonads [6]. We could neither detect production of surfactants by the drop collapse test

in different growth media, thus suggesting that strain SVBP6 does not produce lipopeptides

nor rhamnolipids.

In addition to its potential as a biocontrol strain, isolate SVBP6 also displayed direct plant-

probiotic activities in vitro, like production of IAA-like compounds, ACC deaminase, and sol-

ubilization of tricalcium phosphate [6]. SVBP6 genome did not contain the nifH gene encod-

ing the nitrogenase protein necessary for this activity.

In agreement with previous in vitro assays [6], genome inspection did not reveal the pres-

ence of genes for biosynthesis of typical pseudomonad antibiotics, lipopeptides or quorum-

sensing signals of the AHL type. However, we identified genes that are functionally linked to

the PGP activities mentioned above, that were previously detected in vitro (Table 3).

Complementary putative PGP properties detected in the SVBP6 genome related with

antibiotic and antifungal activities. Based on bibliography data about biocontrol-related

Fig 2. Phylogenetic identification and genome comparison. Approximate maximum likelihood phylogenetic tree of SVBP6 and closely reated Pseudomonas
assemblies (A) and Venn diagram for the comparison of genomes from the three known P. donghuensis isolates, HYS (China), P482 (Poland) and SVBP6

(Argentina) (B). A) Phylogenetic tree of the P. putida complex based on 676 putative orthologous genes. The tree was inferred using FastTree version 2.1. The

SH-like test was used to evaluate branch supports. Genomes from the same species based on two-way ANI score (> 95%) were indicated with brackets. The

position of SVBP6 strain is indicated by a red arrow, and this sub-cluster was zoomed to distinguish the Pseudomonas species around SVBP6 (in red font).

Indeed, P. donghuensis strains are grouped in a sub cluster with other environmental isolates, like P. alkylphenolica KL28 [89], a biocontrol P. putida strain

isolated from potato rhizosphere in France (PA14H7 strain, [90]), P. vranovensisDSM 16006 isolated from soil in the Czech Republic [91], and unidentified

Pseudomonas sp. isolated from soil in the USA (2(2015) and 5 strains); B) The calculated core genome of P. donghuensis species is 4474 PEGs, between 87.7%

and 89.0% of each representative. Particular PEGs of strains HYS, P482 and SVBP6 are 8.7%, 5.7% and 5.6%, respectively, and SVBP6 shares more PEGs with

P482 (5.4% of total SVBP6 PEGs) than with HYS type strain (1.1% of total SVBP6 PEGs), suggesting that strains P482 and SVBP6 are more closely related than

with HYS strain.

https://doi.org/10.1371/journal.pone.0194088.g002
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activities demonstrated for different Pseudomonas members, we looked for several genes, clus-

ters and operons in the SVBP6 genome. Although we could not find any FitD-like homologous

CDS that could be involved in the production of the insecticidal protein described in other

Pseudomonas species [93], neither the dar operon involved in the production of the antibiotic

Table 3. PGPR traits that were detected in vitro and in silico in P. donghuensis SVBP6.

Traits detected in vitro a Genes detected in SVBP6 genome b Sequence similarity with other Pseudomonas c

Exoprotease activity Secreted alkaline metalloprotease PrtA/B/C/G homolog (EC

3.4.24.-)

68.0% with Zn-dependent metalloprotease from P. fluorescens
SBW25 (CAY49374.1)

Phospholipase activity Phosphatidylcholine-hydrolyzing phospholipase C (EC 3.1.4.3) 67.5% with the phosphatidylcholine-hydrolyzing

phospholipase C from P. fluorescens SBW25 (CAY47115.1)

HCN synthesis Hydrogen cyanide synthases HcnA, HcnB and HcnC (Opine

oxidase subunits C, A and B, respectively) in a cluster arrangement

82.0% with hcnABC operon from P. aeruginosa PA01

(AF208523.2)

Chitinase activity Chitinase (EC 3.2.1.14) 72.7% with chitinase from P. aeruginosa PA01 (NP_250990.1)

Chitin-binding protein 31.4% with the chitin-binding protein CbpD from P.

aeruginosa PA01 (NP_249543.1)

PTS system: N-acetylglucosamine (Nac-Glc)-specific IIA

component (EC 2.7.1.69), NAcGluc-specific IIB component (EC

2.7.1.69) and NAcGlc-specific IIC component (EC 2.7.1.69)

73.4% with the N-acetyl-D-glucosamine phosphotransferase

system transporter from P. aeruginosa PA01 (NP_252450.1)

Glucosamine-6-phosphate deaminase (EC 3.5.99.6) 76.5% with a putative phosphosugar-binding protein from P.

fluorescens SBW25 (CAY52003.1)

N-acetylglucosamine-6-phosphate deacetylase (EC 3.5.1.25) 81.6% with the N-acetylglucosamine-6-phosphate deacetylase

NagA from P. fluorescens SBW25 (CAY52002.1)

Predicted transcriptional regulator of N-acetylglucosamine

utilization, GntR family

80.4% with the DNA-binding transcriptional regulator (GntR

family) from P. aeruginosa PA01 (NP_252446.1)

Siderophore synthesis d,e Putative pyoverdine cluster I (NRPS, 47.9kbp, 24 genes included) 17 genes with similarity values between 51% and 90% with

the pyoverdine biosynthetic gene cluster—Locus 1 (NRPS)

from P. protegens Pf-5 (CP000076.1)

Putative pyoverdine cluster II (NRPS, 29.8kbp, 16 genes involved) 13 genes with similarity values between 46% and 89% from

the pyoverdine biosynthetic gene cluster (NRPS) of P.

protegens Pf-5 (NC_004129.6)

Indole acetic acid production Aromatic-L-amino-acid decarboxylase (EC 4.1.1.28) 82.0% with an aromatic-L-amino-acid decarboxylase from P.

putida F1 (ABQ79291.1)

Growth with ACC as the sole
nitrogen source (putative ACC
deaminase synthesis)

1-aminocyclopropane-1-carboxylate deaminase (EC 3.5.99.7) 69.0% with a putative deaminase from P. fluorescens SBW25

(CAY50289.1)

Inorganic phosphate solubilization Operon for the pyrroloquinoline quinone (pqq) coenzyme

biosynthesis (6 genes)

81.0% with the pqq operon (pqqA-F) from P. putida KT2440

(AE015451.2)

Glucose dehydrogenase, PQQ-dependent (EC 1.1.5.2) 96.4% with the glucose dehydrogenase membrane-bound

PQQ-dependent from P. alkylphenolica KL28 (AIL60333.1)

Putative exported phosphodiesterase/ alkaline phosphatase D

(PhoD)

72.2% identity with a hypothetical protein from P. fluorescens
SBW25 with a metallophosphatase domain Pho-D like

(CAY52149.1)

Swimming motility fli, flg and che genes for flagellar biosynthesis and chemotaxis 84.6% with che operon from P. fluorescens SBW25

(AM181176.4) 84.8% with fli operon from P. putida KT2440

(AE015451.2)

84.1% with the flg cluster from P. putida KT2440

(AE015451.2)

a In vitro results were described in Agaras et al (2015).
b RAST annotation of protein functions are shown. Enzyme Commission (E.C.) numbers are described in parenthesis when they are asignated.
c Values refers to gene or protein sequences, as appropriate, from a reference Pseudomonas strain available at the Pseudomonas genome database (www.pseudomonas.

com). Genbank codes of those sequences are shown in parenthesis.
d Clusters detected by the Antibiotics and Secondary Metabolism Analysis Shell (antiSMASH) software v. 3.0.4
e Genes included in the pyoverdine gene cluster I of P. donghuensis SVBP6 showed 100% of similarity with the P. putida KT2440 genome, but without synteny.

https://doi.org/10.1371/journal.pone.0194088.t003
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2-hexyl, 5-propyl resorcinol [94], nor any of the toxin complex (Tc) clusters that were detected

in several pseudomonads with insecticidal activity [95], we found a putative cluster for bacteri-

ocin production, some elements of a type VI secretion system (T6SS), a putative toxoflavin

production cluster, a monalysin-homologue gene and a pvdQ gene (Table 4).

Bacteriocins are antibiotic peptides secreted by some members of the Enterobacteriaceae to

kill closely related bacterial cells, thereby reducing competition for essential nutrients. [96].

The SVBP6 genome revealed 8 genes that were identified by RAST as members of a bacteriocin

synthesis/tolerance subsystem of the Colicin V type, which are typically arranged in a single

cluster. However, in the SVBP6 genome, 5 genes related to Colicin V were clustered, and a

tRNA pseudouridine synthase A gene is 2016 nucleotides upstream in the same scaffold, but

two other genes encoding putative DedA proteins are located in a different scaffold (Table 4).

The nucleotide sequence of the cluster is 99% identical in P. donghuensis HYS and P482 (100%

coverage), including the tRNA pseudouridine synthase A and the phosphoribosylanthranilate

isomerase gene (involved in tryptophan biosynthesis, EC 5.3.1.24) located in between. This

group of genes establishes a synteny block not only among P. donghuensis species, but also

within P. alkylphenolica (Table 4), P. fluorescens, P. chlororaphis, P. brassicacearum and P.

putida representatives with more than 80% of similarity in the nucleotide sequences. It was

demonstrated in E. coli that this cluster is essential for colicin production [97], but it is not

involved in bacteriocin synthesis per se. Thus, we looked for pyocin-like genes, as this kind of

bacteriocins were described in the Pseudomonas genus [98]. We found several genes similar to

R-type pyocins, found not only in P. aeruginosa PA01, but also in P. protegens Pf-5 genome,

that are considered to have evolved from phage tails to bacteriocins, performing as lytic

enzymes or holins [98]. Additionally, a cluster of two CDS, one with 44% of similarity with the

pyocin S5 from P. aeruginosa PA01, and an immunity protein of the CreA family, were found

in the SVBP6 genome (Table 4) [99]. The CreA colicin E2 immunity protein is conserved in

different P. putida genomes [100]. We also found a CDS described as a lytic enzyme, that has

57% of amino acid identity with the CvaC protein from E. coli [96]. Strains HYS and P482

were described for their antibacterial potential against the plant pathogens Dickeya solani and

Pectobacterium carotovorum subsp. brasiliense [88], and Xanthomonas campestris pv. badrii
[24], respectively. For SVBP6, we detected antibacterial activity against the Gram positive rep-

resentative Bacillus subtilis and, to a lesser extent, against the Gram negative representative

Escherichia coli K12 in co-cultures assays, but not to the genus-related P. fluorescens 1008 (S3

Fig).

The T6SS is a complex secretory apparatus with the ability to translocate effector proteins

between Gram-negative bacterial cells, or to inject virulence factors into eukaryotic cells, in a

contact-dependent way [101]. It has been demonstrated that this system is a powerful tool for

killing competitor and phytopathogen bacteria and for shaping the bacterial community, also

in soil environments [102,103]. The presence of a T6SS operon (Table 4) would confer a bene-

ficial fitness to strain SVBP6 in the root colonization process, besides its contribution to the

antibacterial activity described previously. SVBP6 contains all the structural elements of the

T6SS machinery (Table 4), except for the accessory element tagJ1, in synteny with the T6SS

cluster HSI-I of P. aeruginosa [104,105] (Fig 3). Similarly, the TagJ1 lipoprotein is also absent

in several genomes from the P. fluorescens complex, indicating that it is not an essential ele-

ment [106]. There is, however, one CDS with 37% of homology with TagJ1 upstream the the

SVBP6 bacteriocin cluster, which was also identified as a transmembrane protein by RAST

(Table 4). Indeed, the SVBP6 genome contains the six T6SS proteins–TssA, TssE, TssF, TssG,

TssK and VgrG–that are required for the proper assembly of the T6SS tail tube and system

functioning [107]. On the other hand, there is no synteny between the HSI-I-like cluster of

SVBP6 and the K1-T6SS cluster found in the reference strain of the P. putida complex,
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Table 4. Genes detected in silico in the P. donghuensis SVBP6 genome potentially involved in plant growth promotion.

Feature Genes detected in SVBP6 genomea Sequence identity (%) with other Pseudomonasb

Acetoin
metabolism

2,3-butanediol dehydrogenase (EC 1.1.1.4), dihydrolipoamide acetyltransferase

component (E2) of acetoin dehydrogenase complex (EC 2.3.1.-), E1 component

of acetoin deshydrogenase α and β subunit (EC 1.2.4.-), protein X for acetoin

catabolims and transcriptional activator of acooperon AcoR in a cluster

arrangement

85.0% with P. putida KT2440 genome sequences for the

2,3-butanediol dehydrogenase gene bdhA (AAN66179.1), and

82.0% with genes for an acetyltransferase component of acetoin

cleaving system (AAN66180.1), an acetoin:2,6

dichlorophenolindophenol oxidoreductase β subunit

(AAN66181.1)

Acetolactate synthase small and large subunits in a cluster arrangement (EC

2.2.1.6)

88.2% with ilvBH genes from P. chlororaphis subsp.

aureofaciends 30–84 WP_007924621.1 and WP_007924620.1)

Acylase activity Acyl-homoserine lactone acylase PvdQ (EC 3.5.1.-) 76.1% with the pvdQ gene and 70.7% with the protein sequence

of Pseudomonas chlororaphis O6 (WP_009048838.1)

Aryl polyene
synthesis

Gene cluster for aryl-polyene biosynthesis containing 26 genes, 9 of them with

known functions (EC 2.3.1.41, EC 1.1.1.100, EC 4.2.1.60, EC 4.2.1.-)

55.0% similarity with genes from resorcisol-arylpolyene cluster

in P. fulva 12-X genome (YP_004472533.1, gene symbols

Psefu_0453 to Psefu_0081)

Bacteriocin
synthesis

Amidophosphoribosyltransferase (EC 2.4.2.14), colicin V production protein,

DedD, bifunctional dihydrofolate synthase (EC 6.3.2.12) and folylpolyglutamate

synthase (EC 6.3.2.17), acetyl-coenzyme A carboxyl transferase β chain (EC

6.4.1.2) in a cluster arrangement

89% with genes from P. alkylphenolica KL28 genome in sinteny

with SVBP6 cluster (CDS from AIL60753.1 to AIL60757.1)

tRNA pseudouridine synthase A (EC 4.2.1.70) 84.1% with tRNA pseudouridine (positions 38–40) synthase

TruA from P. azotoformans (WP_078049422.1)

DedA proteı́n (two copies) 87.0% with DedA phosphoesterase from P. putida AA7

(WP_079226402.1, copy 1) and 90.3% with membrane protein

DedA from P.mosselii SJ10 (WP_023629651.1, copy 2)

R-like pyocins (two holin-like proteins and three lytic enzzymes) From 84.0% to 88.0% protein identities with R pyocins from P.

protegens Pf-5 (AAY91304.1 and AAY91277.1)

Pyocin S5-like protein and immunity protein CreA 44% protein homology with S5 pyocin from P. aeruginosa PA01

(AAG04374.1) and 100% nucleotide identity with an upstream

region of the pyocin gene from P. aeruginosa PA01

(NZ_LN871187)

Type VI
secretion system
(T6SS)c

Cluster of 17 genes: a serine/threonine kinase (EC 2.7.11.1) PpkA, a phosphatase

PppA, ImpM, IcmF, ImpK, ImpJ, VasD, ImpI in one group; ImpA, ImpB, ImpC,

ImpD, ImpF, ImpG, ImpH, a ClpB chaperone and VgrG-like protein in another

group

83.8% with nucleotide sequence of P. putida strain PC2 genome

(CP011789.1, 91.6% coverage)

TagJ1-like transmembrane protein 37% of homology with the protein sequence (93.2% of coverage)

of TagJ1 from P. aeruginosa PA01 (AAG03476.1)

Rhs-family proteins (3 putative ORFs in 4426 bp located downstream the VgrG

protein from the cluster)

89.2% with the nucleotide sequence of a Rhs protein from P.

mosselii SJ10 (O165_017525, 53.1% coverage)

Rhs-family protein (4287 bp in lenght) 90.5% with a Rhs protein from P.mosselii SJ10

(WP_023630106.1, 97.7% coverage)

VgrG-like protein 77.3% with the protein sequence of VgrG from P.

frederiksbergensis (WP_086944925.1, 100% coverage)

Toxoflavin
synthesis d

Cluster of 13 genes, containing 7 genes related with toxoflavin synthesis: a

membrane protein (ToxG), a RND-like transporter (ToxH), a glyoxalase (ToxM),

a serine/threonine kinase (EC 2.7.11.1, ToxD), a cyclohidrolase (ToxB), a protein

with unknown function (ToxC), and an O-methyltranserase (ToxA)

62.8% identity with ToxH (AAY90315.1), 47.1% with ToxG

(AAY90316.1), 59.3% with ToxC (AAY90320.1), 54.6 with ToxB

(AAY90321.1), 55.4% with ToxD (AAY90322.1), 50.4% with

ToxA (AAY90323.1), all proteins from the toxoflavin cluster of

P. protegens Pf-5. ToxM has 20.6% identity with toxoflavin

degrading enzyme TflA from Paenibacillus polymyxa
(ADK47414.1).

Diaminohydroxyphosphoribosylaminopyrimidine deaminase (EC 3.5.4.26, ToxE) 87.5% with the RibD protein from P.monteilii CD10_2

(OAH52709.1, 100% coverage)

Monalysin Hypothetical protein 34.0% of aa identity (51.4% positives, 96% coverage) with the

monalysin precursor of P. entomophila L48 (WP_011534324.1)

a RAST annotation of protein functions are shown. Enzyme Commission (E.C.) numbers are described in parenthesis when they are assigned.
b Values refers to gene or protein sequences, as appropriate, from a reference Pseudomonas strain available at the Pseudomonas genome database (www.pseudomonas.

com). Genbank codes are shown in parenthesis.
c The correlation between the gene nomenclature of the T6SS cluster from SVBP6 and those from P. putida genomes was based on Cascales (2008) [112].
d We included a non-pseudomonads sequence in the comparison because it is a sequence reference for the toxoflavin degrading enzymes [114].

https://doi.org/10.1371/journal.pone.0194088.t004
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KT2440 [103], although they contain the same genes (Fig 3). Besides, there is an additional

VgrG-like protein in the SVBP6 genome, as it occurs in P. aeruginosa [104]. Although it

appears that SVBP6 could construct the complete T6SS structure, homologous proteins to the

effectors Tse and Tke described in P. aeruginosa PA01 and P. putida KT2440, respectively,

were not found in the SVBP6 genome [101,103]. Downstream the vgrG gene of the HSI-I clus-

ter, there are 3 ORFs recognized as Rhs-family proteins by RAST and the first two rhs-like

genes had been exclusively detected in the SVBP6 genome compared with the HYS and P482

P. donghuensis isolates (Fig 2B). This kind of protein was previously described as putative

effectors in the T6SS of different bacteria [108]. Also, we found a copy of a Rhs-family protein

of 1428 aa (Table 4) that contains a typical PAAR (proline-alanine-alanine-arginine) domain

in the N terminal region, which could help effectors to be attached to the VgrG spike [102]. A

recent report describes the relevant role of the rhsA gene from P. protegens Pf-5 on its competi-

tiveness against a target P. putida KT2440 strain, as encoding a polypeptide with putative

DNAse activity, [109]. Besides the RhsA domain and the Rhs repeat-associated core, we

detected 3 transmembrane helices in the N-terminal region of this Rhs-family protein with the

Philius transmembrane prediction tool (http://www.yeastrc.org/philius/runPhilius.do) and it

was also detected with the TMHMM tool as one of the SVBP6 genome features with a trans-

membrane portion (Table 2). A similar transmembrane region was described for the TccC

insecticidal toxin protein of P. taiwanensis BCRC 17751 [110]. Thus, although we did not find

a putative Tc cluster, SVBP6 contains a CDS that could perform as an insecticidal protein like

the TccC toxin, which has been demonstrated to be sufficient for an insecticidal activity

[110,111]. Downstream the rhsA-like gene, from position 476325 to 476603 of the scaffold 2.1,

we found a putative CDS that was not annotated by RAST. We detected this region by its simi-

larity (95.3% sequence identity, 100% coverage) with a gene annotated as a hypothetical pro-

tein (CDS WP023630107.1), which is also located downstream the effector protein of P.

mosselii SJ10 to which the RhsA-like protein was similar (Table 4). Usually, immunity proteins

against T6SS effectors are located immediately downstream the toxin gene [103,104,109].

Fig 3. Synteny analysis between the T6SS from P. putida KT2440, P. donghuensis SVBP6 and P. aeruginosa PA01. Numbers below every cluster indicate the

genome position of the cluster in each strain, although for SVBP6 the numbers indicated the position in scaffold1.1 (Genome accession numbers: NC_002516.2 for

PA01 and NC_002947.4 for KT2440). Homologues in the three clusters are depicted with identical color arrows and are connected with straight lines. Changes in gene

orientation are shown by a rotating arrow on the connecting lines. Gene labels of KT2440 K1 cluster are alternated above and below the corresponding arrow based on

bibliography [103]. For HIS-1 of PA01, only genes not included in K1 cluster are named. Although some genes are named differently in bibliography, we unified the

nomenclature, as suggested [112]. The T6SS arrangement in SVBP6 strain showed high synteny with the HSI-1 cluster from P. aeruginosa PA01, although it belongs to

the P. putida group, where the P. putida is the reference strain.

https://doi.org/10.1371/journal.pone.0194088.g003
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Thus, this still unknown protein could have this putative function for SVBP6. Further experi-

mental work is required to prove the functionality of the T6SS genes found in the SVBP6

genome, to identify the putative delivered proteins in this strain and to confirm the function of

these Rhs family proteins.

Toxoflavin has been demonstrated to be an effective antibiotic compound against bacteria

and fungi. First discovered in Burkholderia gladioli and described as a phytotoxic compound

[113], toxoflavin produced by the probiotic strain P. protegens Pf-5 was reported to inhibit the

growth of several plant-pathogenic bacteria in microaerobic conditions [114]. In the SVBP6

genome, there is a cluster of 13 genes that contains 7 genes homologous with those from the P.

protegens Pf-5 cluster (Table 4). Interestingly, there is no synteny between both clusters (Fig 4);

moreover, we found a group of 4 genes between the ToxH-ToxG homologous transport pro-

teins and the ToxA-ToxD biosynthetic proteins that seems not to be related with the toxoflavin

biosynthesis (Fig 4). ToxM is a protein essential for toxoflavin resistance and a putative anti-

virulence compound against some phytopathogenic bacteria due to its toxoflavin-degrading

activity [114,115]. The SVBP6 homologue of this protein has low identity with the correspond-

ing Pf-5 amino acid (aa) sequence (14.5% identity with gaps) and a disparity in their size (137

aa for ToxM and 296 aa for the SVBP6 version). However, it has a moderate similarity with the

well-known toxoflavin lyase TflA from Paenibacillus polymyxa JH2, which has 222 aa (20.6%

of identity, 38.2% of positives) [115]. On the other hand, feature 3667 is a transcriptional regu-

lator of the ArsR family, and it could act as the lacking LysR-like regulator ToxR; TolC is a

transport protein that could help with the toxoflavin efflux; 3668 and 3673 features seem to

have a methyltransferase activity, like the ToxA protein; and the 3675 feature has a moderate

aa homology (24% identities, 44% positives) with the ToxI protein from Burkholderia gladioli,
which acts as a multidrug transporter [113]. An important aspect is the lack of the ToxE pro-

tein in the SVBP6 cluster, encoding a RibD synthetase of the riboflavin biosynthesis that is

essential for the toxoflavin production [114]. We found in the SVBP6 genome a CDS with 42%

of aa identity and 59% of aa similarity, with the ToxE protein of P. protegens Pf-5, located in

the riboflavin biosynthetic cluster (Table 4). Although it could be involved in the toxoflavin

synthesis, this particular arrangement of the Tox homologous genes in the SVBP6 genome

does not allow us to predict any putative toxoflavin production without any functional assay.

However, the antibacterial activity we detected against the Enterobacteria E. coli K12 could be

attributed to toxoflavin, as it has been demonstrated for P. protegens Pf-5 against E. coli DH5α
[114].

Fig 4. Synteny analysis between the toxoflavin cluster from P. protegens Pf-5 and P. donghuensis SVBP6. Numbers below every cluster indicate the genome

position of the cluster in each strain, although for SVBP6 the numbers indicated the position in scaffold4.1. Homologues in the two clusters are depicted with

identical color arrows and are connected with straight lines. Changes in gene orientation are shown by a rotating arrow on the connecting lines. Gene labels of Pf-5

toxoflavin cluster are below the corresponding arrow. Additional genes were named below the SVBP6 cluster. Although most of the Tox genes are present in the

SVBP6 genome, the arrangement is different from previously described in the Pf-5 genome (Acession number NC_004129.6).

https://doi.org/10.1371/journal.pone.0194088.g004
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Monalysin is a toxin described in the entomopathogenic strain P. entomophila L48 as one

of the main virulence factors against Drosophila. This protein causes intestinal cell damage in

Drosophila melanogaster via the formation of β-barrel membrane pores [116]. In the SVBP6

genome, we found a sequence with moderate homology with a precursor of this toxin

(Table 4). Opota and collegues have demonstrated that this protein requires a N-terminal

cleavage to become fully active, and this post-translational modification of monalysin is due to

the AprA metalloprotease [116]. Indeed, we have described a exoprotease activity in vitro of

SVBP6 isolate, and we have found a gene codifying an alkaline protease homologue to AprA in

its genome (Table 3), thus a mature and active monalysin could be produced by SVBP6. There-

fore, this strain could act also as a pest control agent [117].

The pvdQ gene encodes an acylase that is probably involved in a mechanism for acyl group

removal before release of pyoverdine outside the cell [118]. This gene was located separately of

the two putative pyoverdine clusters found In the SVBP6 genome (Table 3). Interestingly,

PvdQ also hydrolyzes the amide bond connecting the acyl group to the lactone ring in several

long-chain N-acyl homoserine lactones [119]. Although PvdQ might have a pyoverdine inter-

mediate as the natural substrate, its periplasmic location has led to the suggestion that it might

also behave as a quorum quencher (QQ), which has been demonstrated to be a biocontrol

mechanism against bacterial pathogens [120].

Additional traits present in its genome that could help SVBP6 performing better as an

agricultural bio-input. In addition to biocontrol traits, genome mining allowed us to find

other putative PGPM genetic determinants in the SVBP6 draft genome: genes related with

acetoin metabolism, a putative aryl-polyene biosynthesis cluster, and a recombinase involved

in colonization (Table 4).

Acetoin-related genes present in the SVBP6 genome are probably involved in synthesis and

utilization of this organic compound [121]. As in other probiotic pseudomonads, this meta-

bolic pathway seems not to include genes described in the bud operon of Bacillus spp. and

Enterobacteriaceae [106]. Instead, SVBP6 showed a putative aco operon, as it was described in

P. putida PpG2 [122], and the ilvBN genes for the acetoin synthesis (Table 4). This alternative

pathway for the acetoin and 2,3-butanediol metabolism was also found in several probiotic

pseudomonads from the P. fluorescens complex [106]. The aco operon, that was identified also

with AntiSMASH as a putative cluster, includes 6 genes identified by RAST as the three sub-

units of an acetoin deshydrogenase, the regulatory component AcoR, an AcoX protein of

unknown function, and an acetoin reductase, also known as butanediol deshydrogenase bdh,

that could be involved in 2,3-butanediol synthesis, as it occurs in P. chlororaphis O6 [106].

ilvBN genes encode an α-acetohydroxyacid synthase that could produce the acetoin via the

spontaneous decomposition of α-acetolactate in acetoin and diacetyl. These reactions would

supply the budAB operon described in Bacillus and Enterobacteriaceae. Acetoin and 2,3-buta-

nediol can trigger the induced systemic resistance (ISR) system in plants and also promote its

growth [123–126]. Besides, both compounds, but specially 2,3-butanediol, have also several

industrial applications and their microbial production, with a biotechnological improvement,

is increasingly interesting [127].

Aryl-polyenes (APEs) are lipids with an aryl head group conjugated to a polyene tail, that

are produced by all subphyla of Proteobacteria and some genera from the Cytophaga-Flavobac-
terium-Bacteroides group [128]. These compounds have the ability to protect cells against oxi-

dative stress, scavenging reactive oxygen species (ROS) such as peroxy radicals or singlet

oxygen due to their conjugated double bond systems [129]. In the cluster found in SVBP6

genome, 40% of genes show similarity with the APE cluster from Vibrio fischeri ES114 chro-

mosome I, including some putative 3-oxoacyl-[ACP]-synthase and reductase, acyl/glycosyl-

transferase and ammonia lyase genes. Therefore, SVBP6 strain might produce an APE with a

Genome mining of P. donghuensis SVBP6

PLOS ONE | https://doi.org/10.1371/journal.pone.0194088 March 14, 2018 18 / 32

https://doi.org/10.1371/journal.pone.0194088


biochemical structure more similar to APEVf (subfamily 2) than to xanthomonadins, arcufla-

vins or flexirubins [128,129].

Another beneficial trait of strain SVBP6 related with the colonization competence is the

presence of a genomic island (GI, 64.2% GC, detected by the IslandPath-DIMOB prediction

method of IslandViewer) that contains a recombinase gene in a specific genetic arrangement

that has been previously described to be essential in the competition process of root coloniza-

tion of tomato and potato plants [130], and to improve the colonization competence and bio-

control activity against Fusarium oxysporum f. sp. radicis-lycopersici in tomato of other two

P. fluorescens strains, F113 and WCS307 [131]. Root colonization is often a limiting step in

biocontrol processes, thus the presence of this gene would provide SVBP6 with a putative

advantage at the colonization level and a better control of disease development, beyond the

antagonistic mechanism carried out specifically against every pathogen. Although we found

genomic islands in the SVBP6 genome, we did not find any gene from a type IV secretion sys-

tem (T4SS), generally involved in the horizontal gene transfer [132] and recently described in

P. putida W15Oct28 [100]. This result correlates with the low twitching motility observed for

SVBP6 in vitro [6], a movement mediated by the type IV pili [133].

The genome exploration with the antiSMASH tool also revealed the presence of a cluster of

mangotoxin-related genes. Mangotoxin is the molecular determinant of the bacterial apical

necrosis caused by different P. syringae strains [134]. Nevertheless, we only identified anmgo
operon in the SVBP6 genome, which has a regulatory function [134], but we could not detect

homologs of themboB andmboC genes that are directly involved in the synthesis of this toxin

[135]. Besides, this operon was described to produce a signal molecule involved in P. entomo-
phila pathogenesis in Drosophila melanogaster via the non-ribosomal peptide synthetase

(NRPS) PvfC, an homologous protein of MgoA [116,136]. The lack of key virulence genes

present in diverse pathogenic Pseudomonas species [137] and the implication of this operon in

a regulatory system, supports the development of SVBP6 strain as a safe biocontrol agent for

its application to seeds or plants. Moreover, the analysis of GI with IslandViewer 3 confirmed

the absence of virulence factors, resistance genes and pathogen-associated genes in this kind of

arrangement.

An additional mechanism involved in cell survival is present in the SVBP6 genome. We

found a cluster containing genes for the synthesis, regulation and degradation of polyhydrox-

yalkanoates (PHAs), and two phasin genes (phaI and phaF), with a syntenic organization with

respect to those described previously in the Pseudomonas genus [138]. Under certain starva-

tion circumstances, like those found in the soil environment, bacterial cells with a higher con-

tent of PHAs may survive better than those with a lower PHA content because they can utilize

their storage material for longer periods and more efficiently. Besides, soil conditions (particu-

larly in the rhizosphere) are optimal for bacterial PHA production because a high C:N ratio

prevails [139]. Therefore, the genetic potential to synthetize and degrade PHAs would allow

SVBP6 to better persist in the rhizosphere, and improve its survival also in inoculant formula-

tions until the product is applied by the farmer [140].

All the set of those putative PGPM-related traits present in the SVBP6 genome previously

described in vitro and/or in silico, suggest that this strain is well prepared to survive in a com-

plex and competitive environment such the plant rhizosphere, where a continuous war

between microbes happens [141].

Besides all these activities described above, P. donghuensis SVBP6 possesses several

metabolic pathways for the catabolism of organic compounds, being some of them known

industrial wastes and environmental pollutants. Genes included in the widely distributed phe-

nylacetyl-CoA catabolon are encoded in the SVBP6 genome. The entire PhAc catabolic path-

way is located within a 16 kb fragment and is composed of 16 genes with an arrangement

Genome mining of P. donghuensis SVBP6

PLOS ONE | https://doi.org/10.1371/journal.pone.0194088 March 14, 2018 19 / 32

https://doi.org/10.1371/journal.pone.0194088


similar to the cluster found in P. putida U [142]. The degradation of those polymers, which

have plastic properties, is carried out when the carbon source has been exhausted from the

media, thus providing this bacterium with advantages for its survival [143]. Also, some puta-

tive substrates of this pathway, like styrene, are toxic compounds [142]. Benzoate is the sim-

plest aromatic salt and it is an intermediate of the biodegradation of many aromatic

compounds, such as toluene. The SVBP6 genome contains genes involved in benzoate and cat-

echol degradation, possibly via the ortho pathway because of the presence of a muconolactone

putative gene [144]. Thus, the ability to mineralize some complex organic compounds is an

additional interesting feature of strain SVBP6 for exploration of possible bioremediation/bio-

degradation purposes.

The whole set of putative PGP traits found in the SVBP6 genome by means of the genome

mining we performed represents a start point to investigate if these putative activities are in

fact relevant for the strain’s performance in vitro and, particularly, in planta, an also for discov-

ering new probiotic mechanisms [28].

The GacS-GacA two component system controls expression of biocontrol

related traits in strain SVBP6

To elucidate the mechanisms involved in the antagonistic potential of SVBP6, we decided to

construct a collection of Tn5mutants and to screen for those clones that had lost their antago-

nistic potential against the fungal phytopathogenic isolate M. phaseolina 131.2010 [6]. From

more than 2500 Tn5mutants, we selected a set of 50 clones that lost their antifungal potential

against the indicator fungal strain 131.2010 and therefore, they are under characterization.

Here, we report the features of one SVBP6 Tn5mutant clone that lost its antagonistic potential

not only against 131.2010, but also against all the other 11 fungal phytopathogens that were

inhibited by the SVBP6 wild type strain (Fig 5A). The Tn5 insertion site was determined by

arbitrary PCR [66] and the disrupted gene was found to be a gacS homologue. Like in other

plant probiotic Pseudomonas strains [145], it seems like the GacS-GacA two component sys-

tem would be regulating the expression of genes involved in the antagonistic potential of

SVBP6 strain. Moreover, we confirmed that this gacS::Tn5mutant could not produce HCN,

neither it showed exoprotease nor phospholipase activities (Fig 5B), all of which have been

described to be controlled by this regulatory system in other plant-probiotic pseudomonads

[146,147]. Contrary to what has been previously observed for other biocontrol pseudomonads

[148] and for the close relative P. donghuensis P482 strain, in which the GacS-GacA system

positively controls the production of several VOCs involved in antagonism against fungi and

oomycetes [149], we did not detect any VOCs involved in the antagonistic potential of SVBP6

againstM. phaseolina growth, as SVBP6 was not able to inhibit the growth of fungi when the

bacterial streaks and the fungal inocula were physically separated in the same partitioned Petri

dish (Fig 5C). However, the antibacterial activity of SVBP6 resulted to be strongly dependent

on the presence of a functional GacS-GacA system, because the gacS::Tn5mutant could no

longer inhibit the growth of any tested bacterial targets (Fig 5D). Accordingly, a P. protegens
Pf-5 with an in-frame knockout of gacA produced negligible amounts of toxoflavin [114],

although the toxicity of this compound was not demonstrated against Gram positive bacteria.

Besides the impact on biocontrol-related activities, we detected that the SVBP6 gacS::Tn5
mutant was able to better solubilize inorganic phosphate in NBRIP medium (Fig 5E), in agree-

ment with the phenotype reported for a P. fluorescens SBW25 ΔgacSmutant that showed

deregulation of the PQQ operon [150].

Bioinformatic analysis of the SVBP6 genome allowed us to detect the presence of all genetic

elements of a typical Gac/Rsm global regulatory cascade [151]: a gacS gene encoding the
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membrane associated histidine kinase sensor, which was one of the targets of Tn5 in our muta-

genesis approach (Fig 5); the gacA gene encoding the GacS cognate transcriptional activator of

expression of the dedicated regulatory sRNA genes; three homologue genes encoding mem-

bers of the CsrA/RsmA family of RNA-binding and translational regulators; and one copy of

Fig 5. Phenotypic in vitro assays of the gacS::Tn5 mutant compared with the wild type SVBP6 strain. A) Dual plate assays on PDA medium of wild-type SVBP6 (left

strike) and the gacS::Tn5 clone (right strike) against 7 fungal pathogens (from left to right):Macrophomina phaseolina, Colletotrichum truncatum, Fusarium semitectum,

Phomopsis sp., Fusarium solani, Fusarium oxysporum and Colletotrichum graminicola, being all isolates reported elsewhere [6]. In all cases, the gacS::Tn5mutant showed

a marked reduction in its antagonistic potential against those phytopathogens; B) Exoprotease, phospholipase, HCN production The gacS::Tn5mutant lost its activity, in

agreement with the reported activation by the GacS/GacA system in other plant-probiotic pseudomonads; C) Antagonism evaluated in partitioned Petri dishes to

evaluate the inhibition by VOCs. In this experiment, VOCs production seemed not to be involved in the SVBP6 antagonism againstM. phaseolina 131.2010; D)

Antibacterial activity against B. subtilis in an overlaid assay. The gacS::Tn5mutant lost its activity in both (shown in picture), overlaid and co-culture assays (data not

shown); colony edge is marked with a white dotted line; E) Inorganic phosphate solubilization assay performed in NBRIP medium. The gacS::Tn5mutant showed a

bigger solubilization halo than the wild type strain; F) The transcription of the sRNA RsmY was analyzed by Northern blot, as previously described [68]. While rRNA

23S and 16S levels kept constant between wild type strain and gacS::Tn5 mutant, RsmY abundance is markedly reduced in gacS::Tn5mutant, even in RNA samples from

a saturated culture with a high OD600 value.

https://doi.org/10.1371/journal.pone.0194088.g005

Genome mining of P. donghuensis SVBP6

PLOS ONE | https://doi.org/10.1371/journal.pone.0194088 March 14, 2018 21 / 32

https://doi.org/10.1371/journal.pone.0194088.g005
https://doi.org/10.1371/journal.pone.0194088


each of the rsmZ and rsmY sRNA gene homologues whose transcripts are regulatory sponges

that titrate CsrA/RsmA proteins and therefore activate translation of different mRNAs [151].

The sequence similarity of the SVBP6 rsmY and rsmZ homologues were found to be 91% and

93% with those from P. protegens CHA0, respectively [67,151]. Such degree of identity allowed

us to confirm expression of the SVBP6 rsmY homologue in the wild type strain by Northern blot

using the P. protegens CHA0 dsDNA probe. The SVBP6 RsmY was strongly expressed all along

the growth curve, but its cellular abundance was markedly downregulated in the gacS::Tn5
mutant clone (Fig 5E). Further directed mutagenesis is required to verify expression and roles of

all identified members of the Gac/Rsm cascade in the control of SVBP6 antagonistic traits.

Conclusions

As classical phylogenetic assays did not allow us to assign SVBP6 to any of the known Pseudo-
monas species, we carried out its genome sequencing and biochemical characterization. The

assembled draft genome of SVBP6 consisted of 5,701,342 bases, for which 5253 PEGS were

assigned, being 78.3% of those coding sequences related to a known subsystem (Table 2). The

phylogenetic comparison based on ANI between the strain SVBP6 and other sequenced Pseu-
domonas spp. strains, revealed the closest relationship with strains HYS and P482 of the

recently described P. donghuensis species (S6 Table). These three P. donghuensis isolates

formed a discrete clade within a larger group conformed by numerous P. putida strains (Fig 2;

S2 Fig). Genome prospecting allowed detection of genes and operons supporting previous

experimental data reporting different PGPR traits, such as siderophore production, exopro-

tease, phospholipase and ACC deaminase activities, and biosynthesis of IAA-like compounds

(Table 3). Nonetheless, genome mining revealed several additional potential plant-probiotic

and root colonization traits that would be powerful tools for SVBP6 strain to act as a biocon-

trol agent (Table 4), including T6SS, bacteriocin, toxoflavin, monalysin, and aryl polyene

syntheses, acetoin metabolism and acylase activity. Besides, we detected several genetic deter-

minants for metabolic pathways related to degradation of organic compounds that could be

interesting for bioremediation purposes. Finally, we confirmed that, regardless the chemical

nature of the broad antifungal activity, the GacS sensor and most likely all the downstream ele-

ments of the identified Gac/Rsm cascade, has a prominent role in activating the biosynthesis

of the diffusible inhibitory molecule(s) (Fig 5). Thus, both the genome mining and the Tn5
mutant library, will allow us to deeply investigate the potential of SVBP6, and hence to found

new mechanisms that could explain its broad antifungal activity.

This is the first report of a P. donghuensis isolate obtained from a bulk soil sample, and

from the Southern hemisphere. Similarly to what has been recently described for the Polish

tomato-rhizospheric isolate P. donghuensis P482, SVBP6 showed a strong antagonistic activity

against a variety of fungal pathogens, but, in contrast to isolate P482, it appears that the antago-

nistic mechanism is not based on the production of VOCs. Besides, SVBP6 displayed antibac-

terial activity against a Gram-positive representative (B. subtilis) and an Enterobacterial

representative (E. coli), a feature that could be attributed to the expression of identified bacteri-

ocin or toxoflavin production genes. The availability of the genome sequence of this isolate, as

well as the successful generation of a random Tn5mutagenic clone library, will provide the

basis for the elucidation of the genetic basis responsible for the broad antifungal activity of P.

donghuensis SVBP6 isolate.

Supporting information

S1 Table. Pseudomonas species included in the MALDI Biotyper database. List of bacterial

strains of the Pseudomonas genus employed by the MALDI software to compare and identify a
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sample.

(PDF)

S2 Table. List of conserved genes used for sampling genomes based on genetic diversity.

Genes in the reference genome of Pseudomonas aeruginosa PAO1 (Assembly Acc.

GCA_000006765.1) are indicated.

(PDF)

S3 Table. Pseudomonas strains’ sequences analyzed in this study.

(PDF)

S4 Table. Fatty acids patterns of P. donghuensis SVBP6 and some related pseudomonads.

The MIDI profile of SVBP6 was compared with bibliography data of closely related Pseudomo-
nas species.

(PDF)

S5 Table. Number of genes associated with general COG functional categories in the

SVBP6 genome. Classification of the COGs by functional categories with one-letter abbrevia-

tions for the functional categories was based in the COG database [152].

(PDF)

S6 Table. ANI scores. Detailed values of the ANI analysis of the 142 more closely related Pseu-
domonas genomes that were chosen to perform the analysis (See materials and methods for

further explanation). ANI score is a result from a whole genome comparison. Values higher

than 97% of similarity among strains are shown in red. P. donghuensis HYS and Pseudomonas
sp. P482 showed high similarity values with SVBP6 strain.

(PDF)

S1 Fig. Workflow of the phylogenetic analyses done in the present study.

(PDF)

S2 Fig. Phylogenetic tree of Pseudomonas based on 67 putative orthologous genes. Tree was

inferred using an approximate maximum-likelihood method with default parameters by

means of FastTree version 2.1. The SH test was used to evaluate branch supports. The 140

genomes other than SVBP6 that were included in this analysis were selected as representatives

of the genetic diversity of the genus (see text). Red arrow indicates the position of SVBP6

strain. The monophyletic group selected for further phylogenetic analysis is indicated within a

blue box.

(TIF)

S3 Fig. Antibacterial activity of P. donghuensis SVBP6 against a Gram-positive prey (B.

subtilis) and two Gram-negative preys, one from the same genus (P. fluorescens 1008) and

from the Enterobacteriacea group (E. coli K12). A) Overlaid layer assay, showing a putative

release metabolite that could exert the antibacterial activity; B) Co-culture assay, showing a

putative secreted metabolite or even a contact-dependent strategy, as T6SS.

(TIF)
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146. Sacherer P, Défago G, Haas D. Extracellular protease and phospholipase C are controlled by the

global regulatory gene gacA in the biocontrol strain Pseudomonas fluorescens CHAO. FEMS Micro-

biol Lett. 1994; 116: 155–160. PMID: 8150259
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